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A Mean Value Theorem in Adele Geometry
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“A Mean Vaule Theorem” in the title has its origin in the geometry of
numbers created by H. Minkowski. In the following, I would like to explain
how it has grown up according to the history of this beautiful topic.

The essential parts of our results were first obtained by Takao Watanabe
independently. I wish to thank him for the correspondence on [M-W], in
the course of which he kindly answered my question on algebraic groups and
encouraged me to give a talk. | o

Finally, it is my great pleasure to dedicate this report to my teacher,
Takashi Ono, who inspired me by a million of pleasant and fantastic conver-
sations in the past years. ’ o

1. MinkOWski—Hlawka’s theorem

H. Minkowski asserted, in his letter to M. Hermite in 1893 ([Mil]), the
following statement. The proof was given by E. Hlawka about fifty years
lalter, in 1944 ([H]).

Theorem 1 (Minkowski-Hlawka). Let C' be a star domain in the n-
dimensional Euclidean space R®,n > 2, namely, C is a domain in R™ having
the property that if x € C, then Ax € C for 0 < X\ < 1. Assume that for
any lattice L in R"™ with det(L) = 1, C contains a point of L other than the
origin.

Then the Euclidean volume vol(C) of C satisfies

A 1 1 1
vol(C)> — 4 — L 2 4 ... =
vol(C) > T + o +3n + ¢(n),

where ((s) is the Riemann zeta function.



It is remarkable that Minkowski already predicted in [Mi2] that “Der
Nachweis dieses Satzes erfordert eine arithmetische Theorie der Kontinuier-
lichen Gruppen aus allen linearen Transformationen.” Actually, Hlawka gave
a proof to Minkowski’s assertion showing the following inequality:

For any € > 0, there exists g € SL,(R) so that the following inequality
holds for any bounded, compactly-supported, Riemannian-integrable function
f on R™: '

(z)dz+e > D flg2),
zeZ™\{0}

where dz denotes the Fuclidean volume element.

R~

However, it remained unclear the relation to the fundamental domain of

SL.(R)/SL,(Z) which Minkowski had in his mind.

2. Siegel’s mean value theorem

In 1945, C.L. Siegel ([Si]) refined Hlawka’s inequality to an equality and
realized Minkowski’s original perspective.

Let dg be the invariant volume element on SL,(R) normalized by
volg,(SL,(R)/SL,(Z)) = 1. Then, Siegel showed the following equality.

Theorem 2 (Siegel). For any bounded, compactly-supported, Riemannian-
integrable function f on R", the following equality holds.

[, f@)dz = () 2 Crezmia (99

where the sum in the right hand side runs over z = (z1,--+,2,) € Z"\{0}
with G.C.D(zy,--+,2,) = 1.

SL.(R)/SLA

Now, it is immediate to get Minkowski-Hlawka’s theorem from Siegel’s
equality taking the characteristic function as f.



3. Weil’s integration theory

Soon after Siegel ([Si]), A. Weil ([W1]) interpreted Siegel’s mean value
theorem as a Fubini-type theorem in his integration theory on a topological
homogeneous space. ’

Let X be a topological space on which a locally compact unimodular
group G acts transitively. Let L be a discrete subspace of X on which a
discrete subgroup I' of G acts stably. Let H be the stabilizer of x € L and
v = HN. Then, Weil showed the following Fubini-type equality.

Theorem 3 (Weil). For all compactly-supported continuous function f
on X,

J, S = ol B/ [ (3 fla=)da,

zel/y

where dz, dg are suitabl maching measures.

Clearly, we recover Siegel’s theorem when it is applied to the situation: -

G = SL,(R),T = SL,(Z), X = R"\{0}, L = Z"\{0}.

As Siegel computed the volume of SL,(R)/SL,(Z) using his mean value
theorem, Weil used the above formula to compute the volume of G/T" apply-
ing the Poisson summation formula. Later, he applied this idea to certain

adele spaces to compute the Tamagawa numbers of classical algebraic groups
(IW2)).

4. Ono’s mean value theorem and Tamagawa number

T. Ono ([02], 1968) took up the mean value theorem in the following
adelic setting and applied his relative theory of Tamagawa numbers of semi-
simple groups ([O1]).

Let X be a left homogeneous variety of a connected linear algebraic group
G. Suppose that X, G and the action are defined over Q and X(Q) is non-
empty. Let H be the stabilizer of 2 € X(Q) and assume that H is connected.
In the following, A denotes the adele ring of Q. Then, Ono asked when the
mean value theorem holds for the pairs



G(A) " X(A)
\V |
Q)" x(Q)
and gave a sufficient condition for the mean value property of (G, X) in terms
of the homotopy groups of the complex manifold X (C).

To be precise, let w§ and w¥ be the Tamagawa measures on G(A) and
H(A), respectively ([O1]) and wX be the canonical measure on X(A) so
that the maching w§ = wXwq holds. Assume further that G and H have no
non-trivial Q-rational characters and X is quasi-affine (X is quasi-projective
if no condition is imposed on G and H and X is affine if H is reductive).
Then, Ono introduced the following notions (Actually, Ono assumed that G

and H has no non-trivial characters, but the above generalization is straight-
forward).

Definition 4.1. The homogeneous variety (G, X) is called uniform if
there exists a constant 7(G, X)) so that the following equality holds for any
compactly supported continuous function f on G(A)X(Q)

S fg2)s,

fmwX=TG;XTG_1/
(2)X = 7(G, X)r(GY G(A)/G(Q)(zex(a)

-/G(A)X(Q)

where 7(G) = [5(a)/6(Q) w§ is the Tamagawa number of G.

When. that is so, the number 7(G, X)) is called the Tamagawa number of
a homogeneous variety (G, X) and we say that (G, X) has the mean value
property if (G, X) = 1.

Remark 4.2. If G = X and the action is the left multiplication, the
homogeneous space (G, @) is uniform and 7(G,G) = 7(G) by thye Fubini
theorem.

- Siegels case is, of course, G = SL, and X = Aff*\{0}.

To describe Ono’s results (and ours in Section 6), we introduce the local
and global classes in the rational points X(Q). Let y,z € X(Q). We say
that y is globally equivalent to z if there is ¢ € G(Q) so that y = gz, and y
is locally equivalent to z if there is go € G(A) so that y = gaz. Thus, the
local class containing z is G(A)z N X(Q).



Then Ono showed, among other theorems, the following assuming that
G, H have no rational characters, (G, X) is uniform, any local class consists
of a global class, and that the Weil conjecture for the Tamagawa number of
an algebraic group is true,

Theorem 4.3 ([02]). Under the above assumptions,

T (X(C)) = m(X(C)) =1 = 7(G, X) = 1.

Here, the Weil conjecture is the following:
Let G be a connected unimodular algebraic Q—group. Then, m(G(C)) =
1 implies 7(G) = 1.

Later, the Weil conjecture was settled by R.Kottwitz ([Ko3]) in 1988 as-
suming the Hasse principle for H' of the group of type Eg, and the latter
was proved by Chernorsov in 1989 ([C]). The final formula is given as fol-
lows, where we use Borovoi’s fundamental group which will be explained in
the next section.

Theorem 4.4. The Tamagawa number 7(G) of a unimodular connected
linear Q-group G is given by _ '
(G) = [(71(F) aq/q) tors]
| [Ker'(Q,G)]

where (nl(G)GaJ(Q/Q))ms means the torsion part of the coinvariant quotient
of m1(G) under Gal(k/k), and [*] means the cardinality of a set *, and

Ker'(Q,G) = Ker(H'(Q, G) — [ H(Qu, G)).

5. Borovoi’s fundamental group and abelian Galois cohomology

In this section, we introduce Borovoi’s fundamental group and abelian
Galois cohomology, which is a machinery to study the arithemetic of algebraic
groups in a functorial way and so that of homogeneous varieties. For these
matters, we refer to [B1], [B2], [B3], and also Appendix B to [Mil]. His results
generalize Sansuc’s results [Sa] on semisimple groups and refine Kottwitz's
work ([Kol],[Ko2]) on Galois cohomology using the Langlands group.



Let k be a field of characteristic zero and k a fixed algebraic closure of
k. First, we assume that G is reductive. Let G** be the derived group of G
and G®¢ be the universal k-covering of G** ([0O1], Appendix I). Consider the

composition
p : GSC — 188 C G.

Take a maximal torus T in Gy and put 7°¢ = p~}(T'). We then define
m(G,T) := X (T)/ p. X (T%),

where X, (S) denotes the group of one-parameter subgroups of a torus S.

If 7" is another maximal torus in G, thereis g € G(k) so that T = gTg™! =
Int(g)(T). Then, Int(g) induces the isomorphism g, : m(G,T) ~ m (G, T")
which does not depend on the choice of g. The Galois group Gal(k/k) acts
on m(G,T) in the following way. For o € Gal(k/k), there is g, € G(k) so
that 77 = g;'Tg,. Then, o acts on m (G,T) as the composition

(G, T) 25 (G, T7) Y 7y (G, T).

We see that the above isomorphism g. is Gal(k/k)-equivariant. So, we simply
write m1(G) for this Galois module. For a connected linear k-group G, we
set m1(G) := m (G/G*), where G* is the unipotent radical of G, and call it
Borovoi’s fundamental group of G. Then, 7(-) is an exact functor from the
category of connected linear k-groups to Gal(k/k)-modules, finitely generated
over Z. One sees that an inner twisting G — G’ induces the isomorphism
m(G) ~ m(G), and that if k¥ C C, 71(G) is canonically isomorphic to the
topological fundamental group of the complex Lie group G(C) as abelian
groups. .

Next, we define the abelian Galois cohomology groups of a connected
reductive group G by

Hiy(k,G):=H'(k,T*° > T) (i>-1),
where H' means the Galois hypercohomology of the complex
0—-T°—-T—0,

where T°° and T sit in degree —1 and 0, respectively.
Noting that (X.(T%°) & X.(T)) — 71(G) is a short torsion free resolution of



m(G) and that S(k) = X,(S)®k* for a k-torus S, we can see that Hi(k,G)
depends only on the Galois module m;(G). For a connected k-group G, we
set Hy(k,G) := Hiy(k,G/G"). On the other hand, for a connected reductive
group G, we observe that p : G** — G is a crossed module of algebraic groups
over k and so we can also define, in terms of cocycles, the hypercohomology

H'(k,G* — @)

for 7 = —1,0,1, in a functorial way. Then, using the morphism (1—G)—
(G* — G) and the quasi-isomorphism (T%¢ — T) — (G* — G) of crossed
modules, we define the abelianization maps

ab' : H(k,G) — H:,(k, Q)

for s = 0,1 ( For ab?, see [B2]). For a connected k-group G, the abelianization
maps are defined by the composition

Hi(k,G) — H'(k,G/G*) % Hiy(k,G/GY) = Hi,(k, G).

We note that if G is semisimple, 7(G) = Ker(p)(—1) (Tate twist),
25(k,G) = H"*'(k, Kerp) and ab' (i = 0,1) are connecting homomorphisms
attached to the exact sequence, 1 — Kerp — G*¢ 5 G — 1.
Finally, we state Borovoi’s theorem on the Tate-Shafarevich set Ker'(Q, G)
where G is a connected linear Q—group.

9

Theorem 5 ([B3]). The abelianization map ab' : HY(Q,G) — HL(Q, G)
induces a bijection of Ker'(Q, G) onto the abelian group Kerl, (Q,G), which
is functorial in G, where,

Keryy(Q, G) == Ker( H,,(Q,G) — [ H3(Qu, @)

6. Results

In this section, we assume as in Section 4 that G, H are connected linear
algebraic groups having no non-trivial Q—rational characters and X is quasi-
affine.



Using the theorem 4.4 and some results stated in the section 5, we can
show the followings. These were first obtained by Takao Watanabe mdepen—
dently in the case that G, H have no non-trivial characters (i.e., (G, X) is
special in the sense of Ono [02]). The key observation is that the fundamen—
tal group m(G) does not change under an inner twisting. For the precise
proofs, we refer to [M-W] and [Mo].

Theorem 6.1. Any homogeneous variety (G, X) is uniform.

Theorem 6.2. The set of global classes.in a local class containing x €
X(Q) is canonically bijective to the finite abelian group

I\er(I\er (Q, H) — Kerl,(Q, G)).
In particuldr, it is independent of x.
Theorem 6.3. The Tamagawa number of (G, X) is given by

[r1(&)cayqq)l |
[(m1(H) qayqyq)[Coker(Ker'(Q, H) — Ker'(Q, G))]

(G, X) =

The following corollary is a generalization and refinement of Ono’s theo-
rem. The proof is immediate from the homotopy exact sequence attached to

the fibration
1— H(C)— G(C) - X(C) —

Corollary 6.4. If the ﬁfst two homotopy groupé of the complex maﬁifola’
X(C) vanish, then (G, X) has the mean value property.

Example 6.5 ([B-R},6.6). Let f = t" + a;t"* +--- + a, € Z[t] be an
irreducible polynomial. The group G = SL, actson X = {z € M, | det(t],—
z) = f(t)} transitively by (¢, z) — ¢ 'zg. The stabilizer H of the Q-rational
point

—a,

1 0 0o .-+ - —Cp_1



is the Q-anisotropic torus Ker(N : Ry/Q(Gm) — Gm), where K = Q(a), f(a) =
0, and N is the norm map attached to K/Q.
Then, by Theorem 6.3 and the claim 6.6.1 of [B-R] which computes
WI(H)GaJ(Q/Q) = H™Y(L/Q,X.(H)), if L is the Galois closure of K/Q, we
ave
(G, X) = [Coker(Gal(L/K) — Ga,l(L/Q)“b)]‘ :
where ab means the abelianization.

For example, if Gal(L/Q) is the symmetric group S, (n > 3), (G, X) has
the mean value property.

Example 6.6 (Adelic Mmkowsh—Hlawka) Let C be a compact subset of
G(A)X(Q). We can take a characteristic function of C as f in the integration
formula in (4.1) to get

vol,x (C) = (G, X)r(G)™ [9X(Q) n Cl§

/G(A)/G(Q)

Hence, we have a version of Minkowski-Hlawka theorem with a certain con-
gruence condition:

[fvole(C) > T(G,X), then there is g € G(A) so that X has a Q——rdtional
point in gC, and ' '
if for any g € G(A), gC contains a point of X(Q) then vol x( ) >
(G, X). |

7. A dream: Tamagawa characteristic class ?!

From the history of the mean value theorem, it is clear that the theory
of Tamagawa numbers was originally, at least in its spirit, related to integral
geometry, ergodic theory,... The resemblance between Ono-Kottwitz formula
and Gauss-Bonnet formula is obvious. The formula given in Example 6.6
looks similar to some formulas in integral geometry such as Poincaré’s one:

vol(Cy) = (4vol C’1 )~ / gC’1 N C,ldyg,

where C; are closed curves in R? and M (R2) is the group of motions on

R*(cf.[T]).
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After Gauss-Bonnet, Crofton, and Poincaré, one direction in which inte-
gral geometry has been deepen, as far as I understand, is such theories as
the volume of a tube, characteristic classes due to Weyl, Chern, and Griffiths
etc.(e.g.,see [G]).

It would be wonderful if there exist theories involving intermediate-dimensional
subvarieties, characteristic classes,.., in the context of adele geometry ! (M.
Kuga ([Ku]) posed a similar problem).
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