<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>A CHARACTERISTIC CAUCHY PROBLEM OF NON-LERAY TYPE IN THE COMPLEX DOMAIN (Study of Partial Differential Equations by means of Functional Analysis)</td>
</tr>
<tr>
<td>著者</td>
<td>YAMANE, HIDESHI</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1996, 969: 205-212</td>
</tr>
<tr>
<td>発行日</td>
<td>1996-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60645</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A CHARACTERISTIC CAUCHY PROBLEM OF NON-LERAY TYPE IN THE COMPLEX DOMAIN

HIDESHI YAMANE

§0. Introduction

We consider a Cauchy problem in the complex domain. It is assumed to be a character-istic problem in the sense that the characteristic points form a submanifold T (of codimension 1) of the initial hypersurface S.

Since Leray, the studies on this subject dealt with the cases where the solution is singular on a characteristic hypersurface tangent to S along T. See [L], [G-K-L], [H], [D], [O-Y] and [Y].

In the present paper, we consider a totally different situation: all the characteristic hypersurfaces issuing from T are transversal with S.

First we give two examples to show that in this kind of characteristic Cauchy problem, the solution can be singular on the above-mentioned characteristic hypersurfaces even when all the Cauchy data are regular. Next, we consider a (ramified) Cauchy problem for a certain class of operators including the examples. We perform a singular change of coordinates and reduce our problem to results of Wagschal.

§1. Examples with holomorphic data

In a neighborhood of the origin of $\mathbb{C}_{t} \times \mathbb{C}_{x} \times \mathbb{C}_{z}$, let us consider Cauchy problems for the operators Q_1 and Q_2 defined by

$$Q_1 = (xD_t + tD_x)D_t, \quad Q_2 = Q_1 - xt^2D_z^2.$$
We are going to solve, for $j = 1$ or 2,

$$
\begin{align*}
Q_j u(t, x, z) &= 0 \\
u|_S &= -\frac{\pi i}{2} x^2 \\
D_t u|_S &= i x \\
S &= \{ t = 0 \}
\end{align*}
$$

On the initial hypersurface S, the characteristic points form a submanifold $T = \{ t = x = 0 \}$. The hypersurfaces $\{ x = 0 \}$, $\{ x = t \}$ and $\{ x = -t \}$ are characteristic hypersurfaces issuing from T. They are transversal with S. Although the data are holomorphic in a neighborhood of the origin, the solution u is singular on the three characteristic hypersurfaces. In fact, we have

$$u = \frac{x^2}{2} \left(\frac{t}{x} \sqrt{\left(\frac{t}{x} \right)^2 - 1} - \log \left(\frac{t}{x} + \sqrt{\left(\frac{t}{x} \right)^2 - 1} \right) \right).$$

Since we are dealing with a multi-valued function, we have to clarify the definition of the restriction on S. Its precise meaning is that we choose a point p of S and that the initial condition is satisfied by the germ of u at p.

We will prove for a class of operators including Q_1 and Q_2 that the singular support of the solution is contained in this kind of characteristic hypersurfaces when the data are arbitrary holomorphic functions. As a matter of fact, we can generalize this result to the case of ramified data.

§2. Main result

In a neighborhood of the origin of $\mathbb{C}_t \times \mathbb{C}_y \times \mathbb{C}_z^n$, let us consider a second order operator $P(t, y, z; D_t, D_y, D_z)$ with holomorphic coefficients whose principal symbol $\sigma(P)$ is factorized into the form

$$\sigma(P)(t, y, z; \tau, \eta, \zeta) = \prod_{i=0,1} \left(\tau - \lambda_i(t, y, z; \eta, \zeta) \right),$$

where τ, η and $\zeta = (\zeta_1, \ldots, \zeta_n)$ are the dual variables of t, y and z respectively.

We assume the following two conditions (1) and (2).

$$
\begin{align*}
\lambda_0(t, 0, z; 1, 0, \ldots, 0) &= 0 \\
\lambda_1(t, y, z; 1, 0, \ldots, 0) &= -qt^{q-1}, \\
q & \text{is an integer } \geq 2.
\end{align*}
$$
CHARACTERISTIC CAUCHY PROBLEM

(2) For \(i = 0,1 \), the function \((\eta, \zeta) \mapsto \lambda_i(t, y, z; \eta, \zeta) \) is linear.

The most simple example is

\[\lambda_0 = 0 \text{ or } y \eta, \quad \lambda_1 = -qt^{q-1} \eta. \]

Now we consider, in a neighborhood of the origin of \(\mathbb{C}_t \times \mathbb{C}_x \times \mathbb{C}_z^n \), an operator \(Q \) with holomorphic coefficients defined by

\[Q(t, x, z; D_t, D_x, D_z) = x^{2q-1} P(t, x^q, z; D_t, D_x) \frac{1}{q^{x^{q-1}} D_x, D_z}. \]

Sometimes the exponent \(2q - 1 \) is larger than necessary to erase negative powers of \(x \). For example, if

\[P(t, y, z; D_t, D_y, D_z) = P(t, y; D_t, D_y) = (D_t + qt^{q-1} D_y) D_t, \]

then

\[x^{q-1} P(t, x^q; D_x) \frac{1}{q^{x^{q-1}}} D_x) = (x^{q-1} D_t + t^{q-1} D_x) D_t. \]

When \(q = 2 \), this is nothing but \(Q_1 \) which we studied before.

For the purpose of formulating a Cauchy problem, put \(S = \{ t = 0 \} \subset \mathbb{C}_t \times \mathbb{C}_x \times \mathbb{C}_z^n \), which is the initial hypersurface. It is easy to see that \(T = \{ t = x = 0 \} \) is formed by the characteristic points of \(Q \) on \(S \). By the condition (1), the hypersurfaces

\[K_j = \{ x = \exp(j \frac{2\pi i}{q}) \cdot t \} \quad (j = 0, \ldots, q - 1), \quad K_q = \{ x = 0 \} \]

are characteristic hypersurfaces of \(Q \) issuing from \(T \).

We then consider a ramified characteristic Cauchy problem in an open connected neighborhood \(\Omega \) of the origin of \(\mathbb{C}_t \times \mathbb{C}_x \times \mathbb{C}_z^n \):

\[\left\{ \begin{array}{l}
Q(t, x, z; D_t, D_x, D_z) u(t, x, z) = 0, \\
D^h_t u(t, x, z) |_{S} = w_h(x, z), \quad h = 0, 1.
\end{array} \right. \]

Here we assume that there exists a point \(p \in \Omega \cap (S \setminus T) \) such that for \(h = 0, 1 \), the function \(w_h \) is holomorphic in a neighborhood (relative to \(S \)) of the point \(p \) and can be analytically continued along all the paths from \(p \) in \(\Omega \cap (S \setminus T) \) (that is, \(w_h \) is holomorphic in the universal covering space of \(\Omega \cap (S \setminus T) \)).

Since \(p \not\in T \), the usual Cauchy-Kowalevski theorem is valid there. (CP) admits a unique holomorphic solution \(u \) in a neighborhood of the point \(p \).

We are going to prove the
Theorem 1.

There exists an open connected neighborhood Ω' of the origin of $\mathbb{C}_t \times \mathbb{C}_x \times \mathbb{C}_z^n$ such that the solution u of (CP) can be analytically continued to the universal covering space of $\Omega' \setminus \cup_{j=0}^{q} K_j$.

Of course this conclusion holds true when all the data are regular.

Proof.

Put $x = y^{1/q}$. Then $D_y = \frac{1}{qx^{q-1}}D_x$. Therefore

$$Q(t, x, z; D_t, D_x, D_z) = y^{\frac{2q-1}{q}} P(t, y, z; D_t, D_y, D_z).$$

We reduce (CP) to the following noncharacteristic ramified Cauchy problem, which has been solved by Wagschal in [W2].

$$(CP')\left\{\begin{array}{l}
P(t, y, z; D_t, D_y, D_z)u(t, y^{1/q}, z) = 0, \\
D^h_t u(t, y^{1/q}, z)|_{t=0} = w_h(y^{1/q}, z), \quad h = 0, 1.
\end{array}\right.$$\]

The function $w_h(y^{1/q}, z)$ is holomorphic in the universal covering space of $\{(y, z) \in \mathbb{C} \times \mathbb{C}^n; 0 < |y| \ll 1, |z| \ll 1\}$. ($a \ll 1$ means that $a \geq 0$ is sufficiently small).

Let $p' \in (\{0\} \times \mathbb{C}_y \times \mathbb{C}_z^n) \setminus \{y = 0\}$ be the point corresponding to p. Then (CP') admits a unique holomorphic solution $u(t, y^{1/q}, z)$ near p'. According to [W2], $u(t, y^{1/q}, z)$ can be analytically continued to the universal covering space of

$$\{(t, y, z) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^n; |(t, y, z)| \ll 1\} \setminus (\{y = 0\} \cup \{y = t^q\}).$$

We finish the proof by coming back to the (t, x, z)-space. \hfill \Box

Example.

We saw before that Q_1 was not quite the same as Q, but this does not cause any difficulty. The equation $Q_1u = 0$ is equivalent to $x^2Q_1u = 0$. The operator x^2Q_1 is nothing but Q.

This example suggests that the choice of the exponent of x in the definition of Q is not essential.

Remark 1.
CHARACTERISTIC CAUCHY PROBLEM

For convenience, put \(y = z_0, \eta = \zeta_0 \). Then, by virtue of Remarque 3.1 of [W2], (2) can be replaced by the following condition:

(3) There exists an integer \(k, 0 \leq k \leq n \), such that for \(i = 0,1 \), the function \(\lambda_i(t, z_0, \zeta_0, \ldots, \zeta_k, 0, \ldots, 0) \) is linear in \((\zeta_0, \ldots, \zeta_k)\) and does not depend on the variables \((z_{k+1}, \ldots, z_n)\).

This enables us to treat \(Q_2 \). In fact, when \(n = 1, q = 2 \), put

\[
P(t, y, z; D_t, D_y, D_z) = D_t^2 + 2tD_tD_y - t^2D_z^2.
\]

Then

\[
\sigma(P) = \tau^2 + 2t\tau \eta - t^2\zeta^2
\]

\[
= (\tau + t\eta)^2 - t^2(\eta^2 + \zeta^2)
\]

\[
= \{\tau + t(\eta + \sqrt{\eta^2 + \zeta^2})\}(\tau + t(\eta - \sqrt{\eta^2 + \zeta^2})\}
\]

\[
Q_2 = xP(t, x^2, z; D_t, \frac{1}{2x}D_x, D_z).
\]

Remark 2.

A singular change of coordinates was useful in some papers mentioned in the introduction ([L], [D], [O-Y] and [Y]). One introduces a new variable \(w \) by setting \(w = (t - x^l)^{1/l} \) for some positive integer \(l \). In the present paper, we have performed a different kind of singular change of coordinates.

§3. Inhomogeneous problem

If we choose a special class of \(P \), we can treat an inhomogeneous problem. Assume that

\[
\sigma(P)(t, y, z; \tau, \eta, \zeta) = \tau(\tau + qt^{q-1}\eta).
\]

We employ the same notation as in §2. Let us consider:

\[
(\text{CP}^i)\left\{ \begin{array}{l}
Q(t, x, z; D_t, D_x, D_z)u(t, x, z) = v(t, x, z), \\
D_th u(t, x, z)|_\delta = w_h(x, z), \quad h = 0,1.
\end{array} \right.
\]

Here we assume that the function \(v \) is holomorphic in a neighborhood of \(p \) and can be analytically continued along all the paths from \(p \) in \(\Omega \backslash \bigcup_{j=0}^{q} K_j \) (that is, \(v \) is holomorphic in the universal covering space of \(\Omega \backslash \bigcup_{j=0}^{q} K_j \)). Then we have
Theorem 2.

There exists an open connected neighborhood Ω' of the origin of $\mathbb{C}_t \times \mathbb{C}_x \times \mathbb{C}_z^n$ such that the solution u of (CP^i) can be analytically continued to the universal covering space of $\Omega' \setminus \cup_{j=0}^{q} K_j$.

Of course this conclusion holds true when all the data are regular.

Proof.

We have to solve

\[
\begin{align*}
P(t, y, z; D_t, D_y, D_z)u(t, y^{1/q}, z) &= y^{-\frac{2q-1}{q}} v(t, y^{1/q}, z), \\
P &= D_t(D_t + qt^{q-1}D_y) + \text{lower}, \\
D_t^hu(t, y^{1/q}, z)|_{t=0} &= w_h(y^{1/q}, z), \quad h = 0, 1.
\end{align*}
\]

Since $v(t, x, z)$ is holomorphic in the universal covering space of $\Omega \setminus \cup_{j=0}^{q} K_j$, the function $y^{-\frac{2q-1}{q}} v(t, y^{1/q}, z)$ is holomorphic in the universal covering space of

\[
\{(t, y, z) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^n; |(t, y, z)| \ll 1\} \setminus (\{y=0\} \cup \{y=t^q\}).
\]

This noncharacteristic inhomogeneous problem has been solved in [W1]. \qed

§4. Geometry

What distinguishes the present study from conventional ones is the absence of singularities on a hypersurface tangent to the initial hypersurface S. It is explained by the following

Proposition.

Under the assumption (1), there is no characteristic hypersurface of Q that is tangent to S along T.

Proof.

We have

\[
\sigma(Q)(t, x, z; \tau, \xi, \zeta) = x^{q-1} \prod_{i=0,1} \{\tau - \lambda_i(t, x^q, z; \frac{1}{q} \xi, x^q \zeta)\}
\]

\[
= x \prod_{i=0,1} \{x^{q-1} \tau - \lambda_i(t, x^q, z; \frac{1}{q} \xi, x^q \zeta)\}.
\]
CHARACTERISTIC CAUCHY PROBLEM

It is easy to see that S itself is not a characteristic hypersurface. A hypersurface $\neq S$ which is tangent to S along T has an expression of the form:

\[\varphi = t + x^N \psi(x, z) = 0, \quad N \geq 2 \]

where ψ is a holomorphic function with $\psi(0, z) \neq 0$.

We have

\[
\sigma(Q)(t, x, z; \text{grad } \varphi) = x \prod_{i=0,1} [x^{q-1} - \frac{1}{q} N x^{N-1} \psi(x, z) + \frac{1}{q} x^N D_x \psi, x^{N+q-1} D_z \psi)].
\]

For a generic z we have $\psi(0, z) \neq 0$. We fix such a z. Obviously $\psi(x, z) \neq 0$ holds if $|x| \ll 1$. Then it follows that

\[
\sigma(Q)(t, x, z; \text{grad } \varphi) = x \prod_{i=0,1} [x^{q-1} - \frac{1}{q} N x^{N-1} \psi(1 + \frac{x}{N \psi} D_x \psi) \lambda_i(t, x^q, z; 1 + (1 + \frac{x}{N \psi} D_x \psi)^{-1} \frac{q x^q}{N \psi} D_z \psi)].
\]

The assumption (1) implies that as x tends to zero

\[
\lambda_0(t, x^q, z; 1 + \frac{x}{N \psi} D_x \psi)^{-1} \frac{q x^q}{N \psi} D_z \psi) = O(x^q)
\]

\[
\lambda_1(t, x^q, z; 1 + \frac{x}{N \psi} D_x \psi)^{-1} \frac{q x^q}{N \psi} D_z \psi) = -q t^{q-1} + O(x^q).
\]

Therefore by restricting them on the hypersurface $\{ \varphi = 0 \}$, we obtain

\[
\lambda_0(t, x^q, z; 1 + \frac{x}{N \psi} D_x \psi)^{-1} \frac{q x^q}{N \psi} D_z \psi)|_{\varphi=0} = O(x^q)
\]

\[
\lambda_1(t, x^q, z; 1 + \frac{x}{N \psi} D_x \psi)^{-1} \frac{q x^q}{N \psi} D_z \psi)|_{\varphi=0} = -q(-x N \psi)^{q-1} + O(x^q) = O(x^q).
\]

Hence $\sigma(Q)|_{\varphi=0}$ is different from zero if $0 < |x| \ll 1$. Thus $\{ \varphi = 0 \}$ is not a characteristic hypersurface. \square
HIDESHI YAMANE

References

