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.8 0. Notations

Let K be a local field (not necessarily of characteristic 0) with al-
gebraically closed residue field of characteristic p > 0. In this paper, a
separable extension of K is supposé_d‘to be contained in some fixed sepa-
rable closure K of K with the Galois group ¢ = Gal(K/K). Let Ko /K
be an abelian extension whose Galois group I' = Gal(K,,/K) has a sub-
group of finite index I'y 2 Z, . Denote by K, the subfield of K, fixed
by I', = T%". For a finite extension F/K, let 7 be a prime element of F
and vp the discrete valuation of F' normalized by vp(rr) = 1. Especially
put T, = Tg,, T = Tk and v = vg. Let C be the completion of K with
respect to the valuation (we also denote it by v) which extends v if K
is of characteristic 0. Let O(F') be the ring of integers of an extension
F/K. Especially put Oy, = O(K o), 0, = O(K,), O = O(K) and O¢ =
O(C). For a product R of finite separable extensions of K, let O(R) be
the product of the rings of integers of the factors i.e. the unique maximal
order of R. Put Fg,, = F Qx K,,.

§1 _Integ:ravl representations associated with field extensions
In § 1, we assume that I' =Ty 2 Z,.

Let F / K be a finite Galois p-extension with Galois grbup H =Gal(F/K).



By an O(F)-semi-linear representation M of H, we mean a free O(F')-
module of finite rank on which H acts semi-linearly. Sen defined invari-
ants for O(F)-semi-linear representations in [5] : For 0 # z € M ®or) F,
let
Ordy z =max{t € Z | znz* € M}.

By a reduced basis of M¥ we mean an O-basis { z; } of M satisfy-
ing the condition Ordp(X; ¢;z; ) = min; {Ordys c;z;} whenever the ¢; ’s
belong to K. The orders of the members of a reduced basis of M ¥ are
called the orders of M. We remark that these numbers, together with

their multiplicities, are independent of the choice of the reduced basis.

We attach to any finite extension E/K the O,,-semi-linear represen-
tation O(Egm) of I'/T,, given by its Galois action on the right factor K,,.
For finite Galois extensions, Sen [5] and Destrempes[1] proved:

THEOREM 1. Let E/K and E'/K be two finite Galois extensions.
Then F = E' if and only if, for some sufficiently large m, the O,,-
semi-linear representations of I'/T',, on the additive groups O(Eg,,) and
O(FE,,) are isomorphic.

In [8](cf. [8], Remark 2), for any separable extensions, we proved:

THEOREM 2. Let F/K and E’'/K be two finite separable extensions.
Assume that, for some sufficiently large m (cf. § 1, Remark 1), the O,,-
semi-linear representations of T'/T',,, on the additive groups O(Fyg,,) and
O(Eg,,) are isomorphic. Then the Galois closures of E/K and E'/K
coincide and deg E/K = deg E'/ K.

CoROLLARY. Let E/K be a finite Galois extension and E'/K a finite
separable extension. Then FE' = E’if and only if, for some sufficiently large
m, the O,,-semi-linear representations of I'/T',, on the additive groups

O(Egm) and O(Eyg,,) are isomorphic.

In the following of § 1, we sketch the outline of our proof of Theorem
2.
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First we generalize [5], Proposition 7.

ProrosiTioN 1. Let M be the O,-semi-linear representation of
I'/T,, given by (a) M = O(Egy) and (b) M = O(Egm ®xk,, Fg.) Where
E/K is a finite separable extension and E*/K is a finite Galois extension
such that deg E//K and deg E*/ K are powers of p. Write E®x E* & [ E;
as the product of the composite fields. Suppose p™ > degE;/K. (
deg E; /K does not depend on i and is a power of p.) Then the orders of
M are :

(@) {0, p™ ™, 2p™ ™, ..., (p" — 1)p™ ™ } with multiplicity 1, where p" =
deg E/K.

(b) {0, pm=h 2p™=t ... (pP—1)p™"* } with multiplicity & i/ejg(()}(;?ﬁ(?./ X)
where p" = deg F;/K .

Destrempes [1] gave the following lemma on tensor products of rings
of integers.

LEmMMA 1. Let E; and E, be two finite separable extensions of a local

field L (with residue field not necessarily algebraically closed). Let d =
min{vr(6(E1/L)),vr(6(E2/L))}, where 6(E;/L) denotes the discriminant
ideal of the extension E;/L. Then

W{dlz}()(El QL E;) C O(E;) ®or) O(E»)

where {d/2} denotes the least integer greater than or equal to d/2.

Using the above lemma and the ramification theory, we have the fol-
lowing generalization of [5], Proposition 6 and [1], Proposition 6.

PROPOSITION 2. Let E/K and E*/K be two finite separable exten-
sions. Then there is an integer s, independent of m, such that

7.":n,c)(E1®'m ®I\"m Egm) g 0(E®m) ®Om O(Egm)

Here s depends only on one of the two extensions E/K and E*/K.
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By the above Propositions 1 and 2, we prove the following proposition

by modifying the arguement of the proof of [5], Theorem 2.

~:PROPOSITION 3. Let F/K and E'/K be two finite separable exten-

sions. We assume that, for some sufficiently large m, the O,,-semi-linear
representations of T'/T,, on- the additive groups O(Egnm) and O(Eg,,)
are isomorphic., Then, for any finite Galois extension E*/K, we have
deg F;/K = deg E}/K where E®x E*=]] E; and E'@oyx B* = HE’ are
the products of the comp051te ﬁelds

Take the Galois closure of E//K and that of E’ /K for E* and apply
Proposmon 3. Thus we have proved Theorem 2.

REMARK 1. From our proof ”sufficiently large m” in Theorem 2 ad-
mits.a bound depending only on K, and-one of the two fields E and E'.

REMARK 2. The following example shows that the conclusion of
Proposition 3 does not -imply the isomorphy of E and E'.

* ‘An example: Suppose that p > 3. Let G (resp. A;) be the p-group of
order p* (resp. the element ” A;”) of Satz 12.6 (13) in Huppert[3] p.346.
Put H; the cyclic subgroup of G of order p generated by A3As; and H,
the cyclic subgroup of G of order p generated by As. Then for any nor-
mal subgroup N of G, card(N N H;) = card(N N H) . However H; and
H; are not conjugate each other in G. Let K be the completion of the
maximal unramified extension of Q,- Take a Galois extension L/K with
Gal(L/K) = G. Let E/K (resp. E'/K) be the subextension of L/K fixed
by Hi(resp. H,). - '

. §2. Sen’s Theory (Generalized Hodge-Tate decompositions)

Let x g — Z, be a character of G with infinite image. Tn §2 we
assume that K is of characteristic 0 and K, = Kkerx .

An elemént of H(G; GL4(C)) (resp. HY (I, GLi(K«))) may be re-

garded as an isomorphism class of C(resp. K, )-semi-linear representa-
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tions of G of dimd. Sen [4] proved the following :

THEOREM 3.([4]) The map H'(I',GL4(K.)) — HY(G,GL4(C)) ,
which is induced by G — TI-and the inclusion GLy(Ko) < GL4(C) ; is a
bijection. The isomorphism class given by a C-semi-linear representation
V of G corresponds to the isomorphism class given by the K -semi-linear
representation V, of T', where V,,-= {z € VX | the translates of z by
I’ generate a K-space of finite dimension }.

Furthermore, Sen defined the K -linear operator ¢ on V,, satisfying,
forv € V, 2
. o(v)—w
= lim Y
o | go(v),ffl-%logx(a) L
where o € I' and log is the p-adic log. We also denote by ¢ the C-linear
extension of ¢: Sen [4] proved the following:

THEOREM 4. (i) Let V; and V; be two C-semi-linear representations
of G, and ¢, and ¢, the corresponding operators. For V; and V, to be
1somorphic it is necessary and sufficient that ¢, and ¢, should be similar.

(ii) For a C-semi-linear representations V of G, there is a basis of V,,
with respect to which the matrix of ¢ has coefficients in K. Because we
assume that the residue field of K is algebraically closed, for every matrix
® with coefficients € K of degree d, there is a C-semi-linear representa-
tion V of G of dimension d whose operator ¢ is similar to ®.

When the matrix of ¢ is similar to a diagonal matrix whose coeffi-
cients € Z and yx is the cyclotomic character, then the decomposition of
V into the eigenspaces of ¢ agrees with the Hodge-Tate decomposition
into maximal subspaces of constant weight. Therefore Sen [4] regarded
the primary decomposition given by ¢ as a generalized Hodge-Tate de-
composition.

- Sen [6] considered integral semi-linear representatins and proved the
following integral analogue of the above Theorem 3.,

THEOREM 5. The map H'(T,GL4(0.)) — HY(G,CGL(OG)) in-
duced by G — T and the inclusion GL4(Oy) — GL4(O¢) is a injection.
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Let M be an O¢-semi-linear representation M of G of rank d. Put
V=M®o;C. Visa C-semi-linear representation of G of dimension d.
We define an O,,-module M, by M., -= V,,N M. Let ¢ be the K -linear
operator on V,, as above. Put ¢' = p"p where r is the smallest integer
such that M, is stable under ¢'. Sen [6] defined invariants (Mo, ¢') of M.
(Whenever M, is free, Sen defined a further more refined version. ) The
following theorem in [6] characterizes the image of the map of Theorem 5.

THEOREM 6. Let M be an Og-semi-linear representation of G. For
M to be induced (up to isomorphism) from an O-semi-linear represen-
tation of T it is necessary and sufficient that M, is a free Oy-module.

Sen [6] asked whether the integral structures as above are linked to the
conditions for representations of geometric type and also asked whether
M, is a free O, -module for such a representation M. We give two ex-

amples for the latter question in § 3.
§ 3. Examples
Let the notations be the same as in § 2.

(1)([6], Theorem 6) Let E/K be a finite Galois p-extension with G
= Gal(E/K). Let R = O[G] be a regular representation of G over O.
Define an O -semi-linear representation M of G by M = O¢ ®0 R. Put
E, = EK,. My is a product of copies of O(F). Then we have :

(i) O(E) is an indecomposable Oy-module. Hence M, is a free
O -module if and only if E,, = K.

(i) Suppose that the index (I : o) is prime to p. From § 1, Theorem
1, the extension E/K is determined (up to isomorphism) by the isomor-
phism class of the () ,-semi-linear representation O ®0,, O(Egm) of I

(2) Suppose that K is absolutely unramified for simplicity. Let x be
the cyclotomic character, £/Q, a finite (unramified Galois) subextension
of K/Q, with residue degree f. Let G be the Lubin-Tate formal group
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associated to F and a prime element 7 of E. The Tate module T,(G)
of G is a free O(E)-module of rank 1. Define an O g-semi-linear repre-
sentation M of G by M = O¢ ®z, T,(G). Since E/Q, is unramified,
Oc¢ ®z, O(E) = [10¢ by applying Lemma 1 for E and the finite ex-
tensions of K and by completion. For a Q,-embedding o of E into K,
put M, ={Y z; ® y; EM| T o(a)z; ® y; = ¥ z; ® ay; for all a € O(E)}.
Then we have M = M;3 ® ¥, 2;0 M, as in Serre [7], 111-43. By [7], I1I-45,
C ®0¢ M, (o # id) is of Hodge-Tate type of weight 0 and C ®oc M;, is
such of weight 1. From Fontaine [2], Corollary 1 of Theorem 1, we have
My~ Iglg ®o Ik ®2, Ty(Gm) = a0 ®7, T,(Gm),

where fg.’lG ={z € C|v(z) > 1%_1}, Ix = {zeC|u(z) > _;l_1} and
v(a) = pf—l—l' - p%l. Therefore (M,4)oo is a free O ,-module if and only if

E =Q,. Hence M, is a free O,-module if and only if F = Q,.
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