0000000000
967 0 1996 0 172-181 172

Commutators and Iterated Commutators in Kleinian Groups
Harushi FURUSAWA
Kanazawa Gakuin University
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1. Introduction. }
Let M denote the group of all Mébius transformations of the extended complex plane
C = C U {oo}. We associate with each
_az+b

: d—bc=1
f cz+d6M’a C ,

the matrix

C

A= (“ 3) e SL(2,0).

We set tr(f) = tr(A) where tr(A) denotes the trace of A. Next for each f and g in M we
let [f, g] denote the commutator fgf ~1g~1. We define the three complex numbers

(1) /3(f) :t’l’2(f) —47 /3(9) :tT2(g) _4’ ’7(f1 g) ZtT([f" (]D -2

the parameters of the two generator subgroup < f, g >.

The following inequality [5][7] gives an important necessary condition for a two gener-
ator group G =< f, g > to be nonelementary and discrete.

Lemma 1[5][7]. If < f,g > is nonelementary and discrete, then

(2) WOl +1BHIZ1 and  |y(f,9) = BUHI+ 1B =2 1.

If < f,g > is a nonelementary discrete Fuchsian subgroup of M, then

(3) 17(f, 9)] = 2 — 2cos(x/7).

See,[10].

When < f,g > is not Fuchsian, we can not obtain lower bounds for |y(f,g)| in a
nonelementary discrete group < f,g >. For example, J¢rgensen has shown that if 1 <
a < 00, then the transformations

N o (@+a?z-2
f(“) - —(l2~, g(“) - 9m — ((12 + (1_2)

generate a nonelementary discrete subgroup of M with

ﬁ(f) = _(a’ + a—l)Z, ﬂ(g) = —4’ ’y(f’ g) = 4(0' - a’il)_z'
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Since y(f,g) — 0 as a — 00,(3) fails if < f,g > is not Fuchsian. But if we require
some restrictive conditions for elements of generators,then we have the lower bounds for
|7(f, g)| - For example,if f or g is parabolic, then,

(4) Iv(f,9)l > 1.

And further, J¢rgensen proved in [8] that

bl

Q| =

(5) v(f,9) >
if 8(f)=p(9g)

Gehring and Martin showed the following lemma 2.
Lemma 2[4]. Suppose that < f,g > is a discrete subgroup of M with v(f,g) #
0,8(f) = B(g) # —4. Then

(6) Iv(f,g)| > 0.193.

The constant 0.193 is not sharp. Gehring and Martin considered the subgroup <

[f. 9], [If, g)f7* >of < f,g > and showed |y([f, g}, fIf, 9]/ )| + IBf. 9]l < 1 under the
condition |y(f, g)| < 0.193.

Lemma 3[4].  Suppose that < f,g > is a discrete subgroup of M with v(f,g) #
0,8(f) = Bg) # —4, and
min{|3(f)I, 18(f9)I, 13(fg™)I} 2 2{cos(27/7) + cos(r/7) — 1}. Then

(7) | 1v(f, 9)| = 2 — 2cos(r/7).

Proof. If A represents f, then by replacing A by —A if necessary, we may assume that
tr(f) = tr(g). Let a = tr(fg) —2, b= tr(fg™") — 2, ¢ = 2(cos(2n/7) + cos(w/7) — 1).
Next by replacing g by g~' we may aassume that |a| < |b]. Then B(f) = a + b, (fg) =
a® + 4a,7(f, g) = —ab by Fricke’s formula. Hence :

(la| +2)* > 1B(fg)| +4>c+4= (2cos(2m/7) +1)2

by the assumption of Lemma 3 and |a| > d where d = 2cos(27/7) — 1.
If |a| > 0.5, then |y(f, g)| = |ab] > |a|® > 0.25 while if |a|] < 0.5, then |a| < ¢/2 and

v(f:9)l = 1allB(f) — a| = d(c — d) = 2 — 2 cos(r/7)
by the asuumption. This completes the proof of Lemma 3.

Remark 1. To show that (7) is sharp,let < ¢, > be the (2,3, 7) triangle group with
¢ = ¢ = (¢¥)" = id. and set f = [§,9],h = ¢, g = hf~'h™".Then B(f) = B(g) = ¢



where ¢ = 2{cos(2r/7) + cos(n/7) — 1}, B(fg) = B(f,W{B(f, k) + 4} = ¢, B(fg7") =
BUFRFRY) = {8(F) = v(f, W) HB(f) — v(f, h) + 4} = c and 7(f, g) = 2 cos(n/7) — 2.And
also, we have (f, g) =1(fg,9) = 7(fg™", 9)-

Lemma 4. Suppose that < f, g > is a discrete subgroup of M with v(f, g) # 0,5(g) #
—4, and |B(f)| < 2{cos(2r/T) + cos(n/7) — 1}. Then

(8) IY(f,9)] = 2= 2cos(r/T) or |y(f,9)—B(H>1.

The following Lemma 5 is a direct consequence of Lemma 4.
Lemma 5. Suppose that < f,g > is a discrete subgroup of M with v(f, g) # 0, 3(g) #
—4, and |3(f)| < 2{cos(27/7) + cos(r/7) — 1}. Then

(9) V(f,9)l 22— 2cos(n/T) or |¥(f,9fg7")| =2~ 2cos(n/7)

Proof.  Suppose |y(f,9)| < 2 — 2cos(n/7), then |3(f) —~(f,9)| > 1 from Lemma 4.

Next, < [f, g], f > is a discrete subgroup of < f, g > withy = ~([f, g], f) = v(y =) # 0,
B'=p[f,g9] = v(y+4) # —4 and |F'| < 0.9 < ¢ where v = ¥(f,g) and § = 3(f). Then
we have |y/| > 2 — 2cos(n/7) or |3/ —4'| > 1 from Lemma 4. But the second case does
not yield since |3’ — 4| = |y|3 + 4| < 1. This complete the proof.

It is easily seen that v(f,g) # 0 if and only if fiz(f) N fiz(g) = ¢ where fiz(f)
denotes the fixed point set of f in C.

The triple 8(f), 8(9), v(f, g) withv(f, g) # 0 and 3(f) # 0 determine the two generator
group < f, g > up to conjugacy. Since ¥(f, g) # 0,f and g have no fixed points in common
and there exists ¢ € M such that ¢f¢~1(0) = 0, pf¢~1(c0) = 0o and ¢g¢~(1) = 1. Then

az+b .
cz+d’

where ad —bc = 1,a4+ b = c+d,bc # 0 and arg(a + d) € [0,7) if a + d # 0. Next by
replacing ¢ by ¢ where ¢(z) = 1 , we may arrange that |l~c’| > 1 with Im(g) >0if |2 =1.
Next by replacing f by f~! and g by ¢! if necessary, we may also assume that |k| > 1
with Im(k) > 1 if |k| = 1 and that arg(a —d) € [0, 7) or arg(b+c¢) € [0,7) if a = d. Then
the equations =k —2+ 1,8 = (a+d)? —4 = (a—d)* +4bc = (b+¢c)?, v = —bcf, BTﬂ' =
—(l—; + 2+ §) determine %, a,d, %, b+ c and therefore b,c uniquely.

¢f67M(2) =kz, @997 (2) =

2. Preliminary. _ _
We state two lemmas needed to establish theorems. These statements are easily ob-
tained by operating matrices.

Lemma 6[4]. If f and g are in M with y(f, g) = v and B(f) = 3, then

(10) v, 9fg ) =4 1f,9) =v(v=8) and B([f, g]) = (7 +4).
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Lemma 7[4]. If < f,g9 > is an elementary discrete subgroup of M with v(f, g) # 0,
B(f) = B(g) # —4, then , o

(11) (£, 9l > (38-+5)/2.

3. A lower bound for the commutator.
The following lemma gives a key tool to show Theorem 10.
Lemma 8[4]. If < f,g > is a discrete subgroup of M with ¥(f, g) # 0, then

(12) 18 = UL (9l A=1df,9))) or 1B(F) =1 2 1—y(f,9)l.

Proof.  Suppose (12) does not hold and let v = ¥(f,g) and 3 = 8(f). Then —mz— <

1-]4|

|3 —1] < 1—|y| and hence p(y) = {¥2 — (8 — 1)y — (3 — 1)}* # 0 since otherwise we
would have

2 2
Y il
3-1|= <

contradicting the first statement.
Let 7; = v(/, g;) where

g1 =0;1 g feifei e (1=12,..), ;=g
Then v =7 .|7j+1] = |v5llp(7;)| and

Iyl +18 =11 <1, p(y;)#0

implies that

0<Ip(v)l =" = (B=Dy - B-1P < (lul+18-1])° <1

Thus we see by induction that 0 < |v;| < |ml(jyl + 13— 1)% — 0 as j — oo
contradicting Lemma 12. This completes the proof.

Lemma 9. If < f, g >is a non-elementary discrete subgroup of M with v(f, g) # 0
and |Y(f,9)| <2 —2cos(m/7), then

(13) 1B() =1 =>1—=Q(/. 9)l

Proof.  Suppose that |3(f)—1] < |v(f, 9)12/(1=|7(f, 9)|), and we lead the contradiction.
Let 6 = inf{|v(f,9)l;v # 0,8(f) = B(9),18(f)] < ¢,< f,g > discrete} where ¢ =
2{cos(2m/7) + cos(mw/7) — 1}. It is easily seen 0.193 < § < d. For sufficiently small
€ > 0with 0 < e < (d—6)/2 < d, we have a discrete group G =< f,g > such that

V(i) <6+ ¢€.18(f)l < cand f# —4. I B(f) — (S, 9) = 1/{v(f,g) + 1} for the given

s



discrete group G, we consider the subgroup < A, AgA1Ag! > of G where Ag = [f, g] and
Ay = [Ao, f]. Then we have

1

6 < [Y(An, Ao Agh)| = [P (y = BB+ 4) (v + 2L < WIPIL + mlz-
Since the function |z||1+ $|2 is subharmonic in the closed disk {z; |2| < d}, then we have
the maximum value 1 of |z||1+;ﬁl2 at z = —d. Therefore 0 < maxXg 193<jy|<6+(d—s)/2 |2||1+
::41‘_7]2 =k < 1 and also we have § < |y(A1, AoA1Agh)| < |7|k < (64 €)k. We remark that
13(AcA1AGH)| = |B(AD)] = |[y(v = B)lIv(y — B) + 4| < ¢. Thus if we select € < @, this
leads the contradiction. Therefore we have 3(f) —~v(f, g) # 1/{v(f,g) + 1} for the given
group G. Next we consider the subgroup < f,hfh~ > where h = gf g7 fgfg~1f 19,
then

YRR = = (B-Dy=B-DPH{P-B-1)y=(B-1)} -7

The above argument states v2 — (3 — 1)y — (8 — 1) # 0. The assumption |y| < d and J
rgensen’s inequality shows |3| > 1—d > 0.8, then |[y{y2— (B —1)v— (B3 —-1)}2—p3| > 0.7.
Therefore we have y(f, hfh™') # 0 but |y{y? — (8 — 1)y — (3 — 1)}?| < 0.0125 shows
0 < |v(f,hfh™1)| < 0.013, this contradicts to Lemma 2.

The following theorem is essentially based on Lemma 9 and we consider the subgroup
< f,hfh™' > of < f,g >. By the analysis with the help of computer , we have the
following theorem.

Theorem 10. Suppose that < f,g > is a discrete subgroup of M with ~(f,g) #

0,8(f) = Blg) # —4, then

(14) V(. 9)| = 2 — 2cos(m/7).

The following Lemma 11 shows that Theorem 10 is applicable to the collar lemma. Let
Aj be the axis of f(€ M) in H? connecting with two fixed points in 3 H?3.

Lemma 11[2][6]. Let f and g be nonparabolic elements in M and let it be the
complez distance between Ay and A,. If v =tr(fgf1g7!) —2 +£ 0, then

(15) 4y = B(f)B(g)sinh?(ut).
If we consider the subgroup < f,gfg”! > of < f,g > and suppose (f,gfg™!) # 0,

then v(f, gfg™') = B(f)?*sinh? u (A, 9(Ay)).

4. Iterative commutators.
Let 3 be a complex number. Let R(z) = z(z — 3),R™ denote the n-th iterate of
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R and R’ = id.. We define go = g,91 = gfg‘and goy1 = gnfg;' inductively and
consider a subgroup < f, g,fg.;! > of a Kleinian group < f, g >.Then we find RHl(y) =
Y(fs 9 ){(f5 9n) = B(f)} = Y(f, gn+1) for any positive integer n,inductively.

Lemma 12[4]. If f and g; are elements of a Kleinian group G with v(f, 9j) # 0 for
J=1,2,... and if f is not of order 2, then

(16) liminf |7(/, ;)| > 0

Proof.  Let v; = ¥(f,g;). If liminf, . |y(f, g;)| = 0, then we can choose j so that

2l;] < min [, m] and ; # 3. Then v; = ¥([f, g;], f) = vj(7; — #) and 0 < |y}] <
1/2 and 3; = B([f, g;]) = v;(7; +4) and 0 < |B}| < 1/2. Now 7; # 0 and ; # f3; and
the pypothesis that 3 # —4. Since < f,[f,g;] > is a Kleinian subgroup of < f, g >,
[7;| + ;171 and we have a contradiction. :

Corollary 13. Let < f,go-1f9,21 > be a subgroup of a Kleinian group < f,g >,
R™y) #0,5(f) # —4, then

(17) |R™(y)| = 2 — 2cos(n/7).

Lemma 14[9]. Let < f,g > is Kleinian with v # 0 and R(v) = 0, then either f is
elliptic of order 2,3,4 or 6 or g is elliptic of order 2.

Let < f,g > be Kleinian with |[3(8+2)| < 1, and if {2y — 8] < 1 + /1 = |B(3 + 2)|

, then we have [2R(y) — ] < 1+ /1 —|8(8+ 2)|. Let D, be the open disk centered at
/2 with the radius r = {1+4/1 — |3(8 + 2)|}/2. Then, we have the following lemma.

Lemma 15. Suppose that < f,g > is Kleinian with |3(3 + 2)| < 1. If v is in the
open disk D, stated above, then

(18) | R*(y) € D,.

Lemma 16][5]. Suppose that < f,g > is a non-elementary Kleinian group. If
BB+2)|<1,v#p+1and vy +# —1, then

(19) 27 =Bl =21+ 1-[B(B8+2)].

Proof.  Suppose that < f, g > is non-elementary, Kleinian with v # 3+ 1 and v # —1.
Suppose that v € D,, and let v; = y(f, g;) where g; = g and g1 = gjfgj_1 for j=1,2, ..
. If 2 € D,, then |2R(2) — 8] < r. Thus RY(D,) C D,,D, lies in the Fatou set for R(z)
and vj11 = RI(vy) € D, for j > 0. If 8 = 0, then D, is the unit disk, f is parabolic and



|v| > 1l,hence v ¢ D,. Next if 8 = —1, then D, = {2z + 1| < 1},f is of order 6 ,
11 # 0 and y;41 = ’yj('yj —-f-1P=73= ~¥ . Therefore |y| > 1 by Lemma 12. Finally if
B =—2then D, = {z |2+ 1| <1}, 0 < |yj1 + 1| = |[R(y;) + 1| = |y; + 1> = |y + 1|? for
j > 0,and v ¢ D, by Lemma 12. We have that 5 ¢ {0, —1, —2}. Suppose that |3 < 1.
Then 0 is an attracting fixed point for R(z), 0 € D, and 7; — 0 as j — o0o. Hence
v; = Y(f,9;) = 0 for some j by Lemma 12. Let k be the smallest such integer j. Since
v ¢ {0,8}v1 =7 # 0 and 75 = R(y) # O,therefore k¥ > 3. Then R(yx-1) = 0,7%-1 # 0
and Y(f, gk—1) = k-1 = B(gx-1) # 0. Thus f and gx_, are elliptic of order 2, 3, 4, or 6 by
Lemma 13 and |3| > 1, thus we have a contradiction. Finally suppose that || > 1. Then
|3+2| < 1 by the assumption and the fact that 3 ¢ {—1, —2}, 3+ 1 is an attracting fixed
point for R(z) and 3 € D,. Thus as above, v; = #+ 1 for some j by Lemma 12. Let & be
the smallest such integer j. Because y1 = v ¢ {—1,0+1}, 1 # B+1and v = R(y) # +1
thus £ > 3. Thus y4—2 € R7Y(=1) and |22 — B] = /|82 — 4] > 1 + /1 — |B3(B + 2)|.
In paticular, 4o ¢ D, which contradict ;41 € D,. This completes the proof of Lemma
16.

Lemma 17. Suppose that < f,g > is non-elementary,Kleinian. If |3(3+2)| <1
and v € D,, then

(20) y=pg+1 or ~=-L

Lemma 18. Suppose that < f,g > is non-elementary,Kleinian. If f is elliptic of
order n > 6 , then

(21) 129 = 8] > 1+ /1 - |B(B+2)|.

Theorem 19. Suppose that < f,g > is Kleinian with y(f,g) # 0 and |y — 3/2| >
|3%/4+ B/2| + 1, then R™(y) — 00 as n — 0.

Proof. Let G(z) = 2*+c. If |2| > |c|+ 1, then the orbit of z under Gi(z) is not bounded.
Since |22 + ¢| > |2[||z] — |¢]| > |2]|le| + 1 — |C||11[ for |z| > |c| + 1, we have |G(z)| > r|z|
where 7 = 1+ |c|?/(|c|+1) > 1. Let H(z) = 2—3/2 , then HRH '(2) = 22— p%/4—3/2.
Therefore we have |R™(y) — 3/2| > ™|y — /2| where r > 1, n > 1. Thus we have
Theorem 19. . ‘

If < f,g9 > is non-elementary Kleinian group, then Jrgensen showed the inequalities

lv|+ 18] = 1 and |y — |+ |8| > 1. We say that a non-elementary Kleinian group < f, g >

is extremal if one of these inequalities holds with equality. There exists many groups
which are extremal for these inequalities; for example, the triangle groups with signatures
(2,3,n) with n > 7 have this property.

Let < f,g > be a non-elementary Kleinian group where f is not parabolic. Then
8] > 0and |y| > 0. Let U = {z;]2| < 1 =8|}, U = {z]z—p] < 1—-|F|} and
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V = {z]z - 0] < 1}. Tt is easy to show that R(U) C U, R(U’) C U,U C Dp where
Dg = {z € C;sup|R™(z)| < oo}. Suppose that < f,g > is extremal in the inequality
|7+ 18] > 1. Then |8] <1,y € dU, R*(y) € U and v ¢ int(Dp) because Gehring and
Martin proved in [6] that if < f,g > is non-elementary, Kleinian and 0 < |3| < 1, then
v ¢ Dg. The complete invariance of int(Dg) under R implies that R*(y) € dU for n > 0.
Therefore we have

1= 8] = |R")| = [ MIR* (v) = Bl = (1 = |B))| R (7) — 8],

for n > 1. and we have v, R(y) € dU N dV. Now U C V,U # V and hence the circles
oU, 0V meet in just one point. Thus R(y) = v and v = § + 1. Suppose next that
< f,g > is extremal in the sense |y — | +|3| = 1. Then y € U’, R*(v) € U, 7 ¢ int(Dp)
and R"(7) € U for n > 1. Therefore R(7), R*(y) € dU N V. Thus R(y) =4+ 1 and
v = —1 since |y — /3| < 1. Finally we have the followings.

Lemma 20[6].  Suppose that < f,g > is non-elementary, Kleinian and f is not
parabolic. If < f,g > satisfies the condition |y| + |3| = 1 ,then v = B+ 1. And also if
< f,g > satisfies |y — 3|+ |8| =1 ,then v = ~1.

Therefore, if a non-elementery Kleinian group < f, g > is extemal then R(vy) = v or
R%(v) = R(7).

Remark 2. Let < ¢, 9 > be the (2,3, 7) triangle group stated in Remak 1. And also
set [ = [p,¢],h=¢p,g=hf h7!, then y(f, g) = 2cos(7r/7) R(y) = 2cos(27/7) =1
and we have R%(y) =« for < f, g >. ;

5. An arithmetic condition

Let < f,g > be a non-elementary,Kleinian and set C = {v;v(f’,¢) # 0, f,¢ €<
f.9 >}. Applying chapter 4 to this, we have R*(y) € C if v € C. We eatablish here
a description of the elements h in < f,g > for which v(f,h) can be expressed as a
polynomial in v(f, g) and B(f) with integer coefficients.

Lemma 21.  Suppose that r is an integer and u € C'\ {0}. Then

(22) W+ uT = pr((u — u_l)z),

(23) Wt 4o @) = (u+ u"l)qr((u — ™)),

where p, and q, are polynomidls with integer coefficients and where p,(0) = 2 and ¢.(0) =
1.

Theorem 22.  Let f and g are in M and that

(24) h=frigst... fregse froi



180

Then tr(h) = (tr(f))p(v(f; 9), B(f)) where p is a polynomial in both variables with integer
coefficents and where ¢ = 0 or 1 depending on whether ri +r2+ ...+ Tny1 1S even or odd.

Proof. If r{ =1+ rp41, then

tr(h) = t’r‘(frllg“ ce f'f'n.gSn) — t’l‘(fr”gs"frllgsl .. frn_1gsn-1)_

Hence we may assume without loss of generality that 7,41 = 0 and that s; = (—1)* for
j=1,2,--+,n. Suppose first that n = 2 and that f and g are represented by matrices

(s %) oY

in SL(2,C) where we consider first f is nonparabolic. If f is parabolic,then we have
a similar result so we omit that case. Then tr(f) = (u+ u7!),3 = (v —u™t)%y =
—bc(u — u')? and we see that

tr(h) = (14 be)[um 72 4+ 4~ 472 by 72 4 727,

If 2r = 7, + 7o is even, then so is 2s = r; — ro and with above arguments we have '

pr(B) — ps(3)
5}

Then p,(0) — ps(0) = O,hence p is a polynomial in v and 3 with integer coefficents. If

tr(h) = (1 + be)p(B) — beps(B) = pr(B) — v = p(7, )
2r +1 =1, + 79 is odd, then so is 2s =7, — 72 thus we have

¢(3) — 45(3)
A R

Thus we have the proof of theorem for the case where n = 2. It is easy to show generally

tr(h) = tr(f)[g.(3) — 1 =tr(f)p(7.B).

by inductive argument but we do not discuss here.

Lemma 23. If f and g are in M and

(25) h=frgt--- frgfrmt
where s; = £1 and s; = (=1)7*sy for j=1,2,...,n. Then
(26) 7(f) = p(r(f, 9), B(f))

where p 1s a polynomial in both variables with integer coefficents. If,in addition, n s
even, then B(f) = ¢(v(f, 9), B(f))) where q is a polynomial in both variables with integer
“coefficients.

Recently, Prof. Gehring announced that Chun Cao proved Theorem 10. We expect
that his proof is not depend on computer and also this result has many applications.
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