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§0. Introduction

Let Q be a bounded domain in R with smooth bounda.ry 0f). We consider
the following problem:

0P
(1) 6t — (A +ia)A® + (k +iB)|®P~1® — v =0,

E(m’t):o (x€dQ, t>0),
®(z,0) = Po(z).

Here A >0, kK > 0, p > 1 and «, 8, ¥ € R are constants; v is unit outward
normal of 99, i = v/—1 and ® is C-valued. (1) is called the time-dependent
Ginzburg-Landau equation when p = 3 (see Temam [5]). Introducing the new
unknown u = e~ "*®(= v + iw), the problem (1) is written as

(2) ?;: (A +ia)Au + (k +iB)e? V" uPlu = 0,

B—V(a:,t) =0 (zx€e o, t=>0),
u(z,0) = uo(z) (= Do(2))-

For the mathematical setting we introduce complex Hilbert space X =
L?(Q; C) with inner product (-,-) and norm || - ||, and define operators A, B
and time-dependent operators A(t), B (t) as follows:

D(A) := {u € H*(Q;C); - =0 on 8Q},
Au = —Av —iAw for u=v+iw € D(A),
D(B) = {u € X; [ulP'u e X},
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Bu := |[u|P~!u for u € D(B),

B(t)u := P~ By for u € D(B(t)) :== D(B), t € [0,T],

D := D(A)Nn D(B),

A@t)u := (A +ia)Au + (k +iB)B(t)u for u € D(A(t)):= D, t € [0,T],
where H?(Q;C) is the usual Sobolev Hilbert space and T' > 0 is arbitrary.

Then the problem (2) is regarded as one of initial value problems for standard
abstract evolution equations of the form

3) W Au=0, tep1)

u(O) = Uo.

To solve (3) we can apply the theory of nonlinear evolution equations developed
by Kato [2]. In fact, under some conditions for A\, k, p, a, B3, v we can show
that A(t) (¢ € [0,T]) is m-accretive in X (see Lemma 10) and A(-) satisfies the
smoothness condition:

|A()u — A(s)ul] < C(T)|t — s|(1 + ||u|| + ||A(s)u]), for t, s €[0,T], v € D,
(see Lemma 11).

§1. The main theorem and its corollary

we obtain the following theorem.

Theorem. Let A >0, k>0, p> 1, |n| \/ﬁ , Md6+afB > |A\B—ax|. Then
for any &g € D, there exists a unique global 3trong solution ® = ®(z,t), (z,t) €
Q x [0,00) to the problem (1) in X.

Put o = 3 =0 in the problem (1). Then we have

Corollary. If A >0, kK >0, p> 1, then for any ®¢ € D the problem
0P

(4) 5 — AAD +k|DPI® — D =0, (z,t) € Q x [0, 00),
g(x,t) =0, (z,t) € 00 x [0, 00),
®(z,0) = Po(z), z €.
has a unique global strong solution ® = ®(z,t).
§2. Proof of theorem

In this section we shall prove our main Theorem. The proof needs some
lemmas. Throught this section, we assume that A > 0, x > 0, p > 1. It is
well-known that the operator A is a nonnegative selfadjoint operator in X. So
we can easily obtain '



Lemma 1. (A +ia)A is m-accretive in X.

In the next Lemma 2 which implies that B is a nonlinear sectorial operator,

—1
the constant };—p is recently determined by [3].
Lemma 2([38]). For any u;, us € D(B) we have.

Re(Bu1 Bus, uy — us).

Im(Buy — Bug, u; —us)| < 2\/_

Since the operator B is sectorial like this, the accretiveness of B is preserved
under a little rotation. So we can obtain

2
" Lemma 8. Let I—'i—l < iﬁ Then (k+:iB3)B is accretive in X (We can replace
B by B(t)).

Proof. Let uy, uy € D(B). Then it follows from Lemma 2 that

Re((m + Zﬁ)(Bul Bus),u; — UZ) ,
>kRe(Buy — Bug,u; —ug) — |8]|Im(Bu; — Bug, uy — us)|

2
Z&(p——\/—f?l— B |_,i;?“l)“m(Bul — Bug,u; —up)| 20. O

Let f € X then for almost every = € Q2 the equation
z4|2lP7 2 = f(z) in C

has a unique solution z = u(z) such that [u(a:)] < |f(2)]. Therefore u € D(B)
and we obtain the following lemma.

Lemma 4. B is m-accretive in X (We can replace B by B(t)).

For every € > 0 we set

=({I+¢eB)™Y, B.= %(I —J.).
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2 : . ) .
Lemma 5. Let 18] < 2P Then (k +i3)Be is accretive in X.

kK ~p—1
Proof. Let V1, Vg Ev X. Then it follows from Lérmna 3 that

Re((h: +i8)(Bev1 — Bevz),v1 — v2)
=Re((k +48)(B:v1 — Beva), Jov1 — Jov2)
+Re((h: +iB)(Bev1 — Bevz), (v1 — Jev1) — (v2 — Jova))
=Re((k +iB)(B(Jev1) — B(Jev2)), Jev1 — Jevz)
—I—Re((n +48)(B.v; — B.vg),e(B:vy — stz))
>ek||B.v; — Bevg)? > 0. O

Lemma 6. C1(Q;C)N X is invariant under (I +eB)™1.

Proof. For any f = g +ih € C1(Q;C) N X we know that the equation
Ue (2) + elue ()P ue (2) = f(2)

has a unique solution u.(z) = v.(z) + twe(z) € D(B). It remains to show that
u.(z) € C1(; C). This equation is rewritten in the form:

p—1

{v4w+dwwf+wam%%%4m=gwx
we(x) + 5(’05 (2)? + we(2)?) 7 we(z) = h(z).

Put
—1
F(z,ve,w5) = s + (2 +w?) 7 v, — g(z),
—1
G(z,ve, W) := We +5(v3 + wf)%wa — h(z).
Then
) )
o(F,G) ::l&i 8315;‘
O(ve, we) gﬁ auc)*;
—1 —1
={1 —|—6(v§ +w52)%_}2 +{1 +€(v52 —|—w52)%}

p—3

x e(p—1)(v2 +w2) T (v +w?) > 1.

Therefore we can apply the implicit function theorem. [



Lemma 7. Re(Au, B:.u) >0 for ue€ D(A).

Proof. Put

D(A) := {f = g +ih € C%(Q; C) N H*(Q; C); -g% = 0 on 00}.

It suffices to show our lemma for f = g +ih € E(A) We set
v +iw, = (I +eB)™ (g +ih).

Then we have

a'UE _ 1 2 Bg Oh

9, q{(l-l—awg—l-b) . ——awsvsaxj},
Ow. 1 dg Oh
oz; q{ W We 5 + (14 av? +b) —_&rj },

where

’ p—3 —1
a=c(p—1)(2+w2) T, b=c(w?+w?) 7, = (b+1)? +a(b+1)(2 +w?).
It follows from this relation that

Re(Af, B.f)
—Re(~ Ag — ik, ~[(g —v.) +ilh - w.))

=1{/ Vg V(g —ve) dm—}—/ Vh-V(h—w) dx}
€ lJa Q

_li/ 99 1
_5j:1 q 0z; q‘\loxz;

N
1 oh 1 0g 5 Oh
+EZ/Q oy a{qé—a_:; +(w€w€3xj — (14 avi +b)67j} dz

0g Oh

1 (1 | |
Z7 / q [{0? + b + ab(v? + wA)}(| Vgl + [VA[*) + a(ve|Vg| — we[Vh])?] dz
o

>0. O
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Remark 8. Since X is a (complex) Hilbert space in our case, B.u converges
Bu (u € D(B)) in X as ¢ | 0. Therefore we also have from Lemma 7 that

Re(Au, Bu) >0 for u€ D= D(A)ND(B).

Now we shall prove that the operator
A(t) = (A +ia)A + (k +iB)B(t)

is m-accretive for every t € [0,T]. Following the idea of T. Kato (see Brezis,
Crandall and Pazy [1]), for every f € X we consider the approximate equations:

K +108
B & e ’ .
(5) Aw.;—l—)‘+ U +u.=f, €>0
Since (A +ia)A + (k + i3)B. is m-accretive in X (for 181 < \/‘5 ) (5) has a

unique solution u. € D(A).

Lemma 9. Let u. be the solution of (5). If Ak + aB > 0, then ||Beu.|| is
bounded for any € > 0.

Proof. It follows from (5) that

Ak + af

Re(Aug, BE’LLE) + m

|| Boue||? 4+ Re(ue, Beue) = Re(f, Beue)

Noting that B0 = 0 and

Re(B:ue, ue) = Re(B(JEuE) — B0, J.u. — 0) + Re(B.ue, eBeue)
> ef| Beue|* 2 0,

we have from lemma 7 that

Ak + af

A2 + a2 I|B€u€n2 < ”f“”Bsue” O

In (5), now it is routine work to prove that there exists a unique u € D such
that
u. —> ustrongly in X, Au, — Auweakly in X, Bu, — Bu weakly in X

as £ | 0. Hence we obtain
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Lemma 10. Let % < 5——\/—2_; and Ak +af3 > 0. Then (A +ia)A + (k +

i8)B is m-accretive in X. The same is true for A(t) = (A +ia)A + (x +
iB)B(t) for every t € [0,T].

Lemma 11. Let Ak + af8 > |A\3 — ak|. Then there exists a constant C' =
C(T) > 0 such that

|A®)u — A(s)u|| < Clt — s|||A(s)u|| for t, s €[0,T], ue D.
Proof. Let ¢, s € [0,7] and u € D. By the mean value theorem there exists a
C1(T') > 0 such that

1A@)u — A(s)ull = [|(x +iB) (P~ — P=17%) By
< G|t — sl B(s)ul-

On the other hand we know from Remark 8 that
Re(Au, Bu) >0 for uweD.

From this mequahty we see that

A , A A
|32 B(s)ull® < Re(4a, {Z”ﬁB()) lIy’Z—;tifB(s)ullz
A A
< Jlu+ A”"”ﬁB() I n—"—i”-f‘ﬁB(s) I
and hence‘
A A
AR B syl < 14w+ 28 Bsyul
+if A8
< JAut 5L poyul + D=2 Byl
So we have
A — i . .
1Bl < fmragy = el + i@)Au + (s +iB) Bl
Thus we obtain
LT ~ il
IAu = AG)ul < g =Tt~ Al O

Now we are in a position to prove our Theorem.
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Proof of Theorem (completed). Since the domain D of A(t) is independent
of t € [0,T] and A(t) is m-accretive in X, by Lemma 11 we can apply Kato’s
Theorem ([2]). Noting that T > 0 is arbitrary, the solution ®(z,t) to (1) exists
for (z,t) € Q x [0, c0).

Added after the conference. In our Theorem, we can weaken the assump-
tion. Namely our Theorem is still true when the condition Ak +a8 > |A8 — ak|
is replaced by Ax + a3 > 0 (see [6]).
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