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1 Introduction

Our purpose is to study the finite element approximation for some simple
quasilinear elliptic problems.

Let @ C R" be an N-dimensional polyhedral domain and A: R—> R a
Lipschitz continuous function satisfying

A(s)>C,  ("seR)
with a constant C, > 0. We are interested in the boundary value problem

V- (Aw)Vu) = f in Q (1)
u = 0 on 00 (2)

and its numerical computations, where

N9
f:f0+;‘6?ifi

Based on our previous work concerning the L™ estimate for the Ritz oper-
ator associated with the second order elliptic operator of irregular coefficients
([5]), we can extend some results by [1].
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Namely we can show the existence of the approximate solution uj as well
as the order estimates for |lup — ully and [lup — u| ., provided that f is
small in some sense. Furtherermore, even for the general f we can show the

convergence in those norms.
The problem (1) with (2) is formula.ted vanatlonally First, V denotes
H}(Q) and

a(w : u,v) = /Q A(w)Vu - Vv (u,v e V),

where w € L*®(Q2). Next,

P = [ (- fge)  wev). ®)
Then u € V N L>°(Q) satisfying
a(u : u,v) = F(v) (Vv € V) 4)

is regarded as a weak solution for (1) with (2). ;
We suppose f; € LP(Q) (0 <i < N) for p > max{N,2} and hence
|F()| < CBIvllyrw  (EV),

where % + % =1, C' > 0 being a constant, and 3 = T ¢ || fill 1»-
The problem (4) is discretized as follows. Let {7n}o<n<n, be a family of
regula.r triangulations of §2 and

W, = {xh € C( ) | Xnlp : linear (VT € Th>};
Vi = Wpny,
h > 0 being a size parameter.
Then, we take u; € V;, satisfying | ,
aluy, : up,vg) = F(vp) (Vvh € Vh) . (5)

The existence of such u; will be assured by Brouwer’s fixed point theorem,
where some a priori estimates of the solution wy, = Tjuy, for

al{up : wy,vp) = F(vp) (V'uh € V},)
are necessary. _
We make use of the previous argument ([5]) for this part and the next

section is devoted to it. Henceforth;, u € V N L*°(2) denotes a weak solution
for (1) with (2), which is supposed to exist. ‘
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2 A priori estimate for linear problems
We take coefficients a;; = §;;a(x) € L*(R) satisfying
.
M < Y ai(@)6g; (6= (&, En) €RNzeQ),  (6)
i,5=1

A > 0 being a constant.
Introducing

N Oou Ov
a(u,v) = ,.’jz__,lﬁzaijr’)_x,——az (u,v €V),
we consider the problem

alup,vn) = F(vr)  (Yon € V2), (7)

where F'(v) is defined by (3).

Unique existence of such u, € V;, is assured by Riesz’ representation
theorem and Poincaré’s inequality

vl < G lIVoll,  (veV). (8)
Then, we can claim the following theorem.

- Theorem 1 Let N < 3 and Py(T) € T for any T' € 71, where Pp(T) de-
notes the center of the circumscibing ball of T. Then, there exists a constant
C > 0 determined only by p > max{N, 2}, N, and C, such that

[unll e < CA’IZ:O il s - (9)

Proof : We introduce the non-linear operator Jj, : Wj, — W, by
Inxnl, = max {xl,,0},
where a € T denotes a vertex and T € 73,. For a constant k > 0, let

X = xk=unb—keW,
N = M=JpX €EW.
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Then
MValza < a(n,n)
= —a(up —n,n) + alug,n)-

Here, Lemma 1 of [5] implies

a’(uh -1, 7’) = a’(uh —k - n, ?7)
= a(x — Jnx, JnX)
> 0

so that

AValz: < a(up,n)
= F(n)

N
< Z::O I fill 2y Il

IA

N
(Cp+ D IVl 3 1 ill 2
=0

where w = wy, = supp 7. In other words

N
IVl < OXTPY I fill Lo -
=0
For 1 < ¢ €2 we have

IVl e < lwls™2 |Vl 2

and
1 1

“fi”]ﬂ(w) < |wl27? Hfi”LP(Q)'
We note the relation 7|5, = 0 to deduce

InllLe < ClIVnllL.,

1 _1_ 1
where F=e N Futhermore,

Il = e

< JwF (il e -
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Combining those inequalities, we get
Ikl = Il

ot 1_%+1_%EN :
jw|™ e 1 fell L2
=0

IA

Cx 1wy I fill o)

=0

= CX Hwy| Z ”fz'”u»(n) .
=0

AN

Here
Lol 1 111
T q 2 2 p
1 1
= 1+——=->1.
+5 _p>

We recall Lemma 2 of [5]. Namely,

|T| ”n“L”(T) <(N+1) “W“Ll(T), v
where '€ 7, and 0 < n € V},.
Let
p(t) = |w = |supp nyl
= |supp Jn(un —1)|
for ¢ > 0. Because of the definition of Jj, it holds that
[ pdi= ¥ (T llpmery  (k20). (10)
TE™,

The right-hand side of (10) is dominated from above by
(N+1) D nkllgaery = (N+1) lnll 1 g

TET,

N
< (N+1D)CA wy|” ;) 1fill o)

N
= (N+1D)CA k) 3" fill Loy -

=0



Similarly to [4] (c.f. [5]), the integral inequality

[ ety < (N 0CN R S Wl (£20)

implies p(k) =0 (k > k*) for

Y 1 . EN:
k‘* == —‘—1 ‘QP_ (N + 1)CA_1 ”ft”LP(Q)
¥ i=0

or equivalently, up(z) < k* (:c € Q—) The inequality —up(z) < k* (x € ﬁ)
follows similarly. We get the conclusion (9). O

3 Solvability of the discrete problem
We recall the non-linear operator T}, : Vj, — Vj, defined by
a (up, : Thun, vn) = F'(vn) ‘ (Vvh € Vh) .
We can apply Theorem 1 for a;;(z) = A(un(z))bi;. For A = C'a‘>ﬂ0 (6)

holds. There is a constant C > 0 determined by N, p > max{N, 2}, and the
Poincaré constant C), satisfying '

N
”Thuh”Lm < 00;1 Z ”fi“LP(Q)
=0

for any uy, € Vj,.
In other words,

Th (Va) C‘B = {vn € Vi | lunll = < K},

where K = CCP YN, |1l (@) Therefore, Brouwer’s fixed point theorem
assures the following.

Theorem 2 The non-linear operator Ty, has a fized point in B so that the
discretized problem (5) has a solution.
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We note that [1] derived the same conclusion for N = 2 based on the
Rannacher-Scott type estimate

”Rhunwlm S C Hunwlm » (11)

where 2 = N < p < oo and R, : V — V), denotes the Ritz operator
corresponding to elliptic operator satisfing some condition. For A (11) need
the smoothess of coeficent. Using the duality argument, Theorem 2 is proven
without smoothness of A(s).

4 Error estimates for small data

Following the argument [1], we can derive the H' and L* error estimates for
the case of v < 1, where v = C,; 'L ||Vul|,, with p > max{N, 2} and L being
the Lipschitz constant of A on I = [—1,1], | = max{K, ||[u]|;}.

Acutually, the relations (4) and (5) imply for vy, € V, that

a(un : u — un,vp) = alup: u,vn) — a(up : up,vp)
= a(up: u,vp) — F(uvp)

= a(up : u,vp) — a(u : u,vg)
- ]ﬂ (Aur) — Aw)) Vi - Vo,
" Therefore,

a(up : u— up,u —up) = alup : u— Up, u — ) + alup 1 U — Up, Uy — Up)

= L A(ur)V(u — up) - V(u — vg)
n /Q (A(up) — A@)) Vu- Vv, —up).  (12)

The solution uy, € V}, of (5) satisfies Thup = up € B and hence lunllpe <
K. There exists a constant M > 0 such that

[A(un)ll L < M.
The first term of the right-hand side of (12) is dominated from above by

M [V (u = un)l 2 [V (e — o)l 12 -
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On the other hand, the second term is estimated as
| LL | — upl IVU} IV (wn — wn)l < Lilw —unll s [Vullps IV (on —un)lp2-
In use of Sobolev’s imbedding

@) - 1P Q)

we have

I~ unll s, < ClIV (s — i)

because p > max{N, 2}
Combining those estimates, we get

ColiV(u— 'U:h)”ig < alup:u—up,u— Uup)
< MIV(u—up)llz2 [[V(u — vn)ll 2 |
+ LIV (u — up)l g2 [Vull oo 1V (vh — un)ll 2 -

Therefore,

CalVu—un)ll: < M|V(u—wva)ll
+ L{|Vull {1V (on — )l 2 + IV (u — ua)ll 2}

and hence
1 =NV —u)lla < C7'M [V (u — va)ll g2 + ¥ IV (vn — w)ll 2.
We have proven the following.

Theorem 3 In the case of vy<1,

—1
<Ca M+~

IV —un)l2 < 1—~ v;izlel% IV(w—vp)llz-

In particular, up — u in H} ().

Now, we want to estimate llun — ul| L, Supposing u € WH?(Q) for p > i

max {N,2}.
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Let 45 € V;, be the solution of
a(u : Gy, v) = F(ug) (vh € V). (13)
Denote the Ritz operator associated with the bilinear forﬁ
a(u:v,w) = /QA(u)Vv -Vw (v,we V)
by R : V — V. We have for p > max{N, 2} that |
[Riv]l e < CCT M 0]l (v EVAWP)

(5D

Therefore, i, = Ryu satisfies

lin —ullpe = [(Rn—1) (2 — xa)llpee
< lu=xllpe +CCT M Jlu = Xallyro >
where x;, € Vj. For any vy, € V;, we have

a(up : up — Gp,vn) = alup : up,vp) — alup : Gy, vp)
F(’Uh) — a(uh : '&h,vh)
= a(u : '&h,vh) - a(uh : ’&h,vh)

- /9 (A(u) — A(up)) Viig, - Vo,

The right-hand side is equal to

N th

where f; = — (A(u) — A(uz)) ?,—Zﬁ%-
We have

5 Y Ov;
a(uh DUp — uh,vh) = /QZ (_f’(‘?_:;) (V'Uh € Vh> .
=1 J
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In use of Theorem 1 of §2 we obtain

N
lup — il < CCG! 2«:1 I fill o
< OO M A | ooy It — ]| oo il -

We recall that A(u) € W by u € W' C L™ and that the estimate (11)
holds if € is convex. Under this assumption we have

lun — dinll oo < CCM A || oo ullyyn [l — unll oo -
Putting v = CC; M ||A'|| .« llull 1.0, We have

lw —wnlle <l —@allpeo + ll8n — Unll e
< Ju—xullpe +CC'M lu = Xallwio + v llu — vnllge -

This implies the following theorem.

Theorem 4 Under the above assumptions, furthermore, let §} is conver
and v < 1.
Then we have the estimate

C

‘w——} :
llu — unll oo S‘l (1+(/u, M) x}.]g/h llu — xnllwre

where C depend only on p > max{N,2}, N, the Poincaré constant, and the
constant C in (11).
In particular, up, — u in L*™.

5 Convergence for large data

Even in the case of v > 1, when u € W?(Q) N H}(Q) with p > max {N, 2},
and the weak solution v € H}(Q) N L=(Q) of (1) with (2) is unique, the
convergence

up, —»u  in Hy(Q)

holds as h — 0. Those assumptions are actually hold when € and f; are
regular.
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Define the weak solution v € H}(Q2) N L*™ for (1) with (2) by

N on
/;)A(u)Du-DU:/;l(fov—;figa).

When Q, f; (0 <7 < N), and A is smooth, the weak solution is classical
solution.

From the theorem of Giorgi-Stampacchia, u € C*(Q) (0 < a < 1) follows
so that we get the linear elliptic regularity of L™ coefficient. Furthermore,
from A(u) € C*(Q) and the theorem of Morrey, u € W'P(Q) and A(u) €
Wi (Q) (1 <" p < ).

Since

V- (A(u)Vu) = VA(u) - Vu+ A(u) - Au,

we have the problem

~Au = ){VA(u) Vu+f} in Q (14)

w = 0 on O (15)

From VA(u) € L? and Vu € LP, the right-hand side of (14) belong to
LZ(Q) (2 < p < ). LP estimate implies u € W29(Q) (g > N) and hence
u € C1**(Q) (0 < a < 1) from the theorem of Morrey.

Therefore, the right-hand side of (14) belong to C*({2) and hence u €
- C?**(Q)). From the result of Douglas-Dupont-Serrin ([3]: the uniqueness of
classical solution), we get also the uniqueness of weak solution.

Furthermore, for Ritz operator Ry : V — V, associated with the elliptic
operator

: _ Av = -V - (A(u) Vo)
when the estimate of Rannacher-Scott [6] type

[l < C ol

1 (N=1)
g>< 2 (N=2)
{6 (N =3),

(therefore, always when N = 1, ) we can show u;, — u in L*(Q).

holds for
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Let u € W?(Q) N H3(Q) and p > max {N,2}. The relation (4) and (5)
imply for fixed v, € V}, and A = C, > 0 that

a(up, : up — U, U — V)
aluy, : up, up — Ug) — a{Up © Vp, U — V)
F(uh - ’Uh) - a(uh L Up,Up — ’Uh)

MV (un — )32

o nIA

a(u : u,up — vp) — a(un : Vh, un — Va)

LMW%AWMWrWW—W)
+ A) A(up)V(u — vp) - V(up — vg)

Here, we remark

lunllp < K, M =max |A(s)|,

JsI<K
. /
L = sup M (s,8' € [-1,1]),
3,8 §—s8

and ! = max K, ||ul|;~. Then

a(un : w— Vhy up — Up)

< M{IV(u— )l IV(un — vp)ll 2

I

LMWW@~%%WW~%)
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and
[ (Aw) — A@)Va- Vian— )| < 1AQ) = Alwn)ly V0l 19 Cur = v8)l12
< Lifu —upllge IVully V(v — vn)ll g2,
where 1 N 1 N 1 1
g p 2
Therefore,

AV Cun —valizs < MUV (u — o)z + Lllw = unllpa Vullp, -
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and hence
V6= w)llza < 19— vz + 9 (en = )l
(3 +1) IVl
+ Xl [Vl
< (5 +1) IVE-wlz

L .
+ 25 1V = w)l s+ C = wl

IN

A

< 2 (M 1) IV@ = om)llgs +C u = wall-

From u € H}(Q), infy,ey, ||V(u— )]z — 0 (k| 0) follows. We shall
show u — uy, in L2(Q).
The problem (1) implies

MiVun)2, < a(up, : up,up)
= F(us)
< 3 ilse [Vl

and hence v ~
[Vunlle <AV il e
. = .

On the other hand, Theorem 1 implies that there exists a constant K
such that

[unll e < K.

Taking subsequences,
wp — w  w— HY(Q), v — [®(Q) = (L )
u, — w in L*Q).
We shall show that w € H} () N L*>(Q) is a weak solution for (1) with

(2). Then the uniqueness of the weak solution ([3]) implies w = u and we
can complete the proof.



190

For any v € C°(§2) there exists {vp} (vn € V4) such that
[V(vn —v)llp, =0 (p>max {N,2}).

therefore,

P = FO = [ o= )= 3 fgreon =

< ClV(vy— v)lle.
< CIV@—v)lpy—0 @ <2<p).

On the other hand,
alup : un,vp) = /ﬂ (A(un) = Aw)) V- Vo
+ alw : up,vn — V) + a(w : ug,v).

Since uy, — w in H}(Q), we have

a(w : up,v) — a(w : w,v).
Furthermore,

[ (4wn) = AGw)) Vi - Vo
< Llfun — wll o [Vunll gz [ Vonll s - (16)

For ¢ < 2%, we have uj, — w in L9(f2) and hence the rlght-ha.nd side of (16)
converge to zero.

Finally,
la(w : up,vp)| < M [Vl s |V (wh — v)][ 2 — 0
and hence ‘
a(w:w,v)=F@) (YveCP@).
Therefore,

a(w:w 'u) F(v) ( v E HO(Q)>

- This completes the proof in the case of H}(Q) convergence.
Next, we prove about the case of L> convergence.
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Let 1y, € Vj, be the solution of (13). Since ||&j, — ul|;« — 0, we have

Oty
a.’L‘j

(A(u) — A(un))

N
Huh - ’&hULw < C'/\_2Z
J=1 Le

< ONMLlu—unllpp [ Vinllpey (0> Nyp>2),

where

2N 2N

1LY -
PNy MTE (N

Therefore, there exist ¢ > max {N, %} such that
V], < C lul,

and hence

et — ull oo < Jlth — G| oo + 1in — ull g0 — O
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