THE RATIO OF TWO NORMS OF QUADRATIC DIFFERENTIALS

松崎 克彦(KATSUHIKO MATSUZAKI)

Department of Mathematics, Ochanomizu University

Let T(g,n) be the Teichmüller space of the hyperbolic structures of finite area on a surface of genus g and n punctures (2g-2+n>0). We denote a Riemann surface corresponding to $\rho \in T(g,n)$ by R_{ρ} , a finitely generated Fuchsian group of the first kind uniformizing R_{ρ} by $\Gamma(\rho)$.

Let $A(R_{\rho})$ be the finite dimensional vector space of all the holomorphic quadratic differentials that may have a simple pole at each puncture. Every element $\varphi \in A(R_{\rho})$ has finite L^1 -norm $\|\varphi\|_1 = \iint_{R_{\rho}} |\varphi|$, and the Banach space with this norm is denoted by $A^1(R_{\rho})$. On the other hand, φ has finite L^{∞} -norm $\|\varphi\|_{\infty} = \sup_{R_{\rho}} \rho^{-2} |\varphi|$, where ρ also means the density of the hyperbolic metric, and this Banach space is denoted by $A^{\infty}(R_{\rho})$.

The identity map of $A(R_{\rho})$ defines a bounded linear operator ι_{ρ} from $A^{1}(R_{\rho})$ to $A^{\infty}(R_{\rho})$. We call the operator norm of ι_{ρ} the distortion index of the Riemann surface R_{ρ} and denote it by $\kappa(\rho)$. Namely,

$$\kappa(\rho) = \sup\{ \|\varphi\|_{\infty} \mid \varphi \in A(R_{\rho}), \|\varphi\|_{1} = 1 \}.$$

In [1], we have seen that $\kappa(\rho)$ is useful for the comparison of hyperbolic and extremal lengths on R_{ρ} (Appendix). In this note, we supplement the following result.

Theorem*. The map $\kappa: T(g,n) \to \mathbb{R}_+$ is continuous.

Proof. Assume that a sequence $\{\rho_m\}$ converges to ρ in T(g,n). We will show that $\overline{\lim}_{m\to\infty} \kappa(\rho_m) \leq \kappa(\rho)$ first and $\underline{\lim}_{m\to\infty} \kappa(\rho_m) \geq \kappa(\rho)$ second.

^{*}This result will not appear elsewhere.

First we choose $\varphi_m \in A^1(R_{\rho_m})$ for each m such that $\|\varphi_m\|_1 = 1$ and $\|\varphi_m\|_{\infty} = \kappa(\rho_m)$. Lifting φ_m to the unit disk Δ , we may regard it as a holomorphic function on Δ which satisfies $\varphi_m(\gamma(z))\gamma'(z)^2 = \varphi_m(z)$ for any $\gamma \in \Gamma(\rho_m)$. From $\|\varphi_m\|_1 = 1$, we see that the family $\{\varphi_m\}$ is locally uniformly bounded, and hence it constitutes a normal family. Let φ be any limit function of this family. It satisfies the automorphic condition for $\Gamma(\rho)$. Further, we easily see that $\|\varphi\|_1 = 1$, and hence $\|\varphi\|_{\infty} \leq \kappa(\rho)$. When φ_{m_j} converge to φ locally uniformly, $\kappa(\rho_{m_j}) = \|\varphi_{m_j}\|_{\infty}$ converge to $\|\varphi\|_{\infty}$. Therefore the limit supremum is less than or equal to $\kappa(\rho)$.

Next we choose $\varphi \in A^1(R_\rho)$ such that $\|\varphi\|_1 = 1$ and $\|\varphi\|_{\infty} = \kappa(\rho)$. As in the previous paragraph, we regard φ as an automorphic function for $\Gamma(\rho)$. Then, by surjectivity of the Poincaré series operator, there is a holomorphic function ψ such that $\|\psi\|_{\Delta} := \iint_{\Delta} |\psi(z)| dx dy < \infty$ and

$$\Theta_{\Gamma(\rho)}\psi := \sum_{\gamma \in \Gamma(\rho)} \psi(\gamma(z))\gamma'(z)^2 = \varphi$$
.

Using this ψ and the Poincaré series operator $\Theta_{\Gamma(\rho_m)}$ for each m, we define an automorphic function for $\Gamma(\rho_m)$ by $\varphi_m = \Theta_{\Gamma(\rho_m)}\psi$. It is known that $\|\varphi_m\|_1 \leq \|\psi\|_{\Delta}$. Since $\sum_{\gamma \in \Gamma(\rho_m)} |\psi(\gamma(z))\gamma'(z)|^2$ converges locally uniformly with respect to z and uniformly m, we can easily see that $\varphi_m = \Theta_{\Gamma(\rho_m)}\psi$ converge to $\varphi = \Theta_{\Gamma(\rho)}\psi$ locally uniformly. Therefore $\|\varphi_m\|_{\infty}/\|\varphi_m\|_1 \leq \kappa(\rho_m)$ converge to $\|\varphi\|_{\infty}/\|\varphi\|_1 = \kappa(\rho)$. This implies that the limit infimum of $\kappa(\rho_m)$ is more than or equal to $\kappa(\rho)$. \square

Appendix: A summary of [1]

Let R be a topological surface not necessarily of finite type. Let $[\alpha]$ be a free homotopy class of a simple closed curve α in R not contractible to a point nor a puncture, though puncture is definite after a metric is given. We denote the set of all such classes $\{[\alpha]\}$ by \mathcal{S}_R . Providing a hyperbolic metric ρ with R, we define the hyperbolic length $l_{\rho}(\alpha)$ of a homotopy class of α by the infimum of lengths of curves in $[\alpha]$ with respect to the hyperbolic metric ρ . On the other hand, the extremal length of the homotopy class of α is by definition

$$E_{\rho}(\alpha) = \sup_{\sigma} \frac{\left(\inf_{\alpha \in [\alpha]} \int_{\alpha} \sigma(z) |dz|\right)^{2}}{\iint_{R_{\rho}} \sigma(z)^{2} |dz|^{2}} ,$$

where the supremum is taken over all Borel measurable conformal metrics $\sigma(z)|dz|$ on R_{ρ} .

We consider the ratio $E_{\rho}(\alpha)/l_{\rho}(\alpha)^2$. The value we are interested in is its upper bound, namely,

$$u(\rho) = \sup \{ \frac{E_{\rho}(\alpha)}{l_{\rho}(\alpha)^2} \mid [\alpha] \in \mathcal{S}_R \}.$$

We estimate $\nu(\rho)$ using $\kappa(\rho)$ and a value $\lambda(\rho) = \inf_{[\alpha] \in \mathcal{S}_R} l_{\rho}(\alpha)$ $(\lambda(\rho) = \infty \text{ for } \mathcal{S}_R = \emptyset)$.

We have the following result.

Theorem A. There exist universal constants r_0 and r_1 such that for an arbitrary hyperbolic Riemann surface R_{ρ} ,

$$\frac{1}{\pi\lambda(\rho)} \le \nu(\rho) \le \kappa(\rho) \le \max\{\frac{r_0}{\lambda(\rho)}, r_1\}.$$

If R_{ρ} is of finite area, then there is a constant r depending only on the Euler characteristic of R such that

$$\frac{1}{\pi\lambda(\rho)} \le \nu(\rho) \le \kappa(\rho) \le \frac{r}{\lambda(\rho)} .$$

Proof. A proof is done by combination of the following three claims.

Claim 1 (Jenkins and Strebel). For an arbitrary Riemann surface R_{ρ} and a homotopy class $[\alpha] \in \mathcal{S}_R$, there is a holomorphic quadratic differential $\varphi(z)dz^2$ on R_{ρ} such that

$$E_{\rho}(\alpha) = \frac{\left(\inf_{\alpha \in [\alpha]} \int_{\alpha} |\varphi|^{\frac{1}{2}} |dz|\right)^{2}}{\iint_{R_{\rho}} |\varphi| |dz|^{2}}.$$

Claim 2 (Lehner+ ϵ). There exist universal constants r_0 and r_1 such that any holomorphic quadratic differential φ for an arbitrary Fuchsian group G satisfies

$$\|\varphi\|_{\infty} \leq \max\{\frac{r_0}{\inf l_g}, r_1\} \|\varphi\|_1,$$

where l_g is the translation length of g and the infimum is taken over all the hyperbolic elements of G.

Claim 3 (Maskit+ ϵ). For any $[\alpha] \in \mathcal{S}_R$ of an arbitrary hyperbolic Riemann surface R_{ρ} , we have

$$\frac{1}{\pi} \le \frac{E_{\rho}(\alpha)}{l_{\rho}(\alpha)} \ .$$

The first inequality of Theorem A is known from Claim 3, and the third from Claim 2. Now we have only to show the second. Let φ be the holomorphic quadratic differential with $\|\varphi\|_1 = 1$ which attains the extremal length $E_{\rho}(\alpha)$ as in Claim 1. Let α_0 be the hyperbolic geodesic in $[\alpha]$. Then we see

$$E_{\rho}(\alpha)^{1/2} \le \int_{\alpha_0} |\varphi(z)|^{1/2} |dz| = \int_{\alpha_0} (\rho^{-1}(z)|\varphi(z)|^{1/2}) \rho(z) |dz|$$

$$\le \|\varphi\|_{\infty}^{1/2} \int_{\alpha_0} \rho(z) |dz| \le \kappa(\rho)^{1/2} l_{\rho}(\alpha) .$$

This means that $\nu(\rho) \leq \kappa(\rho)$. \square

There are several direct consequences from Theorem A.

Corollary B (Neibur-Sheingorn). For a hyperbolic Riemann surface R_{ρ} , the conditions $\kappa(\rho) < \infty$ and $\lambda(\rho) > 0$ are equivalent.

Corollary C. For a homotopy class $[\alpha] \in \mathcal{S}_R$ of an arbitrary hyperbolic Riemann surface R_ρ ,

$$E_{\rho}(\alpha) \leq \kappa(\rho)l_{\rho}(\alpha)^2$$
.

REFERENCES

1. K. Matsuzaki, Bounded and integrable quadratic differentials: hyperbolic and extremal lengths on Riemann surfaces, Geometric Complex Analysis (J. Noguchi et al., eds.), World Scientific, 1996.

Отѕика 2-1-1, Винкуо-ки, Токуо 112, JAPAN E-mail address: matsuzak@math.ocha.ac.jp