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The purpose of electrochemical machining is to shape a workpiece which plays

the role of the anode by placing it into an electrolytic solution and applying

a voltage drop between it and the tool, the cathode. During the process

material is removed electrolytically at the surface of the workpiece while the

tool remains unaltered. Speaking mathematically this means that an electric

potential $u:$ ] $0,$ $T[\cross\Omegaarrow[0,$ $\infty[\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{e}\mathrm{s}$ different values, say the values $0$ on the

anode $A$ and the value 1 on the cathode $C$ (which can be considered as a

set in $\mathrm{R}^{n}-\Omega$), $u$ is harmonic in between, and the normal speed $V$ of the

moving boundary of the anode equals the dissolution rate, which is assumed

to be a function of the electric current flowing in normal direction through

the anode surface (see [LS], [Sch]):

$\Delta u=0$ in $\{u>0\}\cap(]0, T[\cross\Omega)$ ,

$V=f(-\nabla u\cdot\nu)$ on $\partial\{u>0\}\cap(]0, T[\cross\Omega)$ ,

$u=1\mathrm{o}\mathrm{n}]0,$ $T[\cross(c\cap\partial\Omega)$ ,

$u=0\mathrm{o}\mathrm{n}]0,$ $T[\cross(A\cap\partial\Omega)$ and

$\nabla u\cdot\nu=0\mathrm{o}\mathrm{n}]0,$ $T[\cross(\partial\Omega-C-A)$ .

Here $\nu$ means the outer normal on $\partial\{u>0\}$ and $\partial\Omega$ respectively, and $fi$

$\mathrm{R}arrow[0,$ $\infty$ [ is a non-decreasing function vanishing up to some threshold

value $Q$ and being positive for values $>Q$ . The corresponding steady state
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problem is
$\Delta u=0$ in $\{u>0\}\cap\Omega$ ,

$-\nabla u\cdot\nu\leq Q$ on $\partial\{u>0\}\cap\Omega$ ,

$u=1$ on $C\cap\partial\Omega$ ,

$u=0$ on $A\cap\partial\Omega$ and

$\nabla u\cdot\nu=0$ on $\partial\Omega-A-^{c}$ .
However, since this problem is highly non-unique, and since it is known that

for certain initial data the solution of the evolutionary problem converges to

a solution satisfying the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}-\nabla u\cdot\nu=Q$ on $\partial\{u>0\}\cap\Omega$ , we pass to

the critical steady state problem, where the condition on the free boundary

$\partial\{u>0\}$ is replaced by the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}-\nabla u\cdot\nu=Q$ .

Existence of variational solutions for this problem has been shown by Alt

and Caffarelli in [AC]: they consider the minimum problem

$E(v):= \int(|\nabla v|^{2}\Omega+Q^{2}x_{\{v>0}\})arrow\min_{K}$ ,

where $Q\in C^{0,\gamma}(\Omega)$ is positive and $IC$ is a closed affine subspace of $H^{1,2}(\Omega)$

which prescribes suitable boundary data on $\partial\Omega$ (the Dirichlet data should

be non-negative in order to obtain non-negative solutions). Since the func-

tional $E(v)$ is but lower semicontinuous, only those sequences $u_{\epsilon}arrow u$ with

respect to whom $E$ is continuous can serve to characterize a local minimum.

Therefore the following definition makes sense:

Definition 1
$u\in I\mathrm{f}$ is called a local minimum von $E$ , if there is an $\epsilon_{0}>0$ such that

$E(u)\leq E(v)$ for all $v\in K$ which satisfy

$||u-v||H^{1},2(\Omega)|+|x\{u>0\}-x_{\{\}}v>0||L1(\Omega)\leq\epsilon_{0}$

Existence and regularity of local minima have been proved in [AC]: if $u$ is a

local minimum of $E$ then $u\in C_{loC}^{0,1}(\Omega)$ and $u\geq 0$ and thereby $u$ divides $\Omega$

into the open set $\{u>0\}$ , where $u$ is harmonic, and the set $\{u=0\}$ .
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If the free boundary $\partial\{u>0\}$ is smooth, then the first variation of the

minimum problem yields a strong solution of the critical steady state elec-

trochemical machining problem, however regularity of the free boundary in

dimensions $n>2$ is still open. The same problem appears also in the ap-

proach of [HS], where a solution is constructed which satisfies the free bound-

ary condition pointwisely: since they do not prove any regularity of the free

boundary, it is not clear whether their solution is in $C^{1}(\overline{\{u>0\}})$ , i.e. a

strong solution.

What Alt and Caffarelli did show is the following ”
$\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{n}\mathrm{e}\mathrm{S}\mathrm{S}^{-\mathrm{i}\mathrm{m}\mathrm{p}}1\mathrm{i}\mathrm{e}\mathrm{S}$ regularity-

result” for variational solutions: flatness of $\partial\{u>0\}$ in a point $x_{0}$ implies

regularity of $\partial\{u>0\}$ in a neighborhood of $x_{0}([\mathrm{A}\mathrm{C}])$ . This corresponds to

an analogous result of $\mathrm{D}\mathrm{e}\mathrm{G}\mathrm{i}\mathrm{o}\mathrm{r}\mathrm{g}\mathrm{i}$ for minimal surfaces, however the methods

of proof are different.

In the following we are going to derive a partial regularity result for $\partial\{u>0\}$

by methods which again have their counterparts in the regularity theory of

minimal surfaces.

The most important one is a new $\mathrm{m}$.onotonicity formula for local minima of $E$

which corresponds to a monotonicity formula of Miranda $([\mathrm{M}\mathrm{i}])$ for mimimal

surfaces:

Theorem 2 (Monotonicity formula)
Let $u$ be a local minimum of $E$ . Then for every $D\subset\subset\Omega$ there exists $\delta>0$

depending on $(n, ||u||H^{1,\infty}(D)’\epsilon_{0}$ , dist $(D, \partial\Omega))$ such that for any $B_{\delta}(x_{0})\subset D$

satisfying $u(x_{0})=0$ the function $\rho\mapsto p(\rho)$

$:= \frac{1}{\rho^{n}}\int_{B_{\rho(x)}0}(|\nabla u|^{2}+Q2(x\mathrm{o})\chi\{u>0\})-\frac{1}{\rho}\int_{0}^{\rho}\frac{1}{r^{n-1}}\partial B_{r}(x\int_{0)}(\nabla u\cdot\nu)^{2}d\mathcal{H}^{n-}1dr$

is well-defined and for any $0<s<\rho<\delta$ the inequality

$0 \leq\int_{\iota}^{\rho}t^{-3}\int_{1}\partial B(x\mathrm{o})[t\int_{0}(\nabla u(r\xi \mathrm{f})\cdot\xi)^{2}dr-(\int_{0}^{t}\nabla u(r\xi)\cdot\xi dr)^{2}]d\mathcal{H}^{n-1}(\xi)dt$
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$\leq p(\rho)-p(s)+\frac{2n}{\gamma}\rho^{\gamma}[Q^{2}]_{\gamma,D}$ holds; here $[Q^{2}]_{\gamma,D}:= \sup_{x\neq y\in D}\frac{|Q^{2}(x)-Q2(y)|}{|x-y|^{\gamma}}$ .

If $Q$ is constant then $p$ is a non-decreasing function in the interval $(0, \delta)$ .

For proof see [We, Theorem 1.2].

Notice that the proof of Theorem 2 holds for $Q=0$ and yields in this case a

monotonicity formula for harmonic functions which is not standard.

Furthermore observe that by analogy to the monotonicity formula used in the

field of harmonic mappings and liquid crystals $([\mathrm{S}\mathrm{U}],[\mathrm{H}\mathrm{K}\mathrm{L}])$ we could prove

that $r^{2-n} \int_{B_{\Gamma}}(x\mathrm{o})(|\nabla u|^{2}+Q^{2}\chi_{\{u>0\}})$ is (for constant $Q$ ) non-decreasing in $r$ ,

however the scaling of this monotonicity does not accord with the regularity

of $u$ and therefore this monotonicity does not give any new information when

passing to blow-up limits.

When considering blow-up sequences $u_{k}(x):= \frac{u(x_{0}+\rho_{k}x)}{\rho_{k}}$ for $x_{0}\in\partial\{u>$

$0\}$ and $\rho_{k}arrow 0$ as $karrow\infty$ , it is known $([\mathrm{A}\mathrm{C}])$ that a subsequence of $u_{k}$

converges in some sense to a blow-up limit $u_{0}$ and that any blow-up limit $u_{0}$

is an absolute minimum of $\int_{B_{R}}(|\nabla v|^{2}+Q^{2}(x_{0})\chi\{v>0\})$
in the affine space

$\{v\in H^{1,2}(B_{R}) : v-u_{0}\in H_{0}^{1,2}(B_{R})\}$ , and the monotonicity formula of

Theorem 2 leads to the fact that any blow-up limit $u_{0}$ is homogeneous of
degree 1, that is the graph of $u_{0}$ is a cone with vertex at $\mathit{0}$ (see [We, Chapter

2]).

Another interesting property is the ”non-positive mean curvature of $\partial\{u_{0}>$

$0\}$
” :

Proposition 3
Let $D$ be an open and bounded set in $\mathrm{R}^{n}$ satisfying $\overline{D}\cap(\partial\{u_{0}>0\}$ -

$\partial_{red}\{u_{0}>0\})=\emptyset$ . Then $P(\{u_{0}>0\})D)\leq P(F, D)$ for any $F\subset\{u_{0}>0\}$

such that $\partial F\cap D$ is a $C^{2}$ -surface and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\chi_{F}-x_{\{u0}>0\})\subset D$ . Here $P$

means the perimeter and $\partial_{red}$ means the reduced boundary, i.e. the part of

the boundary where the exterior normal of [Fe, 4.5.5] has norm 1.
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For proof see [We, Theorem 2.1].

Using the above results in a dimension reduction procedure one obtains the
following partial regularity (compare to [We, Chapter 3 and 4]):

Theorem 4
There is a dimension $k^{\star}\in \mathrm{N}\cup\{\infty\}$ such that for any $\Omega,$ $Q$ and $K$ as stated

above and for any local minimum $u$ : $\Omega\subset \mathrm{R}^{n}arrow \mathrm{R}$ of $E$ we have the

following:

i) if $n<k^{\star}$ then the free boundary $\partial\{u>0\}$ is locally in $\Omega$ a $C^{1,\alpha}$-surface.

ii) if $n=k^{\star}$ , then the singular set $\Sigma:=(\partial\{u>0\}-\partial_{red}\{u>0\})\cap\Omega$ consists
at most of in $\Omega$ isolated points and the free boundary is a $C^{1,\alpha}$ -surface in the
open set $\Omega-\Sigma$ .

iii) $\mathcal{H}^{s}(\Sigma)=0$ for any $s>n-k^{\star}$

Corollary 5
Since $k^{\star}\geq 3$ , it follows that $\mathcal{H}^{n-2}(\Sigma)=0$ and that in dimension $n=3$ the
singular set $\Sigma$ consists at most of in $\Omega$ isolated points.

The estimate of $k^{\star}$ from below, i.e. the fact that singularities cannot occur in
two dimensions, was already shown in [AC] by sophisticated methods, in our
context however the estimate follows from the simple geometric argument,
that a function which is harmonic and homogeneous of degree 1 in some
domain of $\mathrm{R}^{2}$ must be linear in this domain.

In case of three dimensions which is the realistic situation with respect to the
electrochemical machining problem above, more can be shown with respect
to the structure of the isolated singularities: the fact that any blow-up limit
$u_{0}$ is homogeneous of degree 1 implies that the curvature of the free boundary
in radial direction vanishes. Therefore we infer from the non-positive mean
curvature of $\partial\{u_{0}>0\}$ and from the smoothness of $\partial\{u_{0}>0\}$ in $\mathrm{R}^{\mathrm{n}}-\{0\}$

that $\{u_{0}=0\}$ has to be a finite union of convex sets. A special consequence
is that any connected component of $\{u_{0}=0\}$ is Lipschitz continuous.
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