Finite element approximation for some quasilinear elliptic problems

Yuki Matsuzawa*

November 3, 1996

1 Introduction

Our purpose is to study the finite element approximation for some simple quasilinear elliptic problems.

Let $\Omega \subset \mathbf{R}^N$ be an N-dimensional polyhedral domain and $A: \mathbf{R} \to \mathbf{R}$ a Lipschitz continuous function satisfying

$$A(s) \ge C_a \qquad \left(\forall s \in \mathbf{R} \right)$$

with a constant $C_a > 0$. We are interested in the boundary value problem

$$-\nabla \cdot (A(u)\nabla u) = f \quad \text{in } \Omega$$
 (1)

$$u = 0$$
 on $\partial\Omega$ (2)

and its numerical computations, where

$$f = f_0 + \sum_{i=1}^{N} \frac{\partial}{\partial x_i} f_i.$$

Based on our previous work concerning the L^{∞} estimate for the Ritz operator associated with the second order elliptic operator of irregular coefficients ([5]), we can extend some results by [1].

^{*}Department of Mathematics, Osaka University, Machikaneyamacho 1-1, Toyonakashi, 560, JAPAN

Namely we can show the existence of the approximate solution u_h as well as the order estimates for $||u_h - u||_{H^1}$ and $||u_h - u||_{L^{\infty}}$, provided that f is small in some sense. Furtherermore, even for the general f we can show the convergence in those norms.

The problem (1) with (2) is formulated variationally. First, V denotes $H_0^1(\Omega)$ and

$$a(w:u,v)=\int_{\Omega}A(w)
abla u\cdot
abla v \qquad (u,v\in V)\,,$$

where $w \in L^{\infty}(\Omega)$. Next,

$$F(v) = \int_{\Omega} \left(f_0 v - \sum_{i=1}^{N} f_i \frac{\partial v}{\partial x_i} \right) \qquad (v \in V).$$
 (3)

Then $u \in V \cap L^{\infty}(\Omega)$ satisfying

$$a(u:u,v) = F(v) \qquad (\forall v \in V)$$
 (4)

is regarded as a weak solution for (1) with (2).

We suppose $f_i \in L^p(\Omega)$ $(0 \le i \le N)$ for $p > \max\{N, 2\}$ and hence

$$|F(v)| \le C\beta ||v||_{W^{1,p'}} \qquad (v \in V),$$

where $\frac{1}{p} + \frac{1}{p'} = 1$, C > 0 being a constant, and $\beta = \sum_{i=0}^{N} \|f_i\|_{L^p}$.

The problem (4) is discretized as follows. Let $\{\tau_h\}_{0< h \leq h_0}$ be a family of regular triangulations of Ω and

$$\begin{array}{lcl} W_h & = & \left\{ \chi_h \in C\left(\overline{\Omega}\right) \mid \left.\chi_h\right|_T : \text{ linear } & \left({}^\forall T \in \tau_h\right) \right\}, \\ V_h & = & W_h \cap V, \end{array}$$

h > 0 being a size parameter.

Then, we take $u_h \in V_h$ satisfying

$$a(u_h:u_h,v_h)=F(v_h) \qquad \left(\forall v_h\in V_h\right). \tag{5}$$

The existence of such u_h will be assured by Brouwer's fixed point theorem, where some a priori estimates of the solution $w_h = T_h u_h$ for

$$a(u_h:w_h,v_h)=F(v_h) \qquad \left(^orall v_h \in V_h
ight)$$

are necessary.

We make use of the previous argument ([5]) for this part and the next section is devoted to it. Henceforth, $u \in V \cap L^{\infty}(\Omega)$ denotes a weak solution for (1) with (2), which is supposed to exist.

2 A priori estimate for linear problems

We take coefficients $a_{ij} = \delta_{ij} a(x) \in L^{\infty}(\Omega)$ satisfying

$$\lambda |\xi|^2 \le \sum_{i,j=1}^N a_{ij}(x)\xi_i\xi_j \qquad \left(\xi = (\xi_1, \dots, \xi_N) \in \mathbf{R}^N, x \in \Omega\right),$$
 (6)

 $\lambda > 0$ being a constant.

Introducing

$$a(u,v) = \sum_{i,j=1}^{N} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} \qquad (u,v \in V),$$

we consider the problem

$$a(u_h, v_h) = F(v_h) \qquad (\forall v_h \in V_h),$$
 (7)

where F(v) is defined by (3).

Unique existence of such $u_h \in V_h$ is assured by Riesz' representation theorem and Poincaré's inequality

$$||v||_{L^2} \le C_p ||\nabla v||_{L^2} \qquad (v \in V).$$
 (8)

Then, we can claim the following theorem.

Theorem 1 Let $N \leq 3$ and $P_0(T) \in \overline{T}$ for any $T \in \tau_h$, where $P_0(T)$ denotes the center of the circumscibing ball of T. Then, there exists a constant C > 0 determined only by $p > \max\{N, 2\}$, N, and C_p such that

$$||u_h||_{L^{\infty}} \le C\lambda^{-1} \sum_{i=0}^{N} ||f_i||_{L^p}.$$
 (9)

 $\mathit{Proof}:$ We introduce the non-linear operator $J_h:\ W_h \to W_h$ by

$$\left.J_{h}\chi_{h}\right|_{a}=\max\left.\left\{ \left.\chi_{h}\right|_{a},0\right\} ,$$

where $a \in T$ denotes a vertex and $T \in \tau_h$. For a constant $k \geq 0$, let

$$\chi = \chi_k = u_h - k \in W_h
\eta = \eta_k = J_h \chi \in V_h.$$

Then

$$\left\| \left\| \nabla \eta \right\|_{L^2}^2 \le a(\eta, \eta)$$

= $-a(u_h - \eta, \eta) + a(u_h, \eta).$

Here, Lemma 1 of [5] implies

$$a(u_h - \eta, \eta) = a(u_h - k - \eta, \eta)$$

$$= a(\chi - J_h \chi, J_h \chi)$$

$$\geq 0$$

so that

$$egin{array}{lll} \lambda \left\|
abla \eta
ight\|_{L^{2}}^{2} & \leq & a(u_{h}, \eta) \ & = & F(\eta) \ & \leq & \sum_{i=0}^{N} \left\| f_{i}
ight\|_{L^{2}(\omega)} \left\| \eta
ight\|_{H^{1}} \ & \leq & \left(C_{p} + 1
ight) \left\|
abla \eta
ight\|_{L^{2}} \sum_{i=0}^{N} \left\| f_{i}
ight\|_{L^{2}(\omega)}, \end{array}$$

where $\omega = \omega_k = \text{supp } \eta$. In other words

$$\|\nabla \eta\|_{L^2} \le C\lambda^{-1} \sum_{i=0}^N \|f_i\|_{L^2(\omega)}.$$

For $1 \le q \le 2$ we have

$$\|\nabla \eta\|_{L^q} \le |\omega|^{\frac{1}{q} - \frac{1}{2}} \|\nabla \eta\|_{L^2}$$

and

$$||f_i||_{L^2(\omega)} \le |\omega|^{\frac{1}{2} - \frac{1}{p}} ||f_i||_{L^p(\Omega)}.$$

We note the relation $\eta|_{\partial\Omega}=0$ to deduce

$$\|\eta\|_{L^{q^*}} \leq C \|\nabla \eta\|_{L^q},$$

where $\frac{1}{q^*} = \frac{1}{q} - \frac{1}{N}$. Futhermore,

$$\|\eta\|_{L^{1}} = \|\eta\|_{L^{1}(\omega)}$$

 $\leq |\omega|^{1-\frac{1}{q^{*}}} \|\eta\|_{L^{q^{*}}}.$

Combining those inequalities, we get

$$\begin{split} \|\eta_{k}\|_{L^{1}} &= \|\eta\|_{L^{1}} \\ &\leq C\lambda^{-1} |\omega|^{1-\frac{1}{q^{*}}+\frac{1}{q}-\frac{1}{2}} \sum_{i=0}^{N} \|f_{i}\|_{L^{2}(\omega)} \\ &\leq C\lambda^{-1} |\omega|^{\gamma} \sum_{i=0}^{N} \|f_{i}\|_{L^{p}(\Omega)} \\ &= C\lambda^{-1} |\omega_{k}|^{\gamma} \sum_{i=0}^{N} \|f_{i}\|_{L^{p}(\Omega)} \,. \end{split}$$

Here

$$\gamma = 1 - \frac{1}{q^*} + \frac{1}{q} - \frac{1}{2} + \frac{1}{2} - \frac{1}{p}$$
$$= 1 + \frac{1}{N} - \frac{1}{p} > 1.$$

We recall Lemma 2 of [5]. Namely,

$$|T| \|\eta\|_{L^{\infty}(T)} \leq (N+1) \|\eta\|_{L^{1}(T)}$$
,

where $T \in \tau_h$ and $0 \le \eta \in V_h$.

Let

$$\rho(t) = |\omega_t| = |\text{supp } \eta_t|$$

$$= |\text{supp } J_h(u_h - t)|$$

for $t \geq 0$. Because of the definition of J_h , it holds that

$$\int_{k}^{\infty} \rho(t)dt = \sum_{T \in \tau_{k}} |T| \|\eta_{k}\|_{L^{\infty}(T)} \qquad (k \ge 0).$$

$$(10)$$

The right-hand side of (10) is dominated from above by

$$(N+1) \sum_{T \in \tau_h} \|\eta_k\|_{L^1(T)} = (N+1) \|\eta_k\|_{L^1(\Omega)}$$

$$\leq (N+1)C\lambda^{-1} |\omega_k|^{\gamma} \sum_{i=0}^N \|f_i\|_{L^p(\Omega)}$$

$$= (N+1)C\lambda^{-1} \rho(k)^{\gamma} \sum_{i=0}^N \|f_i\|_{L^p(\Omega)}.$$

Similarly to [4] (c.f. [5]), the integral inequality

$$\int_{k}^{\infty} \rho(t)dt \leq (N+1)C\lambda^{-1}\rho(k)^{\gamma} \sum_{i=0}^{N} \|f_i\|_{L^p(\Omega)} \qquad (k \geq 0)$$

implies $\rho(k) = 0 \quad (k \ge k^*)$ for

$$k^* = rac{\gamma}{\gamma-1} \left|\Omega
ight|^{\gamma-1} (N+1) C \lambda^{-1} \sum_{i=0}^N \left\|f_i
ight\|_{L^p(\Omega)}$$

or equivalently, $u_h(x) \leq k^* \quad (x \in \overline{\Omega})$. The inequality $-u_h(x) \leq k^* \quad (x \in \overline{\Omega})$ follows similarly. We get the conclusion (9).

3 Solvability of the discrete problem

We recall the non-linear operator $T_h: V_h \to V_h$ defined by

$$a(u_h: T_h u_h, v_h) = F(v_h) \qquad (\forall v_h \in V_h).$$

We can apply Theorem 1 for $a_{ij}(x) = A(u_h(x)) \delta_{ij}$. For $\lambda = C_a > 0$ (6) holds. There is a constant C > 0 determined by $N, p > \max\{N, 2\}$, and the Poincaré constant C_p satisfying

$$||T_h u_h||_{L^{\infty}} \le CC_a^{-1} \sum_{i=0}^N ||f_i||_{L^p(\Omega)}$$

for any $u_h \in V_h$. In other words,

$$T_h(V_h) \subset B = \left\{ v_h \in V_h \mid \|v_h\|_{L^{\infty}} \leq K \right\},\,$$

where $K = CC_a^{-1} \sum_{i=0}^N \|f_i\|_{L^p(\Omega)}$. Therefore, Brouwer's fixed point theorem assures the following.

Theorem 2 The non-linear operator T_h has a fixed point in B so that the discretized problem (5) has a solution.

We note that [1] derived the same conclusion for N=2 based on the Rannacher-Scott type estimate

$$||R_h u||_{W^{1,p}} \le C ||u||_{W^{1,p}}, \tag{11}$$

where $2 = N \le p \le \infty$ and $R_h : V \to V_h$ denotes the Ritz operator corresponding to elliptic operator satisfing some condition. For A (11) need the smoothess of coeficent. Using the duality argument, Theorem 2 is proven without smoothness of A(s).

4 Error estimates for small data

Following the argument [1], we can derive the H^1 and L^{∞} error estimates for the case of $\gamma < 1$, where $\gamma = C_a^{-1}L \|\nabla u\|_{L^p}$ with $p > \max\{N, 2\}$ and L being the Lipschitz constant of A on I = [-l, l], $l = \max\{K, \|u\|_{L^{\infty}}\}$.

Acutually, the relations (4) and (5) imply for $v_h \in V_h$ that

$$a(u_h : u - u_h, v_h) = a(u_h : u, v_h) - a(u_h : u_h, v_h)$$

$$= a(u_h : u, v_h) - F(v_h)$$

$$= a(u_h : u, v_h) - a(u : u, v_h)$$

$$= \int_{\Omega} (A(u_h) - A(u)) \nabla u \cdot \nabla v_h.$$

Therefore,

$$a(u_{h}: u - u_{h}, u - u_{h}) = a(u_{h}: u - u_{h}, u - v_{h}) + a(u_{h}: u - u_{h}, v_{h} - u_{h})$$

$$= \int_{\Omega} A(u_{h}) \nabla (u - u_{h}) \cdot \nabla (u - v_{h})$$

$$+ \int_{\Omega} (A(u_{h}) - A(u)) \nabla u \cdot \nabla (v_{h} - u_{h}).$$
 (12)

The solution $u_h \in V_h$ of (5) satisfies $T_h u_h = u_h \in B$ and hence $||u_h||_{L^{\infty}} \le K$. There exists a constant M > 0 such that

$$||A(u_h)||_{L^{\infty}} \leq M.$$

The first term of the right-hand side of (12) is dominated from above by

$$M \|\nabla(u - u_h)\|_{L^2} \|\nabla(u - v_h)\|_{L^2}$$
.

On the other hand, the second term is estimated as

$$L\int_{\Omega}\left|u-u_{h}\right|\left|\nabla u\right|\left|\nabla\left(v_{h}-u_{h}\right)\right|\leq L\left\|u-u_{h}\right\|_{L^{\frac{2p}{p-2}}}\left\|\nabla u\right\|_{L^{p}}\left\|\nabla\left(v_{h}-u_{h}\right)\right\|_{L^{2}}.$$

In use of Sobolev's imbedding

$$H_0^1(\Omega) \hookrightarrow L^{\frac{2N}{N-2}}(\Omega)$$

we have

$$||u-u_h||_{L^{\frac{2p}{p-2}}} \le C ||\nabla (u-u_h)||_{L^2}$$

because $p > \max\{N, 2\}$.

Combining those estimates, we get

$$C_{a} \|\nabla(u - u_{h})\|_{L^{2}}^{2} \leq a(u_{h} : u - u_{h}, u - u_{h})$$

$$\leq M \|\nabla(u - u_{h})\|_{L^{2}} \|\nabla(u - v_{h})\|_{L^{2}}$$

$$+ L \|\nabla(u - u_{h})\|_{L^{2}} \|\nabla u\|_{L^{p}} \|\nabla(v_{h} - u_{h})\|_{L^{2}}.$$

Therefore,

$$C_a \|\nabla(u - u_h)\|_{L^2} \le M \|\nabla(u - v_h)\|_{L^2} + L \|\nabla u\|_{L^p} \{\|\nabla(v_h - u)\|_{L^2} + \|\nabla(u - u_h)\|_{L^2}\}$$

and hence

$$\| (1 - \gamma) \| \nabla (u - u_h) \|_{L^2} \le C_a^{-1} M \| \nabla (u - v_h) \|_{L^2} + \gamma \| \nabla (v_h - u) \|_{L^2}.$$

We have proven the following.

Theorem 3 In the case of $\gamma < 1$,

$$\|\nabla(u-u_h)\|_{L^2} \leq \frac{C_a^{-1}M+\gamma}{1-\gamma} \inf_{v_h \in V_h} \|\nabla(u-v_h)\|_{L^2}.$$

In particular, $u_h \to u$ in $H_0^1(\Omega)$.

Now, we want to estimate $||u_h - u||_{L^{\infty}}$, supposing $u \in W^{1,p}(\Omega)$ for $p > \max\{N,2\}$.

Let $\hat{u}_h \in V_h$ be the solution of

$$a(u:\hat{u}_h,v_h)=F(v_h) \qquad (v_h\in V_h). \tag{13}$$

Denote the Ritz operator associated with the bilinear form

$$a(u:v,w) = \int_{\Omega} A(u) \nabla v \cdot \nabla w \qquad (v,w \in V)$$

by $R_h: V \to V_h$. We have for $p > \max\{N, 2\}$ that

$$\|R_h v\|_{L^{\infty}} \le CC_a^{-1} M \|v\|_{W^{1,p}} \qquad \left(v \in V \cap W^{1,p}\right)$$

([5]).

Therefore, $\hat{u}_h = R_h u$ satisfies

$$\|\hat{u}_{h} - u\|_{L^{\infty}} = \|(R_{h} - 1)(u - \chi_{h})\|_{L^{\infty}} \\ \leq \|u - \chi\|_{L^{\infty}} + CC_{a}^{-1}M \|u - \chi_{h}\|_{W^{1,p}},$$

where $\chi_h \in V_h$. For any $v_h \in V_h$ we have

$$a(u_h : u_h - \hat{u}_h, v_h) = a(u_h : u_h, v_h) - a(u_h : \hat{u}_h, v_h)$$

$$= F(v_h) - a(u_h : \hat{u}_h, v_h)$$

$$= a(u : \hat{u}_h, v_h) - a(u_h : \hat{u}_h, v_h)$$

$$= \int_{\Omega} (A(u) - A(u_h)) \nabla \hat{u}_h \cdot \nabla v_h.$$

The right-hand side is equal to

$$\int_{\Omega} \sum_{j=1}^{N} \left(-f_j \frac{\partial v_h}{\partial x_j} \right),$$

where $f_j = -\left(A(u) - A(u_h)\right) \frac{\partial \hat{u}_h}{\partial x_j}.$ We have

$$a(u_h:u_h-\hat{u}_h,v_h)=\int_{\Omega}\sum_{i=1}^N\left(-f_jrac{\partial v_j}{\partial x_j}
ight) \qquad \left(orall v_h\in V_h
ight).$$

In use of Theorem 1 of §2 we obtain

$$||u_h - \hat{u}_h||_{L^{\infty}} \leq CC_a^{-1} \sum_{j=1}^N ||f_j||_{L^p}$$

$$\leq CC_a^{-1} M ||A'||_{L^{\infty}(I)} ||u - u_h||_{L^{\infty}} ||\hat{u}_h||_{W^{1,p}}.$$

We recall that $A(u) \in W^{1,p}$ by $u \in W^{1,p} \subset L^{\infty}$ and that the estimate (11) holds if Ω is convex. Under this assumption we have

$$||u_h - \hat{u}_h||_{L^{\infty}} \le CC_a^{-1}M ||A'||_{L^{\infty}} ||u||_{W^{1,p}} ||u - u_h||_{L^{\infty}}.$$

Putting $\gamma = CC_a^{-1}M\left\|A'\right\|_{L^\infty}\left\|u\right\|_{W^{1,p}},$ we have

$$||u - u_h||_{L^{\infty}} \leq ||u - \hat{u}_h||_{L^{\infty}} + ||\hat{u}_h - u_h||_{L^{\infty}} \leq ||u - \chi_h||_{L^{\infty}} + CC_a^{-1}M ||u - \chi_h||_{W^{1,p}} + \gamma ||u - u_h||_{L^{\infty}}.$$

This implies the following theorem.

Theorem 4 Under the above assumptions, furthermore, let Ω is convex and $\gamma < 1$.

Then we have the estimate

$$\|u-u_h\|_{L^{\infty}} \leq \frac{C}{1-\gamma} \left(1+C_a^{-1}M\right) \inf_{\chi_h \in V_h} \|u-\chi_h\|_{W^{1,p}},$$

where C depend only on $p > \max\{N, 2\}$, N, the Poincaré constant, and the constant C in (11).

In particular, $u_h \to u$ in L^{∞} .

5 Convergence for large data

Even in the case of $\gamma \geq 1$, when $u \in W^{1,p}(\Omega) \cap H_0^1(\Omega)$ with $p > \max\{N, 2\}$, and the weak solution $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ of (1) with (2) is unique, the convergence

$$u_h \to u$$
 in $H_0^1(\Omega)$

holds as $h \to 0$. Those assumptions are actually hold when Ω and f_i are regular.

Define the weak solution $u \in H_0^1(\Omega) \cap L^{\infty}$ for (1) with (2) by

$$\int_{\Omega} A(u)Du \cdot Dv = \int_{\Omega} \left(f_0 v - \sum_{i=1}^{N} f_i \frac{\partial n}{\partial x_i} \right).$$

When Ω , f_i ($0 \le i \le N$), and A is smooth, the weak solution is classical solution.

From the theorem of Giorgi-Stampacchia, $u \in C^{\alpha}(\overline{\Omega})$ ($0 < \alpha < 1$) follows so that we get the linear elliptic regularity of L^{∞} coefficient. Furthermore, from $A(u) \in C^{\alpha}(\overline{\Omega})$ and the theorem of Morrey, $u \in W^{1,p}(\Omega)$ and $A(u) \in W^{1,p}(\Omega)$ ($1 < \forall p < \infty$).

Since

$$abla \cdot (A(u) \nabla u) = \nabla A(u) \cdot \nabla u + A(u) \cdot \Delta u,$$

we have the problem

$$-\Delta u = \frac{1}{A(u)} \{ \nabla A(u) \cdot \nabla u + f \}$$
 in Ω (14)

$$u = 0 \quad \text{on } \partial\Omega.$$
 (15)

From $\nabla A(u) \in L^p$ and $\nabla u \in L^p$, the right-hand side of (14) belong to $L^{\frac{p}{2}}(\Omega)$ $(2 . <math>L^p$ estimate implies $u \in W^{2,q}(\Omega)$ (q > N) and hence $u \in C^{1+\alpha}(\overline{\Omega})$ $(0 < \alpha < 1)$ from the theorem of Morrey.

Therefore, the right-hand side of (14) belong to $C^{\alpha}(\overline{\Omega})$ and hence $u \in C^{2+\alpha}(\overline{\Omega})$. From the result of Douglas-Dupont-Serrin ([3]: the uniqueness of classical solution), we get also the uniqueness of weak solution.

Furthermore, for Ritz operator $\hat{R}_h: V \to V_h$ associated with the elliptic operator

$$\hat{\mathcal{A}}v = -\nabla \cdot (A(u)\nabla v)$$

when the estimate of Rannacher-Scott [6] type

$$\left\|\hat{R}_h v\right\|_{W^{1,q}} \le C \left\|v\right\|_{W^{1,q}}$$

holds for

$$q > \begin{cases} 1 & (N=1) \\ 2 & (N=2) \\ 6 & (N=3), \end{cases}$$

(therefore, always when N=1,) we can show $u_h \to u$ in $L^{\infty}(\Omega)$.

Let $u \in W^{1,p}(\Omega) \cap H_0^1(\Omega)$ and $p > \max\{N, 2\}$. The relation (4) and (5) imply for fixed $v_h \in V_h$ and $\lambda = C_a > 0$ that

$$\lambda \|\nabla(u_{h} - v_{h})\|_{L^{2}}^{2} \leq a(u_{h} : u_{h} - v_{h}, u_{h} - v_{h})
= a(u_{h} : u_{h}, u_{h} - v_{h}) - a(u_{h} : v_{h}, u_{h} - v_{h})
= F(u_{h} - v_{h}) - a(u_{h} : v_{h}, u_{h} - v_{h})
= a(u : u, u_{h} - v_{h}) - a(u_{h} : v_{h}, u_{h} - v_{h})
= \int_{\Omega} (A(u) - A(u_{h})) \nabla u \cdot \nabla (u_{h} - v_{h})
+ \int_{\Omega} A(u_{h}) \nabla (u - v_{h}) \cdot \nabla (u_{h} - v_{h})$$

Here, we remark

$$egin{align} \|u_h\|_{L^\infty} & \leq K, & M = \max_{|s| \leq K} |A(s)|, \ L & = \sup_{s,s'} \left| rac{A(s) - A(s')}{s - s'}
ight| & (s,s' \in [-l,l]), \end{aligned}$$

and $l = \max K, ||u||_{L^{\infty}}$. Then

$$\int_{\Omega} A(u_h) \nabla (u - v_h) \cdot \nabla (u_h - v_h) = a(u_h : u - v_h, u_h - v_h) \\
\leq M \|\nabla (u - v_h)\|_{L^2} \|\nabla (u_h - v_h)\|_{L^2}$$

and

$$\left| \int_{\Omega} (A(u) - A(u_h)) \nabla u \cdot \nabla (u_h - v_h) \right| \leq \|A(u) - A(u_h)\|_{L^q} \|\nabla u\|_{L^p} \|\nabla (u_h - v_h)\|_{L^2} \\ \leq L \|u - u_h\|_{L^q} \|\nabla u\|_{L^p} \|\nabla (u_h - v_h)\|_{L^2},$$

where

$$\frac{1}{q} + \frac{1}{p} + \frac{1}{2} = 1.$$

Therefore,

$$\|\lambda\|\nabla(u_h-v_h)\|_{L^2} \le M\|\nabla(u-v_h)\|_{L^2} + L\|u-u_h\|_{L^q}\|\nabla u\|_{L^p}.$$

and hence

$$\begin{split} \|\nabla(u_{h} - u)\|_{L^{2}} & \leq \|\nabla(u_{h} - v_{h})\|_{L^{2}} + \|\nabla(v_{h} - u)\|_{L^{2}} \\ & \leq \left(\frac{M}{\lambda} + 1\right) \|\nabla(u - v_{h})\|_{L^{2}} \\ & + \frac{L}{\lambda} \|u - u_{h}\|_{L^{q}} \|\nabla u\|_{L^{p}} \\ & \leq \left(\frac{M}{\lambda} + 1\right) \|\nabla(u - v_{h})\|_{L^{2}} \\ & + \frac{L}{2\lambda} \|\nabla(u - u_{h})\|_{L^{2}} + C \|u - u_{h}\|_{L^{2}} \\ & \leq 2\left(\frac{M}{\lambda} + 1\right) \|\nabla(u - v_{h})\|_{L^{2}} + C \|u - u_{h}\|_{L^{2}}. \end{split}$$

From $u \in H_0^1(\Omega)$, $\inf_{v_h \in V_h} \|\nabla (u - v_h)\|_{L^2} \to 0$ $(h \downarrow 0)$ follows. We shall show $u \to u_h$ in $L^2(\Omega)$.

The problem (1) implies

$$\lambda \|\nabla u_h\|_{L^2}^2 \leq a(u_h : u_h, u_h)
= F(u_h)
\leq \sum_{i=0}^{N} \|f_i\|_{L^2} \|\nabla u_h\|_{L^2}$$

and hence

$$\|\nabla u_h\|_{L^2} \le \lambda^{-1} \sum_{i=0}^N \|f_i\|_{L^2}.$$

On the other hand, Theorem 1 implies that there exists a constant K such that

$$||u_h||_{L^{\infty}} \leq K.$$

Taking subsequences,

$$egin{array}{lll} u_h &
ightarrow & w - H^1_0(\Omega), \ w^* - L^\infty(\Omega) = \left(L^1(\Omega)\right)^* \ u_h &
ightarrow & ext{in} \ L^2(\Omega). \end{array}$$

We shall show that $w \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ is a weak solution for (1) with (2). Then the uniqueness of the weak solution ([3]) implies w = u and we can complete the proof.

For any $v \in C_0^{\infty}(\Omega)$ there exists $\{v_h\}$ $(v_h \in V_h)$ such that

$$\left\|
abla (v_h - v)
ight\|_{L^p}
ightarrow 0 \qquad \left(p > \max \left\{ N, 2
ight\}
ight).$$

therefore,

$$|F(v_h) - F(v)| = \left| \int_{\Omega} f_0(v_h - v) - \sum_{i=1}^N f_i \frac{\partial}{\partial x_i} (v_h - v) \right|$$

$$\leq C \|\nabla(v_h - v)\|_{L^{p'}}$$

$$\leq C \|\nabla(v_h - v)\|_{L^p} \to 0 \qquad (p' < 2 < p).$$

On the other hand,

$$egin{array}{ll} a(u_h:u_h,v_h) &=& \int_\Omega \left(A(u_h)-A(w)
ight)
abla u_h \cdot
abla v_h \\ &+ a(w:u_h,v_h-v) + a(w:u_h,v). \end{array}$$

Since $u_h \to w$ in $H_0^1(\Omega)$, we have

$$a(w:u_h,v) \rightarrow a(w:w,v).$$

Furthermore,

$$\left| \int_{\Omega} \left(A(u_h) - A(w) \right) \nabla u_h \cdot \nabla v_h \right| \\ \leq L \|u_h - w\|_{L^q} \|\nabla u_h\|_{L^2} \|\nabla v_h\|_{L^p}. \tag{16}$$

For $q < \frac{2N}{N-2}$, we have $u_h \to w$ in $L^q(\Omega)$ and hence the right-hand side of (16) converge to zero.

Finally,

$$|a(w:u_h,v_h)| \le M \|\nabla u_h\|_{L^2} \|\nabla (v_h-v)\|_{L^2} \to 0$$

and hence

$$a(w:w,v)=F(v) \qquad \left(^orall v \in C_0^\infty(\Omega)
ight).$$

Therefore,

$$a(w:w,v)=F(v) \qquad \left(^orall v\in H^1_0(\Omega)
ight).$$

This completes the proof in the case of $H_0^1(\Omega)$ convergence. Next, we prove about the case of L^{∞} convergence. Let $\hat{u}_h \in V_h$ be the solution of (13). Since $\|\hat{u}_h - u\|_{L^{\infty}} \to 0$, we have

$$||u_{h} - \hat{u}_{h}||_{L^{\infty}} \leq C\lambda^{-2} \sum_{j=1}^{N} ||(A(u) - A(u_{h})) \frac{\partial \hat{u}_{h}}{\partial x_{j}}||_{L^{\infty}} \\ \leq C\lambda^{-2} ML ||u - u_{h}||_{L^{p_{T'}}} ||\nabla \hat{u}_{h}||_{L^{p_{T}}} \qquad (p > N, p \geq 2),$$

where

$$pr'=rac{2N}{N-2}, \qquad pr=rac{2N}{rac{2N}{p}-(N-2)}.$$

Therefore, there exist $q > \max \{N, \frac{2N}{4-N}\}$ such that

$$\left\| \nabla \hat{R}_h u \right\|_{L^q} \le C \left\| u \right\|_{L^q}$$

and hence

$$||u_h - u||_{L^{\infty}} \le ||u_h - \hat{u}_h||_{L^{\infty}} + ||\hat{u}_h - u||_{L^{\infty}} \to 0.$$

References

- [1] Brenner, S.C., Scott, L.R., The Mathematical Theory of Finite Element Methods, Springer, New York, 1994.
- [2] J., Douglas, Jr., T., Dupont, A Galerkin Method for a Nonlinear Diriclet Problem, Math. Comp. 29 (1975) 689-696.
- [3] J., Douglas, Jr., T., Dupont, J., Serrin, Uniqueness and Comparison Teorems for Nonlinear Elliptic Equations in Divergence Form, Arch. Rational Mech. Anal. 42 (1971) 157-168
- [4] Hartman, P., Stampacchia, G., On some non-linear elliptic differential-functional equations, Acta Math. 115 (1966) 271-310.
- [5] Matsuzawa, Y., Suzuki, T., An L[∞] bound of the finite element approximation of piecewise linear trial function, to appear in Adv. Math. Sci. Appl..
- [6] Rannacher, R., Scott, R., Some optimal error estimates for piecewise linear finite element approximation, Math. Comp. 38 (1982) 437-445.