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0. Introduction

1.1.  Inthis paper we will consider the following problem : Given any
number ¢ satisfying 0 < ¢t < 1, does there exist a finitely generated Kleinian
group G with the limit set A(G) having infinite ¢ - dimensional Hausdorff
measure 7 ‘ ’

In 1971, Beardon(1] gave an affirmative answer by using Hecke groups for
this problem. The method of Beadon depends on a close, direct analysis
of the action of the group G. Furthermore, in 1985 Phillips and Sarnak [5]
showed by using the bottom of the spectrum for the Laplacian A (the small-
est eigenvalue of A) that there is a Hecke group having the desired property.
Here we will consider the problem by studying Fuchsian Schottky groups
(Sato [7]). :

We will state the method of Beardon in §1 and the method of Phillips-
Sarnak in §2. In §3 we will state some results on Fuchsian Schottky groups.

1. The method of Beardon

In this section we will state the proof of the following theorem due to
Beardon



THEOREM A (Beardon [1]). Given any number t satisfying t < 1,
there exists a finitely generated Fuchsian group G of the second kind with
oo an ordinary point of G and with the limit set A(G) having infinite t-
dimensional Hausdorff measure.

DEFINITION 1.1. Let E be any set and ¢ a positive number. Define
mys(E) = inf ) | L[,

where the infimum is taken over all coverings of E by sequences {I;} of sets
- I; with diameter |I;| less than §. Furthermore, we define

m¢(E) = sup{m,s(E)|6 > 0}
and we call m;(F) the t-dimensional Hausdorff measure of E.

Set d(E) = inf{t|m;(E) = 0}. We call d;(F) the Hausdorff dimension
of E.

" DEFINITION 1.2. A set F is said to be a spherical Cantor set if
and only if it can be expressed in the form

E=n>, Uk A(iy, ..., i)

11yeenyin=1

where K > 2 is an integer and where the A, ;. are closed spheres of radius
r(i1, ..., i) satisfying

(1) A, ... ,in) DAL, .y in,yint1),

(2) A(1),:--, A(K) are mutually disjoint,

(3) there exists a constamt A (0 < A < 1) such that
r(iny .. inyingt) = Ar(in, .. in) (w1 =1,2,..., K),

(4) there exists a constant B (0 < B < 1) such that

p(A(Zlv s )in)j)’ A(ila s vin, k)) 2 Br(ila R zn)
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(j’kzl’zi""K7j¢k)

where
p(S,T) = inf{|s —t||s € S,t € T}

DEFINITION 1.3.  Let P(2) = z+2(14+¢) and E(z) = —1/z. We
call the group Gle| generated by P(z) and E(z) a Hecke group.

1.2 Since the point oo is a limit point of G[e], we conjugate Gle]
by A € M&b such that oo is an ordinary point of AG[e]A~'. We denote by
A(G) the limit set of a group G. For simplicity, we denote by A¢ the limit
set of a Hecke group Gle].

LEMMA 1.1.

d(A(A.)) > d(A(A: N[~1, 1)) > d(A. N [=1,1]).

REDUCTION 1. It suffices to show that for sufficiently small ¢,
d(Ae N [-1,1]) > ¢.

NOTATION.
Q= {allz <1},
Va(z) = EP"(z) (n+#0),
V(o .., 1a)(2) = Vi Vag -+ Vi) (5 £ 0),
Q(ny,na, ..., ng) == V(ng,ng,...,m) Q)

L := N, Uveg, V(Q),

where Gy = {V(n1,ng,...,m)|n; =1,2,...,K}.
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LEMMA 1.2. L, is a subset of A N[—1,1].

1.3. Let € be a positive number and N an integer satisfying N > 2.
Let I'; be the set consisting of the following elements (1) and (2):

(1) (A) ‘/27 V—27 BRI 7VN; V—N

(2) V(n,ng,...,ng,m) with

(B) 1<k<Nm=---=n=1and2<|m|<N,
(B 1§k§N,n1:---=nk:—1and2§|m|§N,
(C)‘ 1<k<Nm=---=n=1land m=-1,
(C) 1<k<Nm=---=nm=-landm=1.

We set

Loy ={UV|U € ,,V €Ty}
and
Ly = M2y Uver, V(Q).
Then we have Ly C A.N[—1,1]. Hence
d(Lg) < d(L1) <d(Acn[-1,1]) < 1.
REDUCTION 2. It suffices to show that

lim limsup d(Ls) =1

€—00 N—oco



14. SetI' :=U,I'y,. We denote by |A| the diameter of a disc A.

LEMMA 1.3.  Let J = [-1,1], let I be any sub-interval of J and let
U €T'. Then

(1 i< < 2
(2) IfVeTy,then  |UV(J) < U

LEMMA 14.  The set Ly is a spherical Cantor set constructed from
the discs {U(Q)|U € Tp,n > 1}.

LEMMA 1.5. If satisfies 0 < 6 < 1 and if
> UvV@)P = U@

Vel
for allU €T, then d(Ls) > 6.

LEMMA 1.6. Let k > 1 be any integer and let the positive numbers
01,...,08,0 and s satisfy0 < 6; <6<1and0<s<é+---+6 <1. Then

6 4+ 6 > 1,
where § =1 — (1 —3s)(1 —6)71L.
1.5. Weset F:=(—1,1) — Uyer, V(J). Then

U] =m(U(F) + > UV

Vel

By Lemma 3 we have

my(U)F)) < 2my(F)U )|

4
and
L e VWL, mu)
R R U20) I 7))
5

v
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We take s in Lemma 1.6 s = 1 — 2m;(F') , and we take § = § by Lemma
1.3. Then

By Lemma 1.6 we have 3" 67 > 1, that is,

l0

Ve
) s

> 1.

Hence

S vl 2 U
By Lemma 1.5 d(Ly) > 0 and so

d(Ly) > 1— ?ml(F) > 1= 8ma(F).

REDUCTION 3. It suffices to show that

lim limsup m; (F) = 0.

e-0 Nooo

1.6. PROOF of Theorem A. Weset T := (—1.1) —UfY _, V(n)(J).
For convenience, define u,, = 1 and v,, = —1 for each positive integer n. Then
we have

F-T = Up=-1 1V(TL)( ) UVGI‘lV(J)
[FnV()()]UIFNV(-1)(J)]

Hence
mi(F) = my(T) + m[F NV (1) (J)] +m[FNV(-1)(J)].

After calculations, we have

160



161

my [F OV (1)(J)]

= Z_:lml[V(ul, st (D)) + ma [V (uy - .. ungn)(J)]

Noting that both T" and J are symmetrical with the imaginary axix, we
have '

ml(F)

= ml(T) +2 Zml[V(ul, e ,U,-)(T)] + 2m1[V(u1, . ,UN+1)(J)].

r=1

We estimate three terms on the right hand side.

(1) The first term: If we set u = 2+ 2¢ , then

2 N1 1 1
+23 71 — + 6e.

™) = § D e R S N

(2) The second term:

SV, ..., ) (7)) < Smf) < %% t6e).
(3) The last term :
mlV (.. u) () < B0

where p = (u+ V2 — 4)/2 and q = (u — /2 — 4) /2. Hence we have

1 6 p—gq 1
mi(F) < (7 691+ —2) + 40— ey

Therefore

limsup m; (F) < 6¢ + 36+/€

N—oo



and so

lim limsupm;(F) = 0,

0 Nooo

which is the desired result.

2. The method of Phillips-Sarnak

2.1. In this section we will state the proof of the following theorem
due to Phillips-Sarnak. Let G[e] be the Hecke group defined in §1. We denote
by G, the Hecke group Gle] with p =2 + 2e.

THEOREM B (Phillips-Sarnak [5]).  Let A\o(G ) be the smallest eigen-
value of the Laplacian A for a Hecke group G,. As p ranges from 2 to oo,
Xo(G,) increases continuously and strictly monotonically from 0 to 1 /4

COROLLARY. Letd(G,) be the Hausdorff dimension of the limit set
of a Hecke group G,,. As p ranges from 2 to co,d(G,) decreases continuously
and strictly monotonically from 1 to 1/2.

This corolarry follows from Theorem B and Pattrson-Sullivan’s theorem
below.

2.2. Let H = {(z,y)|r € R,y > 0} be the upper half plane with
the line element ds? = (dz? + dy?)/y?. We denote by A,V and dV the
Laplacian, gradient and volume element, respectively, with respect to the
hyperbolic metric. Let {2 be an open connected subset of H. We denote by
W(€) the space of functions

WHQ) = {f e LX(Q)|Vf € L* ()}
The quadratic forms H and D on W(Q) are defined as

H(f,g) = /l Qfgdv
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D(f,9) ::/Q<\7f,v‘g>dv..

Here we are interested in the selfadjoint Laplasian A defined on L?(Q)
with Neumann boundary condition. This means that the domain of this
operator consists of the set of all functions u € W'(Q2) with square integrable
satisfying the condition H(Awu,v) = D(u,v) (which is equivalent to Ou/dn =
0, where §/0n is the unit outer normal derivative). We denote by Ao(f2) the

bottom of the spectrum for A on L?(). Xo(Q) can be described variationally
as .

X(Q) = inf{D(u)ju € W(Q), H(u) = 1}.

DEFINITION 2.1, We call a domain Q free if Ag(Q) = 1/4.

We remark that Q2 is free if and only of the spectrum for A on L?(1)
have no discrete spectrum.

Let G be a discrete group acting on the upper half plane H. We set

§(G) = inf{s| %exp(—s(p(z,’yw)) < 400},

where p(z,yw) is the hyperbolic distance from z to yw. We call §(G) the
exponent of convergence of G.

Patterson-Sullivan’s theorem (Patterson [4], Sullivan [8]).
(1)  6(G) = 1/2 then A(G) = 6(G)(1 - 6(G)).
(2) If G is geometrically finite, then §(G) = d(A(G)).

COROLLARY. G is a geometrically finite group with Ao(G) = 0,
then d(A(G)) = 1.

DEFINITION 2.3. If a domain Q is bounded by nonoverlapping
circles, then we call Q a Schottky domain. We call a discrete group G a
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Schottky group in the sense of Phillips-Sarnak or a P-S Schottky group if it
has a fundamental domain which is a Schottky domain.

REMARK. A Hecke group G, is both a Fuchsian group of the second
kind (resp.a Fuchsian group of the first kind) and a symmetric P-S Schottky
group if p =2+ 2e > 2 (resp. p = 2), where a domain (2 is symmetric if {2
is symmetric with respect to the imaginary axix.

2.5. Let G be a discrete group. We denote by A(G) < A (G) < -+
the discrete eigenvalue of A on the Hilbert space of G' automorphic functions.
We note that \;(€2) < A;(G) if Q is a fundamental domain for G.

LEMMA 2.1. IfG is a symmetric P-S Schottky group, then \;(G) =
X;(QF) , where QF is the part of the right side of Q N H with respect to the
imaginary aris. :

COROLLARY. IfG, is a Hecke group, then A\(G,) = Mo(F), where
Fj is the part of the right side of the symmetric fundamental domain F), for
G, with respect to the imaginary azis.

2.6. LEMMA 2.2. Suppose Q' — Qin H.
(1)  If no cusp is broken in going from Q to Q' , then

lim () = A;(9).
(2)  If a cusp is broken and if Q' D Q and Y'\Q is free, thenlim Xo(€) =
o(92).

COROLLARY. IfG, is a Hecke group, then Xo(G,) is continuous in
u(2 < p < 00).

LEMMA 2.3.  Let G, is a Hecke group. Then Xo(G,) = 0 for p =2,
that is, d(A(Gp)) =1 for p=2.

LEMMA 2.4.  Suppose Qo and Q; are two domains with ; C Q and
set Qg = Qo\Ql.

(1)  IfQq is free, then A;j(Qo) > A;(€1) for all j.

(2)  Furthermore, if Qo has the finite geometric property and § is not



free, then Ao() > Ao(21).

COROLLARY. IfG, is a Hecke group, then A\o(G,) increase strictly
monotonically in p (2 < p < o00)

LEMMA 2.5.  For Schottky domains, if ' — Q , then \o(Q%) —
Ao(2).

COROLLARY. If G, is a Hecke group, then A\(G,) — M(Gw) as
B — 0.

LEMMA 2.6. IfQ is a domain in H with at most [(n + 4)/2] sides,
then Q s free.

COROLLARY. IfG, is a Hecke group, then \o(Go) = 1/4.

Theorem B follows from the above lemmas and corollaries.
3. Some results

3.1. In this section we will consider the problem stated in the
introduction by using Fuchsian Schottky groups. Let G =< A;, Ay > be a
Schottky group generated by Mobius transformations A; and A,. We define
t; (0 < |t;] < 1) in such a way that 1/t; is the multiplier of A; (j = 1,2).
Let p; and g; be the repelling and the attracting fixed points of A; (j =
1’2) We define pE C - {0) 1} by Setting (0,00, 17 p) = (plaq11p2’q2) ’
where (21, 22, 23, 24) is the cross ratio of 21, z3, 23 and z;. We say < A;, Ay >
represents (t1, 2, p), or (t1,%2, p) corresponds to < A;, Ay >. There are eight
kinds of classical Schottky groups of real type of genus two (see Sato [6] for
detail). Here we will consider the Hausdorff dimension of the limit sets of
two kinds of classical Schottky groups, that is, Fuchsian Schottky groups.

DEFINITION 3.1. Let (t1,ts, p) be the point corresponding to a
Schottky group G =< A;, Ay >.

(1) G is the first kind if £; > 0, > 0 and p > 0.

(2) G is the fourth kind if ; > 0,¢, > 0 and p < 0.

We call the above Schottky group (1) or (2) a Fuchsian Schottky group of
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genus two.

We denote by R;& 9 (resp.RrvG ) the space of all classical Schottky
groups of type I (resp. type IV).

3.2. PROPOSITION 3.1. Let G =< Ay, Ay > be a Fuchsian
Schottky group of type I, and let (t1,t2, p) be the point representing G. Let
d(G) be the Hausdorff dimension of the limit set of G. If t1 = to wzth 0<
t1 <V5—2and p=—1/3, then

log 3 log 3

log(1—7) —logr’

<d(G) <

2r( 1~-7) 1 o
1—2r g 5+4\/1+'r§+3'r2

where r = 2v/t/(1 —t).
EXAMPLE. If p= —1/3,t; =ty = 33 — 8/17, then
0.2797 < d(E) < 0.5,

‘Bishop-Jones’ theorem [2]. If {G,} is a sequence of N-generated
Kleinian groups which converges algebraically to G, then

d(A(Q)) < liminf d(A(G,)).

It suffices to consider the Hausdorff dimension of the limit sets of Schot-
tky groups in a fundamental regions for the Schottky modular group acting
on R;&’Y and Ryv &Y (see Sato [6]). By Proposition 3.1 and Bishop-Jones’
theorem we have the following.

THEOREM 1.
(1) sup{d( )IG € Rlvn 2 =1,
(2) mf{d( )lG € ijqz} = 0.
THEOREM 2.
(1) sup{d(G)|G € RiG %} > 1/2.
(2) inf{d(G)|G € R;G 3} = 0.
3.3. We end this paper by presenting some problems.
PROBLEM.



1. Given (t1,t2,p) corresponding to a classical Schottky group G =
- < Ay, Ay >, represent the Hausdorff dimension of the limit set of G in terms
of t1,t5 and p.

2. Find the best upper bound of the Hausdorff dimension of the limit
set of classical Schottky,groups of genus two (cf. Doyle [3]).
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