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Abstract
Let k be an algebraic number field, p an odd prime, and Gg = Gal(ks/k),
where kg is the maximal pro-p-extension of k£ unramified outside the set S of
primes dividing p. We consider situations where Gg is a Demuskin group, espe-
cially when k is totally real or of CM type.

Several authors gave conditions in order to express the Galois group Gg as a free
pro-p-product:
GS = ( * Gv) * F
veT

where F' is a free pro-p-group, T is a subset of S and G, = Gal(k,(p)/k,), ks(p) being
the maximal pro-p-extension of the localization of k at v. However these conditions
are rather restrictive, implying in particular that the decomposition group G% of an
extension of v € T to kg is equal to the whole local group G,. Keeping this in mind, we
are all the more interested in the cases where G is a Demuskin group without being
equal to G, for any v € S.

When k is totally real, we can give a criterion for Gg to be a Demuskin group
involving Iwasawa theory, see Proposition 5. Using numerical data, we obtain many
examples when p = 3 and k is a real quadratic field.

We classify the Demuskin groups Gg in two types, depending on the existence of a
place v € S such that the natural map

H*(Gs,z/pz) — H*(G,,Z/p)

is an isomorphism. If such a v exists, we say that G is a Demuskin group of local type.

When £ is totally real or of CM type, we give necessary and sufficient conditions
for Gs to be a Demuskin group of local type, involving only the arithmetic of the
base field k, see Theorems 1 and 2. Examples are given in the case p = 3 and & is
an imaginary bi-quadratic field. In these examples we have Gg = G%, where v is the
unique place of k£ dividing 3 and Gg # G,; this was the situation we were interested
in, without allowing the case k is totally real where the Proposition 5 gives an easy
characterization.

*This research was partly supported by Grant-in-Aid for Scientific Research, Ministry of Education,
Science, Sports and Culture, Japanese Government, No. 06094224,
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1 Introduction

Let us introduce some notations associated with the field k¥ and the prime p. We denote
by _
— 71 (resp. 7o) the number of real (resp. complex) archimedean places of &
— kg the maximal pro-p-extension of & unramified outside S
— koo the cyclotomic Z,-extension of k (koo C ks), I' = Gal(keo/k) and A = Z,[[T]]
— pip the group of p-th roots of unity, and for a field F', u(F') the p-primary part of
the group of roots of unity contained in F' ‘
— k, the localization of k at a prime v, U, (resp. UY) the group of units (resp.
principal units) in the ring of integers of k, and n, = (k, : Q) the local degree, where
v divides the prime £
— ky(p) the maximal pro-p-extension of k,
— Gs = Gal(ks/k), G, = Gal(k,(p)/ky)
— G% the decomposition group of an extension of v to ks (G% is defined up to an inner
automorphism of Gg)
— K =k(pp), A = Gal(k'/k)
s 1 iftp,Ck _J1 if pp, C ky

0 otherwise 0 otherwise
— E the unit group of the ring of integers of &k »
— Cl (resp. Clg) the p-Sylow of the class group (resp. S-class group) of k
—Vs={a€k*|ack)l? forveS;ac Ukt forvg S}/k*P. By comparing class
field theory and Kummer theory, we obtain an isomorphism

v

Vs ~ Homa (Clg(k'), p) (1)

When there is more than one algebraic number field in consideration, we will append
the name of the field to the above objects.
Let G be a pro-p-group. For every integer n, let H"(G) = H*(G,z/pZ), G acting triv-
ially on z/pz. d(G) := dim H*(G) is the generator rank of G, and r(G) := dim H?(G)
is the relation rank of G.

A motivation for our problem is given by the following local result

1. If up ¢ ky, then G, is a free pro-p-group.

2. If pp C ky, then G, is a Demuskin group.

Definition 1 G is defined to be a Demuskin group if d(G) is finite, r(G) = 1, and the
cup-product
HY(G) x HY(G) — H?*(G)is a perfect pairing.

Let us now consider the global situation. The Galois group Gg has the following
well-known property:

cd(Gs) (the cohomological dimension of Gg) is < 2, and d(Gy) is finite.



and this property holds also for a Demugkin group. After the case Gs is a free pro-
p-group (or equivalently cd(Gs) = 1), the case Gs is a Demuskin group might be
considered as the easiest situation to handle in restricted ramification Theory.

In order to evaluate the relation rank of Gg, the Poitou-Tate duality gives the
following exact sequence

0 — pp(k) — H pp(kw) — H*(Gs)* = Vs — 0 (2)

vES

where A* denotes the Pontrjagin dual of a locally compact abelian group. In the
sequence (2), the local group p,(ky) is in duality with H?(G,) and the map pu,(k,) —
H?(Gs)* corresponds to the composition G, — G% — Gs.

We will use the following relation between the generator rank and the relation rank
of Gg giving the value of its Euler-Poincaré characteristic: ‘

X(Gs) =1- d(Gs) + T(Gs) = —T9 (3)

~ Let us suppose that Gg is a Demuskin group. Then the relation rank of G is equal
to one, so there are only two possibilities:

1. Vg=0and § +1 = 3,56, —we will say that G is a Demuskin group of local
type. Then the natural map H?(Gs) — H?*(G,) is an isomorphism, for every
v € S such that 6, = 1. :

2. dimVg =1and § = ¥,ecg 6, —we will say that Gg is a Demuskin group of global
type. Then, H*(Gs) — H*(G,) is the zero map for every v € S.

In any case there are at most two primes v € S such that 6, = 1. Furthermore such
primes can not split in ks; otherwise there would exist a finite extension K in k such
that 3 ,csx) = p > 2, which is absurd because Gs(K), having finite index in Gg, is
also a Demusgkin group. So we have proved the following

Proposition 1 Suppose that Gg is a Demuskin group and there exists v € S such that
6y =1. Then Gg = G%. '

2 Known Results

We quote here some results relevant to our problem.

Suppose first that k contains y, and Gg is a Demuskin group. Then, by Proposi-
tion 1, the places of S do not split in kg and we have |S| =1 (resp. |S| = 2) if Gg is
a Demuskin group of global (resp. local) type. Conversely, if k& contains p,, using a
result of Kuz’'min, see [4, Fondamental Theorem, A & B(a)], we have

1. if |S(ks)| = 1, then Gs is a free pro-p-group.
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2. if |S(ks)| = 2, then Gs = G,, = G,,, where S(k) = {v1,v}, hence Gg is a
Demuskin group.

Hence, we deduce the following (essentially due to Kuz'min)

Proposition 2 Suppose that k contains p, and S = S,. Then Gg is a Demuskin group
if and only if S = {v1,v2} and v; does not split in ks for i =1, 2. Moreover, we have
Gs = Gy, = G,,, and Gg is a Demuskin group of local type.

Kwzmin gave the following example: Let p = 3 and k = Q(v/—3,v/15). Then Gg is a
Demuskin group. ‘

In [6], Wingberg gives necessary and sufficient conditions for G5 to be equal, up to
a free pro-p-group F, to the free pro-p-product of the local groups G, for v € (S'\ Sp),
where S, C S is a maximal subset with the property (+):

Gy)*F  with (+): ) 6,=6

wWESy

Gs = (ve(;\so)

In the particular case of Demuskin groups , here are the conditions (see loc. cit. The-
orem (i) and Corollary b):

Proposition 3 Let v € S such that 6, = 1. Then Gs = G, (hence Gs is a Demuskin
group of local type) if and only if

So = S\ {v} has the property (+), r3 = ny, and V5 =0,
where VS.S0 ={a € k*|a€ kP forve Sy ac Uk forveg S} kP,

Remark. Except the case § = 1 studied by Kuz’'min, there is no example of field &
satisfying Proposition 3.

3 Totally real fields

In order to tackle the totally real case, we will use the following result, see [1, Prop. 1]

Proposition 4 Let G be a pro-p-group having a closed normal subgroup H such that
the quotient T' = G/H is a one-generator free pro-p-group. Then the following condi-
tions are equivalent

1. G is a two-generator Demuskin group.
2. H is a one-generator free pro-p-group.

We suppose now that the field k is totally real. Then by the equality (3), we have
d(Gs) = 1+ r(Gg). Hence, by the previous Proposition, Gg is a Demuskin group
if and only if the group H = Gal(ks/ks) is isomorphic to Z,, and from a property
of pro-p-groups, this is true if and only if the maximal abelian pro-p-quotient H® is
isomorphic to Z,. We take the following notations of Iwasawa’s theory:
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H = Gal(ks/keo), X = H% the maximal A-module unramified outside S
k. the n-th layer of the cyclotomic extension ko /k

X = lim Clky,), X' = lim Clg(kn), the projective limits being taken via the
norm maps. By class field theory, X (resp. X') is isomorphic to the Galois
group of the maximal abelian pro-p-extension of k. which is unramified (resp.
unramified and where the places of S(ky) split totally).

A =5 72X the Teichmiiller describing the action of A on ¢ € p,: o(¢) = (¥,
For a Z,[A]-module M, we denote by M,, the w-component of M:

M, ={m e M| ém=w(a)m for every § € A}

A(M) and p(M) the Iwasawa invariants of a Noetherian A-module M.

We use the following standard results of Iwasawa’s theory, see for instance [3]

X (k) and X (k'), are Noetherian torsion A-modules having the same A and
u invariants, and X has no finite submodule other than 0.

This implies that u(X) = 0 if and only if X is a free Z,-module, and in that case the
Z,-rank of X is equal to A(X). Hence, we obtain:

Proposition 5. Let k be a totally real field . Then Gg is a Demuskin group if and only
if W(X(k)w) =0 and A(X(K'),) =1.

Ezample. Let k = Q(up)™ be the maximal real subfield of Q(u,). Then p(X (k")) is
equal to 0 by the Theorem of Ferrero-Washington, and for p < 125000, A(X (k'), is
equal to the irregularity index i(p) of p, see [5, Remark following Corollary 10.3]. So
for p < 125000, G is a Demuskin group if and only if i(p) = 1. In this case, the unique
place v € S is totally ramified in kg, because Cl(k) = 0 (Vandiver’s Conjecture) is true
for p < 125000. In particular we have Gg = G%, although Gy is a Demugkin group of
global type.

We will now consider the case where G is a Demuskin group of local type for a
totally real field k. The discussion at the end of the introduction shows that we must
suppose that there exists a unique v € S such that 6, = 1 and v does not split in any

S-ramified extension of k. We have the following criterion using only the arithmetic of
k, see [1, Th. 1]:

Theorem 1 Let k be a totally real field, having a unique v € S such that 6, = 1, and
suppose that v does not split in ko /k. Then the following conditions are equivalent:

1. Gs is a Demuskin group (of local type).

2. Let w(F) be the cardinal of u(F) for a field F, and let h, R,, D be respectively

the class number, the p-adic regulator, and the discriminant of k. Then
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w(k)hE, 1y o
—_— 1 — Normy, jq,w™") 1s a p-adic unit.
w(b)VD wl;[g( b/ QW)

3. X'(K)y =0
4. The map E/EP — [] U,/U? is injective, and the p-Hilbert class field of k (the

weS
mazimal abelian unramified pro-p-extension of k) is contained in kyo.

Ezample. k = Q(+/d) is a real quadratic field, and p = 3
We suppose that d > 1 is square free integer. Let k* = Q(y/—m) the “mirror field”,
where m = d/3 if 3 divides d, and m = 3d otherwise. In standard way, we have
X (k') = X(k*), and also similar results for X’(k*), Cl(k*), Cls(k*)...

By the Theorem of Ferrero-Washington, we have pu(X(k*)) = 0. Hence by Propo-
sition 5, we obtain:

Gs(k) is a Demuskin group <= A X(k*)) =1

We use the tables of [2] giving the A-invariant of X (k*) for 0 < m < 100000. The
case A = 1 happens quite often (23489 times), giving us a good provision of Demuskin
_groups. We give examples in two cases, just to illustrate different situations Wthh were
discussed: d = -3 (mod 9), and d=2 (mod 3).

= -3 (mod 9) In this case, 3 is ramified in %, and u3 C k,, where {v} = S
Here are the first ten values of m = —1 (mod 3) for which A(X(k*)) = 1: m = 2, 5,
11, 17, 23, 26, 29, 38, 53, 59. Hence

Gs(Qv/d) is a Demuskin group of local type for d = 6, 15, 33, 51, 69, 78,
87, 114, 159, 177. ..

It is also possible to use the last condition of Theorem 1: Here, ko, /k is totally ramified
at v, hence the 3-Hilbert class field of % is disjoint to ks. So we obtain:

Proposition 6 Let k = Qv/d, where d is a positive square free integer such that d = —3
(mod 9), and let p=3. Then Gg(k) is a Demuskin group (of local type) if and only
if Cl(k) =0 and the fundamental unit € of k is not a cube in U,.

d=2 (mod3) In this case, 3 remains prime in k, and for every integer n, the
unique ideal of k, dividing 3 is principal, hence Cl(k,) = Cls(k,), which implies X (k) =
X'(k). Here are the first values of d such that G is a Demuskin group:

Gs(QV/d) is a Demuskin group of global type for d = 29, 74, 113, 122, 131,
137, 173, 182, 206, 251, 254, 257. ..



4 CM fields

In this section, we generalize a process used by Kuz’min to construct Demuskin groups,
see [4, Proposition 5.4], where he considered an extension & /k* of CM type, the field k
containing p,. In order to find new examples , we make the following weaker hypothesis:

k/k* is an extension of CM type, with Galois group J = Gal(k/k™).

For a Z,[J]-module M, we denote by M* and M~ respectively the invariant and anti-
invariant part of M under the action of J.

Taking the inflation followed by the restriction, for every integer ¢, we have isomor-
phisms

H(Gs(k*)) 2 B (Gal(ks/k*)) 225 H'(Gs(k))*

for the following reasons: the order of J is prime to p, so the restriction maps are
isomorphisms. The isomorphisms hold trivially for ¢ = 0, and also for ¢ > 3 because
the cohomology groups vanish. The inflation H'(Gg(k*)) — H'(Gal(ks/k™)) is an
isomorphism, because Gg(k*) is the maximal pro-p-quotient of Gal(ks/k%). At last,
from the description of H?(Gs) by the sequence (2), H*(Gs(k*)) and H?(Gs(k))* are
isomorphic. In the case of Demuskin groups, we can make a more precise statement,
see [1, Prop. 10]:

Proposition 7 If Gs(k) is a Demuskin group, then Gs(k™) is also a Demuskin group,
and

H*(Gs(k)) = H*(Gs(k))".

If we restrict to Demuskin groups of local type, the previous proposmon has the fol-
lowing converse, see [1, Th. 2]:

Theorem 2 Let k/k* be an extension of CM type, such that Gg(k*) is a Demuskin
group , and suppose that there exists v € S(k) such that pp, C ky. Let us also denote
by v the place of k* dividing v. Then Gg(k) is a Demuskin group if and only if the
following conditions hold:

(1) pp C kS

(ii) S(k*) ={v} and |S(k)| =146

(iii) X'(k)- =0

In thisbcase, Gs(k) and Gg(k') are botﬁ Demuskin groups of local type.

We now derive some consequences of Theorem 2. We suppose first that u, C k.
Then X'(k)~ = X'(k).. Hence, by using Theorem 1 and Proposition 7, we obtain the
following result, see [1, Cor. 1]:
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Corollary 1 ( compare with [4, Proposition 5.4]) Let k/k* be an extension of CM
type, such that k contains p,. Then the following conditions are equivalent:

1. Gg(k) is a Demuskin group.
2. Gg(kt) is a Demuskin group of local type, and |S(k™)| = 1.

3. S(k*) has only one element v, p, C k™, v does not split in kI /k* and X'(k)~ =
0.

In this case we have Gg = G¥ = Gy, where w is one of the two places of k dividing v.

Ezample. Let p = 3, let k* = Qv/d be a real quadratic field, and k¥ = Q(v/=3,V4d).
In the previous section, we gave the first values of d such that Gg(k™) is a Demuskin
group of local type. We obtain:

Gs,(Q(v/-3, \/E)) is a Demuskin group for d = 6, 15, 33, 51, 69, 78, 87,
114, 159, 177...

We suppose now that p, ¢ k. If Gg(k*) is a Demuskin group, and if the condition
(ii) of the Theorem holds, then we have |S(ks)| = 1. And under this hypothesis, the
conditions X'(ks )~ = 0 and Clg(k)~ = 0 are equivalent, because Clg(k)™ = X'(koo)7,
see [5, Lemma 13.15] for an analogous result. Hence we obtain the following

Corollary 2 Let k/kt be an extension of CM type such that k does not contain Lp,
and suppose that there exists v € S(k) such that k, contains p,. Then the following
conditions are equivalent:

1. Gg(k) is a Demuskin group.
2. S(k) = {v}, pp C k}, Gs(k™) is a Demuskin group and Clg(k)~ = 0.
In this case Gg(k) = G4(k), but Gs(k) # G, (k).

The last assertion of the Corollary comes from the fact that the Euler-Poincaré char-
acteristic —ry(k) of Gg(k) and the Euler-Poincaré characteristic —n, (k) of G,(k) are
different.

Ezample. Let p = 3, and let us find the bi-quadratic fields k satisfying Corollary
2. The real maximal subfield k* = Qv/d, where d is a square free integer, must be of
type given by Proposition 6. & must have a unique place v dividing 3, and the inertia
group of v in k/Q is non trivial (because k*/Q is ramified) and cyclic, by class field
theory. Hence the inertia field k¥ is an imaginary (otherwise k would be real) quadratic
field: k¥ = Qv/—d’, where d is a square free integer congruent to 1 (mod 3), because
3 remains prime in kY. Let k = Qv/—dd’ be the other quadratic subfield of k. We have
canonically ‘

Clg(k)_ jad Clg(k‘v) ©® Cls(k)

Furthermore Clg(k”) = Cl(k") because the prime 3 is principal in k?, g,nd~ClS(l~c) =
Cl(k) because the prime ideal dividing 3 in & has order 1 or 2 in Cl(k), k/Q being
totally ramified at 3. Hence we obtain the following



Proposition 8 Let p = 3 and k = Q(Vd,v—d'), where d and d' are square free
integers such that d = —3 (mod 9) and d =1 (mod 3). Then Gs is a Demuskin
group if and only if the following conditions hold:

1. Gs(QVd) is a Demuskin group.
2. CllQv—d') = Cl(Qy—dd') =0.

Let m be the square free integer such that k = Qy/=m. The following table gives the
value of m when m < 500. The first line and the first column give respectively the
first values d’ and d satisfying the congruences of Proposition 8, such that 3 does not
divide the class number of Qv/—d’ and GS(Q\/E) is a Demuskin group (See the list
given in the previous section). 74 means that 3 divides the class number of k. The
table shows that Gg(k) is a Demuskin group, with k = Q(Vd, v—d), except the cases
(d',d) = (37,6) or (7,33).

!
d1% 1 7 10 13 19 22 34 37 43 46
6 16 42 15 78 114 33 51 222 258 69
15 |15 105 6 195 285 330

33 |33 231 330 429 6

51 |51 357 6

69 |69 483 6

78 |78 195 6 429
References

[1] M. Arrigoni, Representation of Demuskin groups, Tokyo Metropolitan Univ. Math.
Preprint Series, 1995 n° 9.

[2] T. Fukuda, Jwasawa A-invariants of imaginary quadratic fields, J. of the College
of Industrial Technology, Nihon Univ. 27 (1994), 35-88, Corrigendum to appear
in ibid.

[3] K. Iwasawa, On Z,-extensions of algebraic number fields, Annals of Math. 98
(1973), 243-326. :

[4] L. V. Kuz’'min, Local extensions associated with £-extensions with given ramifica-
tion, Math. USSR Izvestija 9-4 (1975), 693-726.

[5] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math.
83, Springer, 1982.

[6] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted
ramification II, J. reine. angew. Math. 416 (1991),187-194.

124



