Nonlinear m-sectorial operators and time-dependent Ginzburg-Landau equations

AKIHITO UNAI (宇内 昭人)

Science University of Tokyo (東京理科大学 理学部)

§0. Introduction

Let Ω be a bounded domain in \mathbb{R}^N with smooth boundary $\partial\Omega$. We consider the following problem:

(1)
$$\frac{\partial \Phi}{\partial t} - (\lambda + i\alpha)\Delta \Phi + (\kappa + i\beta)|\Phi|^{p-1}\Phi - \gamma \Phi = 0,$$
$$\frac{\partial \Phi}{\partial \nu}(x, t) = 0 \qquad (x \in \partial \Omega, \quad t \ge 0),$$
$$\Phi(x, 0) = \Phi_0(x).$$

Here $\lambda>0,\ \kappa>0,\ p>1$ and $\alpha,\ \beta,\ \gamma\in\mathbf{R}$ are constants; ν is unit outward normal of $\partial\Omega,\ i=\sqrt{-1}$ and Φ is C-valued. (1) is called the time-dependent Ginzburg-Landau equation when p=3 (see Temam [5]). Introducing the new unknown $u=e^{-\gamma t}\Phi(=v+iw)$, the problem (1) is written as

(2)
$$\frac{\partial u}{\partial t} - (\lambda + i\alpha)\Delta u + (\kappa + i\beta)e^{(p-1)\gamma t}|u|^{p-1}u = 0,$$
$$\frac{\partial u}{\partial \nu}(x,t) = 0 \qquad (x \in \partial\Omega, \quad t \ge 0),$$
$$u(x,0) = u_0(x) \ (= \Phi_0(x)).$$

For the mathematical setting we introduce complex Hilbert space $X = L^2(\Omega; \mathbf{C})$ with inner product (\cdot, \cdot) and norm $\|\cdot\|$, and define operators A, B and time-dependent operators A(t), B(t) as follows:

$$D(A) := \left\{ u \in H^{2}(\Omega; \mathbf{C}); \ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \right\},$$

$$Au := -\Delta v - i\Delta w \quad \text{for} \quad u = v + iw \in D(A),$$

$$D(B) := \left\{ u \in X; \ |u|^{p-1}u \in X \right\},$$

$$Bu := |u|^{p-1}u$$
 for $u \in D(B)$,
 $B(t)u := e^{(p-1)\gamma t}Bu$ for $u \in D(B(t)) := D(B)$, $t \in [0, T]$,
 $D := D(A) \cap D(B)$,
 $A(t)u := (\lambda + i\alpha)Au + (\kappa + i\beta)B(t)u$ for $u \in D(A(t)) := D$, $t \in [0, T]$,

where $H^2(\Omega; \mathbf{C})$ is the usual Sobolev Hilbert space and T > 0 is arbitrary. Then the problem (2) is regarded as one of initial value problems for standard abstract evolution equations of the form

(3)
$$\frac{du}{dt} + A(t)u = 0, \quad t \in [0, T],$$
$$u(0) = u_0.$$

To solve (3) we can apply the theory of nonlinear evolution equations developed by Kato [2]. In fact, under some conditions for λ , κ , p, α , β , γ we can show that A(t) ($t \in [0,T]$) is m-accretive in X (see Lemma 10) and $A(\cdot)$ satisfies the smoothness condition:

$$||A(t)u - A(s)u|| \le C(T)|t - s|(1 + ||u|| + ||A(s)u||), \text{ for } t, s \in [0, T], u \in D,$$
 (see Lemma 11).

§1. The main theorem and its corollary we obtain the following theorem.

Theorem. Let $\lambda > 0$, $\kappa > 0$, p > 1, $\frac{|\beta|}{\kappa} \le \frac{2\sqrt{p}}{p-1}$, $\lambda \kappa + \alpha \beta > |\lambda \beta - \alpha \kappa|$. Then for any $\Phi_0 \in D$, there exists a unique global strong solution $\Phi = \Phi(x,t)$, $(x,t) \in \Omega \times [0,\infty)$ to the problem (1) in X.

Put $\alpha = \beta = 0$ in the problem (1). Then we have

Corollary. If $\lambda > 0, \ \kappa > 0, \ p > 1$, then for any $\Phi_0 \in \mathcal{D}$ the problem

(4)
$$\frac{\partial \Phi}{\partial t} - \lambda \Delta \Phi + \kappa |\Phi|^{p-1} \Phi - \gamma \Phi = 0, \qquad (x, t) \in \Omega \times [0, \infty),$$
$$\frac{\partial \Phi}{\partial \nu}(x, t) = 0, \qquad (x, t) \in \partial \Omega \times [0, \infty),$$
$$\Phi(x, 0) = \Phi_0(x), \quad x \in \Omega.$$

has a unique global strong solution $\Phi = \Phi(x,t)$.

§2. Proof of theorem

In this section we shall prove our main Theorem. The proof needs some lemmas. Throught this section, we assume that $\lambda > 0$, $\kappa > 0$, p > 1. It is well-known that the operator A is a nonnegative selfadjoint operator in X. So we can easily obtain

Lemma 1. $(\lambda + i\alpha)A$ is m-accretive in X.

In the next Lemma 2 which implies that B is a nonlinear sectorial operator, the constant $\frac{p-1}{2\sqrt{p}}$ is recently determined by [3].

Lemma 2([3]). For any $u_1, u_2 \in D(B)$ we have

$$|\operatorname{Im}(Bu_1 - Bu_2, u_1 - u_2)| \le \frac{p-1}{2\sqrt{p}}\operatorname{Re}(Bu_1 - Bu_2, u_1 - u_2).$$

Since the operator B is sectorial like this, the accretiveness of B is preserved under a little rotation. So we can obtain

Lemma 3. Let $\frac{|\beta|}{\kappa} \leq \frac{2\sqrt{p}}{p-1}$. Then $(\kappa+i\beta)B$ is accretive in X (We can replace B by B(t)).

Proof. Let $u_1, u_2 \in D(B)$. Then it follows from Lemma 2 that

$$\operatorname{Re}((\kappa + i\beta)(Bu_{1} - Bu_{2}), u_{1} - u_{2}) \\
\geq \kappa \operatorname{Re}(Bu_{1} - Bu_{2}, u_{1} - u_{2}) - |\beta| |\operatorname{Im}(Bu_{1} - Bu_{2}, u_{1} - u_{2})| \\
\geq \kappa \left(\frac{2\sqrt{p}}{p-1} - \frac{|\beta|}{\kappa}\right) |\operatorname{Im}(Bu_{1} - Bu_{2}, u_{1} - u_{2})| \geq 0. \quad \Box$$

Let $f \in X$ then for almost every $x \in \Omega$ the equation

$$z + |z|^{p-1}z = f(x)$$
 in **C**

has a unique solution z = u(x) such that $|u(x)| \le |f(x)|$. Therefore $u \in D(B)$ and we obtain the following lemma.

Lemma 4. B is m-accretive in X (We can replace B by B(t)).

For every $\varepsilon > 0$ we set

$$J_{\varepsilon} = (I + \varepsilon B)^{-1}, \quad B_{\varepsilon} = \frac{1}{\varepsilon}(I - J_{\varepsilon}).$$

Lemma 5. Let $\frac{|\beta|}{\kappa} \leq \frac{2\sqrt{p}}{p-1}$. Then $(\kappa + i\beta)B_{\varepsilon}$ is accretive in X.

Proof. Let $v_1, v_2 \in X$. Then it follows from Lemma 3 that

$$\operatorname{Re}((\kappa + i\beta)(B_{\varepsilon}v_{1} - B_{\varepsilon}v_{2}), v_{1} - v_{2})$$

$$= \operatorname{Re}((\kappa + i\beta)(B_{\varepsilon}v_{1} - B_{\varepsilon}v_{2}), J_{\varepsilon}v_{1} - J_{\varepsilon}v_{2})$$

$$+ \operatorname{Re}((\kappa + i\beta)(B_{\varepsilon}v_{1} - B_{\varepsilon}v_{2}), (v_{1} - J_{\varepsilon}v_{1}) - (v_{2} - J_{\varepsilon}v_{2}))$$

$$= \operatorname{Re}((\kappa + i\beta)(B(J_{\varepsilon}v_{1}) - B(J_{\varepsilon}v_{2})), J_{\varepsilon}v_{1} - J_{\varepsilon}v_{2})$$

$$+ \operatorname{Re}((\kappa + i\beta)(B_{\varepsilon}v_{1} - B_{\varepsilon}v_{2}), \varepsilon(B_{\varepsilon}v_{1} - B_{\varepsilon}v_{2}))$$

$$\geq \varepsilon \kappa \|B_{\varepsilon}v_{1} - B_{\varepsilon}v_{2}\|^{2} \geq 0. \quad \Box$$

Lemma 6. $C^1(\Omega; \mathbf{C}) \cap X$ is invariant under $(I + \varepsilon B)^{-1}$.

Proof. For any $f = g + ih \in C^1(\Omega; \mathbf{C}) \cap X$ we know that the equation

$$u_{\varepsilon}(x) + \varepsilon |u_{\varepsilon}(x)|^{p-1} u_{\varepsilon}(x) = f(x)$$

has a unique solution $u_{\varepsilon}(x) = v_{\varepsilon}(x) + iw_{\varepsilon}(x) \in D(B)$. It remains to show that $u_{\varepsilon}(x) \in C^{1}(\Omega; \mathbb{C})$. This equation is rewritten in the form:

$$\begin{cases} v_{\varepsilon}(x) + \varepsilon \left(v_{\varepsilon}(x)^2 + w_{\varepsilon}(x)^2\right)^{\frac{p-1}{2}} v_{\varepsilon}(x) = g(x), \\ w_{\varepsilon}(x) + \varepsilon \left(v_{\varepsilon}(x)^2 + w_{\varepsilon}(x)^2\right)^{\frac{p-1}{2}} w_{\varepsilon}(x) = h(x). \end{cases}$$

Put

$$F(x, v_{\varepsilon}, w_{\varepsilon}) := v_{\varepsilon} + \varepsilon \left(v_{\varepsilon}^{2} + w_{\varepsilon}^{2}\right)^{\frac{p-1}{2}} v_{\varepsilon} - g(x),$$

$$G(x, v_{\varepsilon}, w_{\varepsilon}) := w_{\varepsilon} + \varepsilon \left(v_{\varepsilon}^{2} + w_{\varepsilon}^{2}\right)^{\frac{p-1}{2}} w_{\varepsilon} - h(x).$$

Then

$$\begin{split} \frac{\partial(F,G)}{\partial(v_{\varepsilon},w_{\varepsilon})} &:= \left| \frac{\frac{\partial F}{\partial v_{\varepsilon}}}{\frac{\partial G}{\partial v_{\varepsilon}}} \frac{\frac{\partial F}{\partial w_{\varepsilon}}}{\frac{\partial G}{\partial w_{\varepsilon}}} \right| \\ &= \{1 + \varepsilon \left(v_{\varepsilon}^{2} + w_{\varepsilon}^{2}\right)^{\frac{p-1}{2}}\}^{2} + \{1 + \varepsilon \left(v_{\varepsilon}^{2} + w_{\varepsilon}^{2}\right)^{\frac{p-1}{2}}\} \\ &\times \varepsilon (p-1) \left(v_{\varepsilon}^{2} + w_{\varepsilon}^{2}\right)^{\frac{p-3}{2}} \left(v_{\varepsilon}^{2} + w_{\varepsilon}^{2}\right) \geq 1. \end{split}$$

Therefore we can apply the implicit function theorem. \Box

Lemma 7. $Re(Au, B_{\varepsilon}u) \geq 0$ for $u \in D(A)$.

Proof. Put

$$\widetilde{D}(A) := \{ f = g + ih \in C^2(\Omega; \mathbf{C}) \cap H^2(\Omega; \mathbf{C}); \ \frac{\partial f}{\partial \nu} = 0 \text{ on } \partial \Omega \}.$$

It suffices to show our lemma for $f = g + ih \in \widetilde{D}(A)$. We set

$$v_{\varepsilon} + iw_{\varepsilon} = (I + \varepsilon B)^{-1}(g + ih).$$

Then we have

$$\begin{split} \frac{\partial v_{\varepsilon}}{\partial x_{j}} &= \frac{1}{q} \Big\{ (1 + aw_{\varepsilon}^{2} + b) \frac{\partial g}{\partial x_{j}} - aw_{\varepsilon}v_{\varepsilon} \frac{\partial h}{\partial x_{j}} \Big\}, \\ \frac{\partial w_{\varepsilon}}{\partial x_{j}} &= \frac{1}{q} \Big\{ - av_{\varepsilon}w_{\varepsilon} \frac{\partial g}{\partial x_{j}} + (1 + av_{\varepsilon}^{2} + b) \frac{\partial h}{\partial x_{j}} \Big\}, \end{split}$$

where

$$a = \varepsilon(p-1)\left(v_{\varepsilon}^2 + w_{\varepsilon}^2\right)^{\frac{p-3}{2}}, \ b = \varepsilon\left(v_{\varepsilon}^2 + w_{\varepsilon}^2\right)^{\frac{p-1}{2}}, \ q = (b+1)^2 + a(b+1)(v_{\varepsilon}^2 + w_{\varepsilon}^2).$$

It follows from this relation that

$$\begin{aligned} &\operatorname{Re}(Af,\ B_{\varepsilon}f) \\ &= \operatorname{Re}\left(-\Delta g - i\Delta h,\ \frac{1}{\varepsilon}[(g - v_{\varepsilon}) + i(h - w_{\varepsilon})]\right) \\ &= \frac{1}{\varepsilon} \left\{ \int_{\Omega} \nabla g \cdot \nabla (g - v_{\varepsilon}) \ dx + \int_{\Omega} \nabla h \cdot \nabla (h - w_{\varepsilon}) \ dx \right\} \\ &= \frac{1}{\varepsilon} \sum_{j=1}^{N} \int_{\Omega} \frac{\partial g}{\partial x_{j}} \cdot \frac{1}{q} \left\{ q \frac{\partial g}{\partial x_{j}} - (1 + aw_{\varepsilon}^{2} + b) \frac{\partial g}{\partial x_{j}} + aw_{\varepsilon} v_{\varepsilon} \frac{\partial h}{\partial x_{j}} \right\} \ dx \\ &+ \frac{1}{\varepsilon} \sum_{j=1}^{N} \int_{\Omega} \frac{\partial h}{\partial x_{j}} \cdot \frac{1}{q} \left\{ q \frac{\partial h}{\partial x_{j}} + av_{\varepsilon} w_{\varepsilon} \frac{\partial g}{\partial x_{j}} - (1 + av_{\varepsilon}^{2} + b) \frac{\partial h}{\partial x_{j}} \right\} \ dx \\ &\geq \frac{1}{\varepsilon} \int_{\Omega} \frac{1}{q} \left[\left\{ b^{2} + b + ab(v_{\varepsilon}^{2} + w_{\varepsilon}^{2}) \right\} (|\nabla g|^{2} + |\nabla h|^{2}) + a(v_{\varepsilon}|\nabla g| - w_{\varepsilon}|\nabla h|)^{2} \right] \ dx \\ &\geq 0. \quad \Box \end{aligned}$$

Remark 8. Since X is a (complex) Hilbert space in our case, $B_{\varepsilon}u$ converges Bu $(u \in D(B))$ in X as $\varepsilon \downarrow 0$. Therefore we also have from Lemma 7 that

$$Re(Au, Bu) \ge 0$$
 for $u \in D = D(A) \cap D(B)$.

Now we shall prove that the operator

$$A(t) = (\lambda + i\alpha)A + (\kappa + i\beta)B(t)$$

is m-accretive for every $t \in [0, T]$. Following the idea of T. Kato (see Brezis, Crandall and Pazy [1]), for every $f \in X$ we consider the approximate equations:

(5)
$$Au_{\varepsilon} + \frac{\kappa + i\beta}{\lambda + i\alpha} B_{\varepsilon} u_{\varepsilon} + u_{\varepsilon} = f, \quad \varepsilon > 0.$$

Since $(\lambda + i\alpha)A + (\kappa + i\beta)B_{\varepsilon}$ is m-accretive in X (for $\frac{|\beta|}{\kappa} \leq \frac{2\sqrt{p}}{p-1}$), (5) has a unique solution $u_{\varepsilon} \in D(A)$.

Lemma 9. Let u_{ε} be the solution of (5). If $\lambda \kappa + \alpha \beta > 0$, then $||B_{\varepsilon}u_{\varepsilon}||$ is bounded for any $\varepsilon > 0$.

Proof. It follows from (5) that

$$\operatorname{Re}(Au_{\varepsilon}, B_{\varepsilon}u_{\varepsilon}) + \frac{\lambda \kappa + \alpha \beta}{\lambda^2 + \alpha^2} \|B_{\varepsilon}u_{\varepsilon}\|^2 + \operatorname{Re}(u_{\varepsilon}, B_{\varepsilon}u_{\varepsilon}) = \operatorname{Re}(f, B_{\varepsilon}u_{\varepsilon})$$

Noting that B0 = 0 and

$$\operatorname{Re}(B_{\varepsilon}u_{\varepsilon}, u_{\varepsilon}) = \operatorname{Re}(B(J_{\varepsilon}u_{\varepsilon}) - B0, J_{\varepsilon}u_{\varepsilon} - 0) + \operatorname{Re}(B_{\varepsilon}u_{\varepsilon}, \varepsilon B_{\varepsilon}u_{\varepsilon})$$
$$\geq \varepsilon \|B_{\varepsilon}u_{\varepsilon}\|^{2} \geq 0,$$

we have from lemma 7 that

$$\frac{\lambda \kappa + \alpha \beta}{\lambda^2 + \alpha^2} \|B_{\varepsilon} u_{\varepsilon}\|^2 \le \|f\| \|B_{\varepsilon} u_{\varepsilon}\|. \quad \Box$$

In (5), now it is routine work to prove that there exists a unique $u \in D$ such that

 $u_{\varepsilon} \longrightarrow u$ strongly in X, $Au_{\varepsilon} \longrightarrow Au$ weakly in X, $Bu_{\varepsilon} \longrightarrow Bu$ weakly in X as $\varepsilon \downarrow 0$. Hence we obtain

Lemma 10. Let $\frac{|\beta|}{\kappa} \leq \frac{2\sqrt{p}}{p-1}$ and $\lambda \kappa + \alpha \beta > 0$. Then $(\lambda + i\alpha)A + (\kappa + i\beta)B$ is m-accretive in X. The same is true for $A(t) = (\lambda + i\alpha)A + (\kappa + i\beta)B(t)$ for every $t \in [0,T]$.

Lemma 11. Let $\lambda \kappa + \alpha \beta > |\lambda \beta - \alpha \kappa|$. Then there exists a constant C = C(T) > 0 such that

$$||A(t)u - A(s)u|| \le C|t - s||A(s)u||$$
 for $t, s \in [0, T], u \in D$.

Proof. Let $t, s \in [0,T]$ and $u \in D$. By the mean value theorem there exists a $C_1(T) > 0$ such that

$$||A(t)u - A(s)u|| = ||(\kappa + i\beta)(e^{(p-1)\gamma t} - e^{(p-1)\gamma s})Bu||$$

$$\leq C_1(T)|t - s|||B(s)u||.$$

On the other hand we know from Remark 8 that

$$Re(Au, Bu) \ge 0$$
 for $u \in D$.

From this inequality we see that

$$\|\frac{\lambda\kappa + \alpha\beta}{\lambda^2 + \alpha^2}B(s)u\|^2 \le \operatorname{Re}(Au, \frac{\lambda\kappa + \alpha\beta}{\lambda^2 + \alpha^2}B(s)u) + \|\frac{\lambda\kappa + \alpha\beta}{\lambda^2 + \alpha^2}B(s)u\|^2$$

$$\le \|Au + \frac{\lambda\kappa + \alpha\beta}{\lambda^2 + \alpha^2}B(s)u\| \cdot \|\frac{\lambda\kappa + \alpha\beta}{\lambda^2 + \alpha^2}B(s)u\|,$$

and hence

$$\frac{\lambda \kappa + \alpha \beta}{\lambda^2 + \alpha^2} \|B(s)u\| \le \|Au + \frac{\lambda \kappa + \alpha \beta}{\lambda^2 + \alpha^2} B(s)u\|$$

$$\le \|Au + \frac{\kappa + i\beta}{\lambda + i\alpha} B(s)u\| + \frac{|\lambda \beta - \alpha \kappa|}{\lambda^2 + \alpha^2} \|B(s)u\|.$$

So we have

$$||B(s)u|| \le \frac{|\lambda - i\alpha|}{(\lambda\kappa + \alpha\beta) - |\lambda\beta - \alpha\kappa|} ||(\lambda + i\alpha)Au + (\kappa + i\beta)B(s)u||$$

Thus we obtain

$$||A(t)u - A(s)u|| \le \frac{C_1(T)|\lambda - i\alpha|}{(\lambda\kappa + \alpha\beta) - |\lambda\beta - \alpha\kappa|} |t - s|||A(s)u||.$$

Now we are in a position to prove our Theorem.

Proof of Theorem (completed). Since the domain D of A(t) is independent of $t \in [0,T]$ and A(t) is m-accretive in X, by Lemma 11 we can apply Kato's Theorem ([2]). Noting that T > 0 is arbitrary, the solution $\Phi(x,t)$ to (1) exists for $(x,t) \in \Omega \times [0,\infty)$.

Added after the conference. In our Theorem, we can weaken the assumption. Namely our Theorem is still true when the condition $\lambda \kappa + \alpha \beta > |\lambda \beta - \alpha \kappa|$ is replaced by $\lambda \kappa + \alpha \beta > 0$ (see [6]).

REFERENCES

- 1. H. Brezis, M. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math. **23** (1970), 123–144.
- 2. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520.
- 3. V. A. Liskevich and M. A. Perelmuter, Analyticity of submarkovian semigroups, Proc. Amer. Math. Soc. 123 (1995), 1097–1104.
- 4. N. Okazawa, An application of the perturbation theorem for m-accretive operators, Proc. Japan Acad. 59 (1983), 88-90.
- 5. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Math. Sci., vol. 68, Springer-Verlag, Berlin and New York, 1988.
- 6. A. Unai and N. Okazawa, Perturbations of nonlinear m-sectorial operators and time-dependent Ginzburg-Landau equations, In preparation.

Akihito Unai Department of Applied Mathematics Science University of Tokyo 1-3 Kagurazaka Shinjyuku-ku Tokyo 162, JAPAN