<table>
<thead>
<tr>
<th>Title</th>
<th>Integral representations of Galois groups of local fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamagata, Shuji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1996), 971: 145-152</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60691</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Publisher</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
§ 0. Notations

Let K be a local field (not necessarily of characteristic 0) with algebraically closed residue field of characteristic $p > 0$. In this paper, a separable extension of K is supposed to be contained in some fixed separable closure \overline{K} of K with the Galois group $G = \text{Gal}(\overline{K}/K)$. Let K_∞/K be an abelian extension whose Galois group $\Gamma = \text{Gal}(K_\infty/K)$ has a subgroup of finite index $\Gamma_0 \cong \mathbb{Z}_p$. Denote by K_n the subfield of K_∞ fixed by $\Gamma_n = \Gamma_0^{p^n}$. For a finite extension F/K, let π_F be a prime element of F and v_F the discrete valuation of F normalized by $v_F(\pi_F) = 1$. Especially put $\pi_n = \pi_{K_n}$, $\pi = \pi_K$ and $v = v_K$. Let C be the completion of \overline{K} with respect to the valuation (we also denote it by v) which extends v if K is of characteristic 0. Let $\mathcal{O}(F)$ be the ring of integers of an extension F/K. Especially put $\mathcal{O}_\infty = \mathcal{O}(K_\infty)$, $\mathcal{O}_n = \mathcal{O}(K_n)$, $\mathcal{O} = \mathcal{O}(K)$ and $\mathcal{O}_C = \mathcal{O}(C)$. For a product R of finite separable extensions of K, let $\mathcal{O}(R)$ be the product of the rings of integers of the factors i.e. the unique maximal order of R. Put $F_{\otimes m} = F \otimes_K K_m$.

§ 1. Integral representations associated with field extensions

In § 1, we assume that $\Gamma = \Gamma_0 \cong \mathbb{Z}_p$.

Let F/K be a finite Galois p-extension with Galois group $H = \text{Gal}(F/K)$.

- **Galois** groups of local fields
- **Integral representations** of Galois groups of local fields
- Shuji Yamagata

東京電機大学理工学部。山形周二（Shuji Yamagata）
By an $\mathcal{O}(F)$-semi-linear representation M of H, we mean a free $\mathcal{O}(F)$-module of finite rank on which H acts semi-linearly. Sen defined invariants for $\mathcal{O}(F)$-semi-linear representations in [5]: For $0 \neq x \in M \otimes_{\mathcal{O}(F)} F$, let
\[\text{Ord}_M x = \max\{ t \in \mathbb{Z} \mid x \pi_F^{-t} \in M \}. \]

By a reduced basis of M^H we mean an \mathcal{O}-basis $\{x_i\}$ of M^H satisfying the condition $\text{Ord}_M(\sum c_i x_i) = \min_i \{\text{Ord}_M c_i x_i\}$ whenever the c_i's belong to K. The orders of the members of a reduced basis of M^H are called the orders of M. We remark that these numbers, together with their multiplicities, are independent of the choice of the reduced basis.

We attach to any finite extension E/K the \mathcal{O}_m-semi-linear representation $\mathcal{O}(E_{\otimes m})$ of Γ/Γ_m given by its Galois action on the right factor K_m. For finite Galois extensions, Sen [5] and Destrempes[1] proved:

Theorem 1. Let E/K and E'/K be two finite Galois extensions. Then $E = E'$ if and only if, for some sufficiently large m, the \mathcal{O}_m-semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic.

In [8](cf. [8], Remark 2), for any separable extensions, we proved:

Theorem 2. Let E/K and E'/K be two finite separable extensions. Assume that, for some sufficiently large m (cf. §1, Remark 1), the \mathcal{O}_m-semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic. Then the Galois closures of E/K and E'/K coincide and $\deg E/K = \deg E'/K$.

Corollary. Let E/K be a finite Galois extension and E'/K a finite separable extension. Then $E = E'$ if and only if, for some sufficiently large m, the \mathcal{O}_m-semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic.

In the following of §1, we sketch the outline of our proof of Theorem 2.
First we generalize [5], Proposition 7.

Proposition 1. Let M be the \mathcal{O}_m-semi-linear representation of Γ/Γ_m given by (a) $M = \mathcal{O}(E_{\otimes m})$ and (b) $M = \mathcal{O}(E_{\otimes m} \otimes_{K_m} E_{\otimes m}^*)$ where E/K is a finite separable extension and E^*/K is a finite Galois extension such that $\deg E/K$ and $\deg E^*/K$ are powers of p. Write $E \otimes_K E^* \cong \prod E_i$ as the product of the composite fields. Suppose $p^m \geq \deg E_i/K$. (deg E_i/K does not depend on i and is a power of p.) Then the orders of M are:

(a) $\{0, p^{m-n}, 2p^{m-n}, \ldots, (p^n - 1)p^{m-n}\}$ with multiplicity 1, where $p^n = \deg E/K$.
(b) $\{0, p^{m-h}, 2p^{m-h}, \ldots, (p^h - 1)p^{m-h}\}$ with multiplicity $\frac{(\deg E/K)(\deg E^*/K)}{\deg(E_i/K)}$, where $p^h = \deg E_i/K$.

Destrempes [1] gave the following lemma on tensor products of rings of integers.

Lemma 1. Let E_1 and E_2 be two finite separable extensions of a local field L (with residue field not necessarily algebraically closed). Let $d = \min\{v_L(\delta(E_1/L)), v_L(\delta(E_2/L))\}$, where $\delta(E_i/L)$ denotes the discriminant ideal of the extension E_i/L. Then

$$\pi^{[d/2]}\mathcal{O}(E_1 \otimes_L E_2) \subseteq \mathcal{O}(E_1) \otimes_{\mathcal{O}(L)} \mathcal{O}(E_2)$$

where $\{d/2\}$ denotes the least integer greater than or equal to $d/2$.

Using the above lemma and the ramification theory, we have the following generalization of [5], Proposition 6 and [1], Proposition 6.

Proposition 2. Let E/K and E^*/K be two finite separable extensions. Then there is an integer s, independent of m, such that

$$\pi_m^s\mathcal{O}(E_{\otimes m} \otimes_{K_m} E_{\otimes m}^*) \subseteq \mathcal{O}(E_{\otimes m}) \otimes_{\mathcal{O}_m} \mathcal{O}(E_{\otimes m}^*).$$

Here s depends only on one of the two extensions E/K and E^*/K.

By the above Propositions 1 and 2, we prove the following proposition by modifying the argument of the proof of [5], Theorem 2.

Proposition 3. Let E/K and E'/K be two finite separable extensions. We assume that, for some sufficiently large m, the O_m-semi-linear representations of Γ/Γ_m on the additive groups $O(E_{\otimes m})$ and $O(E'_{\otimes m})$ are isomorphic. Then, for any finite Galois extension E^*/K, we have $\deg E_i/K = \deg E'_i/K$ where $E \otimes_K E^* \cong \prod E_i$ and $E' \otimes_K E^* \cong \prod E'_i$ are the products of the composite fields.

Take the Galois closure of E/K and that of E'/K for E^* and apply Proposition 3. Thus we have proved Theorem 2.

Remark 1. From our proof "sufficiently large m" in Theorem 2 admits a bound depending only on K_{∞} and one of the two fields E and E'.

Remark 2. The following example shows that the conclusion of Proposition 3 does not imply the isomorphism of E and E'.

An example: Suppose that $p > 3$. Let G (resp. A_3) be the p-group of order p^4 (resp. the element "A_3") of Satz 12.6 (13) in Huppert [3] p.346. Put H_1 the cyclic subgroup of G of order p generated by $A_2^2A_3$ and H_2 the cyclic subgroup of G of order p generated by A_3. Then for any normal subgroup N of G, $\text{card}(N \cap H_1) = \text{card}(N \cap H_2)$. However H_1 and H_2 are not conjugate each other in G. Let K be the completion of the maximal unramified extension of Q_p. Take a Galois extension L/K with $\text{Gal}(L/K) = G$. Let E/K (resp. E'/K) be the subextension of L/K fixed by H_1 (resp. H_2).

§ 2. Sen's Theory (Generalized Hodge-Tate decompositions)

Let $\chi : G \rightarrow Z_p^*$ be a character of G with infinite image. In § 2 we assume that K is of characteristic 0 and $K_{\infty} = k^{\ker \chi}$.

An element of $H^1(G, GL_d(C))$ (resp. $H^1(\Gamma, GL_d(K_{\infty}))$) may be regarded as an isomorphism class of C(resp. K_{∞})-semi-linear representa-
tions of \mathcal{G} of dim d. Sen [4] proved the following:

Theorem 3. ([4]) The map $H^1(\Gamma, GL_d(K_{\infty})) \to H^1(\mathcal{G}, GL_d(C))$, which is induced by $\mathcal{G} \to \Gamma$ and the inclusion $GL_d(K_{\infty}) \hookrightarrow GL_d(C)$, is a bijection. The isomorphism class given by a C-semi-linear representation V of \mathcal{G} corresponds to the isomorphism class given by the K_{∞}-semi-linear representation V_∞ of Γ, where $V_\infty = \{x \in V^{\ker \chi} \mid$ the translates of x by Γ generate a K-space of finite dimension $\}$.

Furthermore, Sen defined the K_{∞}-linear operator φ on V_∞ satisfying, for $v \in V_\infty$,

$$\varphi(v) = \lim_{\sigma \rightarrow 1} \frac{\sigma(v) - v}{\log \chi(\sigma)}$$

where $\sigma \in \Gamma$ and \log is the p-adic log. We also denote by φ the C-linear extension of φ. Sen [4] proved the following:

Theorem 4. (i) Let V_1 and V_2 be two C-semi-linear representations of \mathcal{G}, and φ_1 and φ_2 the corresponding operators. For V_1 and V_2 to be isomorphic it is necessary and sufficient that φ_1 and φ_2 should be similar.

(ii) For a C-semi-linear representations V of \mathcal{G}, there is a basis of V_∞ with respect to which the matrix of φ has coefficients in K. Because we assume that the residue field of K is algebraically closed, for every matrix Φ with coefficients $\in K$ of degree d, there is a C-semi-linear representation V of \mathcal{G} of dimension d whose operator φ is similar to Φ.

When the matrix of φ is similar to a diagonal matrix whose coefficients $\in Z$ and χ is the cyclotomic character, then the decomposition of V into the eigenspaces of φ agrees with the Hodge-Tate decomposition into maximal subspaces of constant weight. Therefore Sen [4] regarded the primary decomposition given by φ as a generalized Hodge-Tate decomposition.

Sen [6] considered integral semi-linear representations and proved the following integral analogue of the above Theorem 3.

Theorem 5. The map $H^1(\Gamma, GL_d(\mathcal{O}_\infty)) \to H^1(\mathcal{G}, GL_d(\mathcal{O}_C))$ induced by $\mathcal{G} \to \Gamma$ and the inclusion $GL_d(\mathcal{O}_\infty) \hookrightarrow GL_d(\mathcal{O}_C)$ is a injection.
Let M be an \mathcal{O}_C-semi-linear representation M of \mathcal{G} of rank d. Put $V = M \otimes_{\mathcal{O}_C} C$. V is a C-semi-linear representation of \mathcal{G} of dimension d. We define an \mathcal{O}_∞-module M_∞ by $M_\infty = V_\infty \cap M$. Let φ be the K_∞-linear operator on V_∞ as above. Put $\varphi' = p^r \varphi$ where r is the smallest integer such that M_∞ is stable under φ'. Sen [6] defined invariants (M_∞, φ') of M. (Whenever M_∞ is free, Sen defined a further more refined version.) The following theorem in [6] characterizes the image of the map of Theorem 5.

Theorem 6. Let M be an \mathcal{O}_C-semi-linear representation of \mathcal{G}. For M to be induced (up to isomorphism) from an \mathcal{O}_∞-semi-linear representation of Γ it is necessary and sufficient that M_∞ is a free \mathcal{O}_∞-module.

Sen [6] asked whether the integral structures as above are linked to the conditions for representations of geometric type and also asked whether M_∞ is a free \mathcal{O}_∞-module for such a representation M. We give two examples for the latter question in § 3.

§ 3. Examples

Let the notations be the same as in § 2.

(1) ([6], Theorem 6) Let E/K be a finite Galois p-extension with $G = \text{Gal}(E/K)$. Let $R = \mathcal{O}[G]$ be a regular representation of G over \mathcal{O}. Define an \mathcal{O}_C-semi-linear representation M of \mathcal{G} by $M = \mathcal{O}_C \otimes_{\mathcal{O}} R$. Put $E_\infty = E K_\infty$. M_∞ is a product of copies of $\mathcal{O}(E_\infty)$. Then we have:

(i) $\mathcal{O}(E_\infty)$ is an indecomposable \mathcal{O}_∞-module. Hence M_∞ is a free \mathcal{O}_∞-module if and only if $E_\infty = K_\infty$.

(ii) Suppose that the index $(\Gamma : \Gamma_0)$ is prime to p. From § 1, Theorem 1, the extension E/K is determined (up to isomorphism) by the isomorphism class of the \mathcal{O}_∞-semi-linear representation $\mathcal{O}_\infty \otimes_{\mathcal{O}_m} \mathcal{O}(E_{\otimes m})$ of Γ.

(2) Suppose that K is absolutely unramified for simplicity. Let χ be the cyclotomic character, E/\mathcal{Q}_p a finite (unramified Galois) subextension of K/\mathcal{Q}_p with residue degree f. Let \mathcal{G} be the Lubin-Tate formal group.
associated to E and a prime element π_E of E. The Tate module $T_p(G)$ of G is a free $\mathcal{O}(E)$-module of rank 1. Define an \mathcal{O}_C-semi-linear representation M of G by $M = \mathcal{O}_C \otimes_{\mathbb{Z}_p} T_p(G)$. Since E/\mathbb{Q}_p is unramified, $\mathcal{O}_C \otimes_{\mathbb{Z}_p} \mathcal{O}(E) = \prod \mathcal{O}_C$ by applying Lemma 1 for E and the finite extensions of K and by completion. For a \mathbb{Q}_p-embedding σ of E into \overline{K}, put $M_\sigma = \{ \sum x_i \otimes y_i \in M | \sum \sigma(a)x_i \otimes y_i = \sum x_i \otimes ay_i \text{ for all } a \in \mathcal{O}(E) \}$. Then we have $M = M_{id} \oplus \sum_{\sigma \neq id} M_\sigma$ as in Serre [7], III-43. By [7], III-45, $\mathbb{C} \otimes_{\mathcal{O}_C} M_\sigma (\sigma \neq id)$ is of Hodge-Tate type of weight 0 and $\mathbb{C} \otimes_{\mathcal{O}_C} M_{id}$ is such of weight 1. From Fontaine [2], Corollary 1 of Theorem 1, we have

$$M_{id} \simeq i_{K,G}^{-1} \otimes_{\mathcal{O}_C} \hat{i}_K \otimes_{\mathbb{Z}_p} T_p(G_m) \simeq \mathcal{O}_C \otimes_{\mathbb{Z}_p} T_p(G_m),$$

where $i_{K,G}^{-1} = \{ x \in \mathbb{C} | v(x) \geq -\frac{1}{p^{f-1}} \}$, $\hat{i}_K = \{ x \in \mathbb{C} | v(x) \geq -\frac{1}{p-1} \}$ and $v(a) = -\frac{1}{p^{f-1}} - \frac{1}{p-1}$. Therefore $(M_{id})_\infty$ is a free \mathcal{O}_∞-module if and only if $E = \mathbb{Q}_p$. Hence M_∞ is a free \mathcal{O}_∞-module if and only if $E = \mathbb{Q}_p$.

References

New York, Benjamin

[8] S. Yamagata, A remark on integral representations associated with