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1 Introduction

This paper is concerned with the nonlinear multiparameter problem

N -1 n
(1.1) u"(r) + '(r) + Zpkfk(u(r)) =Ag(u(r)), O0<r<l,
(1.2) u(r) > 0, 0<r<l,
(1.3) 4'(0) = 0, u(l)=0,

where N > 3 and p = (p1, 2, -+, pn) € R (n >1) and A € R, are parameters.
The aim of this paper is to establish asymptotic formulas of the variational eigenvalues
A = A(u, @) obtained by Ljusternik-Schnirelman (LS) theory on general level set

Nyo:={ue X:A(p,u) = / |Vuldr — Zuk/ Fk(u(:v))dx = —aw},

‘where X = WO1 2(B) is the usual real Sobolev space, a > 0 is a parameter, w is the measure
of the unit sphere in RN and Fy(u) := [y’ fi(s)ds.
We assume the following conditions (A.1) - (A.3):

(A.1) fr,g are locally Lipschitz continuous, odd in w and fi(u) > 0, g(u) > 0 for u > 0.
(A.2) There exists a constant 0 < €; such that for 1 <k <n

(1.4) fi(w)u— (2+ €1)Fr(u) 20, ué€R.

(A.3) There exist constants 1 < p; <ps < -+- <pp, < 14+4/Nand Kz >0 (k=0,1,---,n)
such that as u — oo

(1.5) g—sf—) — Ko, fzs:) — K.

Furthermore, there exist constants 1 < ¢1 < ¢ < -+- < ¢, < 1+ 4/N with ¢ < p and
Je>0 (k=0,1,---,n) such that as u | 0

g(u)

fi(u) — J.

(16) g J(), s
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Our motivation comes from the problem of determining asymptotic direction of eigenvalues
(the limit of the ratio of two eigenvalues) of linear multiparameter ordinary differential
equations, which are sometimes studied by using Priifer transformation. For linear theory,
we refer to Faierman [3] and Turin [9] and the references therein.

Recently, in Shibata [7], the asymptotic direction for nonlinear two-parameter problems
was studied for the simplest case of equation (1.1)-(1.3):

(1.7) u'(z) + pu(z)? = du(z)!, O0<z<l,
(1.8) u(z) > 0, O<z<l,
(1.9) u(0) = u(l)=0.

Here i, A > 0 are parameters and 1 < g < p < g+ 2 are constants. In [7], by LS-theory on
general level set N, ,, the following asymptotic formula of A as p — oo for a fixed a > 0
was given: ‘

(1.10) Mp, @) = Cuusis + o(u#is),
where
2(p—q)
N g+ 1\ (p+3) g+ Dp—ga [ 2 T(F5) |+
(L) = +1) 2(2q—p+3) m(g+ 1) P23 '
P =P 1+ D1(5)
We shall extend this formula to our general situation.
2 Main Results
Let
@1 fu =2 [ 1valaz, jullp = 1 [ lu(@)pd, (w,0) = ! [ utp(@)ds
X" wB ’ P wie PN w JB ’

2:2)  Julle = suplu(e)], Pu(u) = ;)1- [ Fulu@)dz, ¥(w) = é [ Gluta))dz.

For a given (u,a) € R™™, X = A(, @) is called the variational eigenvalue if the following
conditions (B.1) - (B.2) are satisfied:

(B.1) (i, o, A1, @), upo(z)) € R X N, q satisfies (1.1) - (1.3).

(B.2)

(2.3) U (upo) = Bp, @) = ug\l]{a U (u).

A(p, a) is explicitly represented as

(24) A(H, a) _ 2a + Zk:l ﬂk((fk(up,a), Up,a) — zq)k (U’I-"aa)) .

(9(tUp,a)s Up,a)
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Indeed, multiplying (1.1) by u, . and integration by parts, we obtain

(2.5) - ”uu,a”%( + i#k(fé(uu,a)aun,a) = Ap, @) (9(upa), Upa)-
k=1 : ;

This along with the fact that u, o € N, o yields (2.4)..
Now we introduce (C-i) and (D-i)-condition for a sequence {(p, )} C R}+:
(C-i) Let 1 <4 < n be fixed. Then

(2.6) ap? " = oo,
(2.7) ?ulN =% — co.

Furthermore, for k # ¢
N+2-— pk(N —2)

. 2(p —pi) By gy
(2.8) ' e NPr Ny, VIR )

(D-i) Let 1 < i < n be fixed. Then

2.9 au-‘“_l — 00,

( 2

2.10 » azll,l 2 50.
3

Furthermore, for k # ¢
N+2—qp (N—2)

2(gx—ai)
(211) ,U'kaN+2 q; (N— 25,1'1 N+2=q;(N-2) 0.

~ Finally, let w denote the ground state solution of the following nonlinear scalar field equa-
tion, which uniquely exists:

(2.12) —Aw = wfi—w in RY,
(2.13) w > 0 in RN,
(2.14) |llim w(z) = 0.

Moreover, let W be the ground state of (2.12)-(2.14) with p; replaced by g;.
Now we state our results.

Theorem 2.1 Assume (A.1) - (A.3). Then the following asymptotic formula holds for
{(n, @)} C R%T satisfying (C-i):

(p;=1) 2 2(p-1)
(2.15) Ap, e) = Cylap )m—zm + o (op? )mz—”m—m)
where soi
(2.16) Co = gt [ N+2= (N = 2p, I
| Fo (A% N — Np)[wlagam,
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Theorem 2.2 Assume (A.1) - (A.3). Then the following asymptotic formula holds for
{(p, @)} C R satisfying (D-i):

2 2 2(g;—1)

(2.17) A, @) = Ca(ap® )m + 0((au )m)
where o

_ B N+2—(N-2)qg N2 (-2
2.18 Ca = Jy1J 2 W-2e :
(219 5= T N = Na) Wk

Typical examples of f, g are as follows.

Example 2.3 Let l<pi <+ <pi<--<pp<l4+4/Nandl<g <---<g<--- <
gn < 14+ 4/N with g < pr. Then

(2.19) Sl = Pl g(u) =,

(2.20) felw) = (14 [ufe ) |ul %ty g(u) = .

satisfies (A.1) - (A3)

3 Fundamental lemmas for Theorem 2.1

Since Theorem 2.2 can be obtained by the similar arguments as those used to prove
Theorem 2.1, we shall give a proof of Theorem 2.1. The existence of variational eigenvalues
can be proved by using the result of Zeidler [10]. We begin with the basic equality which
will play important roles. Let 0, o = maXo<r<1 Upa(r) (= upa(0)).

Lemma 3.1 The following equalit'y holds for 0 <r < 1:

. 1

(31) 5( ', (,’,.))2 pa(s)zds + R(iuﬂ « U“’ (’I"))
= R(,u,a Opa) = o(8)%ds >0,
where .
(32) R(/J" a, ’LL) = Z [,Lka(’lL) - A(ua OL)G(U)
k=1

This lemma can be obfcained by direct calculation. Hence; we omit the proof. Let
(3.3) how) = glu)—u, ha(w) = fulw) — P,
(3.4) Ho(u) := A ho(s)ds, Hi(u) = A hi(s)ds.

Then by (1.5) we see that as u — oo

ho(w) hu(w) Holw) Hilw)

b
u 7 P’ u2 UPH—I

(3.5)
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Lemma 3.2 Assume that {(u,a)} C R satisfies (C-i). Then

2

2(p;—1)
(3.6) , Ay, a) > Clap )mm

2 (p;—1)
Proof. Let T = 7,4 := (quf*~")¥¥2-n"-2 Furthermore, let w,(S) satisfy

N-—-1
(3.7) wr(S) + ——S—w'T(S) + wr(S)P —w,(S) =0, 0<S <7y,
(3.8) wAS) > 0, 085 < Ty,
(3.9) wi(0) = wr(ma) =0.

We write, for simplicity,
Th,x Ty, o
el = [ Y (S8, ol = [ Y un(S) s
0 . 0

We know from Kwong [6] that there uniquely exists a solution w,, and since 7, o — 0o by
(2.6), llwrll2, lwrlloe < C for {(4, )} Put

(3.10) dyo =

, .

N2 2
(ap; g Y= U, o(8) == cualuawr(S), 5= 'rl:’lllS,

where ¢, o = inf{t > 0 : tdy 0wWr(Tua8) € Nya}. Then E(t) = A(p,td, owr(7p,08)) — 0
as t — oo and Z(0) = 0, we see that ¢, o exists. We first show that

(3.11) ' C1'<ea<C.

By (2.8), we obtain for k # ¢

1_-N 2(py, —Ps) ——B‘a(—)-%f;‘p (x 22)
(312) o ,I.L dp";_ # = ,LL}gaN+2 pi(N— 2)# Pi — 0,
?
2—-N __ +1 _
(3.13) & T = padbid Tha = 0.

We have by (3.12) and (3.13)

1
(3.14) —a = A, U,a) = = & 2 M lw k-

9 mapa u, pichit? p’“ _N”"UTHPZH

pi + 1 (2215 2] P1+1

n 1
e N o BT = Y e [ H(Ua(5))ds
k=1

ki P
J' 2 i+1 pi+l
= sl — ol 1)

n o(1) noo
= Y e alwlpd = Y e [ 8N HyUpal(#)ds.
sz e T 1 k=1 JO
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At first, assume that ¢, , — co. Since ¢, 4d, o — 00, We obtain by (2.8) and (3.12) that

(3.15) I Al sV HR (U, o(s))ds

B H(cpadyaws(S))
-N N-—-1 (2212 had 121
e / 5 (Cuadyawr(S))PEH

= o( )i B Nl |21

(Cua u,awT(S))pk+ldS

Then we obtain by (3.14) and (3.15) that
(3.16) —a=A(p,Uuq)

1 1+o(1)
- acko{ lherle - S

pit 1 o -

i+1 1
Rt o) 3 a1
k#i

Since ¢, o — ©0, this is a contradiction. Thus, ¢, < C.

Next, assume that ¢, o — 0. Then there are two cases to consider.

Case 1: If ) ody o — o0, then by the same argument as that used above, we also obtain
(3.16). Since ¢, — 0, this is a contradiction.

Case 2: Assume that ¢, od, o < C. By (1.6) we have for u < C

(3.17) fe(w) < Cu¥, Fp(u) < Cuttl,

Then since g < pi and d, , — oo, we have by (3.12) and (3.13) that for 1 <k <m
BI8)0(Wa) = s [ Pulcudpottr aas)ds < Cpechsf a7 e 23
< c‘““(u dﬁ’jjl"r;a aHa= C'czkjl )

Then

(3.19) —a=Ap,Us) > aci’a{%—HwT”%( - C'kﬁ:l cZ’jgl}.

Since ¢, o — 0, this is a contradiction. Hence, we obtain (3.11). Now we obtain

(3.20) < (9(Upa); Upa) < C||Uu,a||2 < ¥(upa)

b

(1,0) —
2 Ny 12 = (L)
< V(epaduowr(Tyuas)) = Ccu,adlgz,a'r;:,a lw|lz < Ca™F2=rii=21y, i ;

this implies (3.6). Thus the proof is complete. O
Lemma 3.3 Assume that {1, )} C R+ satisfies (C-i). Then A(p,a)/p; — .

Proof. By Lemma 3.2 and (2.7) |

A i

Mi

a
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Lemma 3.4 Assume that {u, @)} C R%™ satisfies (C-i). Then 0,4 — 0. -

Proof. At first, we assume that there exists a subsequence of {0, o} such that 0,4 — 0
and derive a contradiction. We have by (2.8) that for k # ¢ '

(3.22) o= o) (ol ) T,
1

Then we obtain by (1.6), (3.1) and Lemma 3.3 that

M) _ e Fe(oo)

pi—1
3.23) C(a2pl ~2) Tt <
( Hi =i ki Glopa)

< Olog + o(1) Y (Ppl ) FERET ),
ki
This is a contradiction. Hence, 0 < § < 0,,. If there exists a subsequence of {0,,} such
that 0, < C, then by (3.21) and (3.22)

My 0) & ik Fie(0ua)

< e —en.

i k=1 Hi G(U#,a)
< C(1+ o(1) (a2ul ~2) FntvD),

(3.24) C a2 —2) VR <

This contradicts (2.7). Thus the proof is compvlete. O
Lemma 3.5 Assume that {(u,a)} C R*! satisﬁeé (C-i). Then for 1 <k<n
(3.25) pk&ﬂfjl < Cpsobit?,

Proof. We define 1 < j(u,a) < n by the rule

Pj(u,a)t Pk+1
(3.26) Hiue)Oma ™ = IMAX [kOyq

Then there exists a infinite subsequence of {(, )} and 1 < j < n such that j = j(g, o)
for all elements which belong to the subsequence. we consider this subsequence. We have
by (3.1), (3.26) and Lemma 3.4 that for 0 <r <1

1 " '
B27) G0l < 3l (op) = Pt ) = 21 (Cl0) = Glunalr))
=1
< Z 155 (O pa) S C Zl"kaﬁ'f:l < CﬂJUpJ
k=1 k=1

Let 0 <7 =710 < 1 satisfy uua(ri) = 1/20,,q. By mean value theorem and (3.27)

< C’\/uja‘p’

uu,@ (0) — up,alry)

T1

Op,a

2?"1
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that is,
= 1/2
(3.28) Cou2 1 <r.

Since uy, o (r) is decreasing in 0 < r < 1, it follows from (3.28) that

1 1-p;
(3.29) [tpally 2 A TN_lul-t,a(T)2dr 2 Co’i’ar{\’ > CO'i, (0'#, u;l/z)
4-N@;-)
> Ca'p.,a 2—/1'1' N/2‘
This along with (3.20) implies that
- 2
(3.30) Opa < C<ﬂ;,v/2aw“+z—’f,‘,fz%’z>#z ﬁm) “'"Nﬁ’rﬂ.
It follows from (1.5), (3.1) and Lemma 3.4 that
n
(3.31) Ap, ) SCY ol
k=1
Then by Lemma 3.3, (3.26) and (3.31)
C(Oz2p,N 2)m < (/1'7 ) < C _1/1,304”
i
i 2(p;—1)
— N(p;— _ 4 ~N{pi—
< Cuitpy (;/ﬁ—m W >—f—f o7
2(p;—1)(4~N(p;—1)) 8(p; —1)

4
= (;'“;‘N‘Pi'”a(N+z—pi(N—2))(4—N(pj—1)) 1; - (NF2=p (N=2)(=N{z;=D) ¥

that is,
2p;—p;) N+2-p;(N-2)
(3.32) : C < u; am‘}mﬂiul mz—ifﬁv_fi

Since we assume (2.8), we find that there never exists an infinite subsequence of {(u,a)}

satisfying (3.26) for j # 7, namely, (3.26) holds for j = ¢ except finite elements of {(1, @)}.
Thus we obtain our conclusion. OI. :

Lemma 3.6 Assume that {(1,a)} C R satisfies (C-i). Then
2 2pi-1)

(3.33) M, @) < Clopl ) TF-siv.

Proof. By Lemma 3.4, Lemma 3.5 and (3.31)

(3.34) Ap, ) <O ot < Cpaohin!
k=1 ,



Since (3.30) holds for j = i, we have
(3.35) Gpa < CaplN-2)l/ (N+2-pi(N=2))
Substituting (3.35) into (3.34), we obtain (3.33). O
We conclude this section by showing the following lemma. Let &, 4 := (A(p, )/p:)Y/ @Y.
Lemma 3.7 Assume that {(u,a)} C R%*! satisfies (C-i). Then | |
(3.36) Cloun <€ua <Copug.

Proof. The second inequality follows from (3.34). By (3.21) and (3.35) we obtain

Alp, @)
Hi

(3.37) ol < Ol -2) ¥ < ¢

Thus the proof is complete. O

4 Proof of Theorem 2.1

We begin with recalling some fundamental properties of the ground state w of the equa-
tion (2.12) - (2.14). It is known that there uniquely exists the ground state w of (2.12)-
(2.14) such that w is spherically symmetric, decreases with respect to s = |z|,w € C*(R").
Furthermore, for some constant 6 > 0 and for |y| <2

(4.1) |D"w(z)| < Ce®e, z € RN

For these properties, we refer to Berestycki and Lions [1] and Kwong [6]. Since w is
spherically symmetric, (2.12) - (2.14) are equivalent to:

N -1

(4.2) , w'(s) + ——;——-w’(s) +w(s)? —w(s) =0, s>0,
(4.3) w(s) > 0, s2>0,
(4.4) lim w(s) = 0.

We put wy o(s) == & aUpalr), s:=1/A(i, a)r. By (1.1) - (1.3) we see that wy, q(s) satisfies
the following equation:

N-1 ,
(4'5) wz,a (S) + _;—_w;l,,(l (S) + w”’a(s)pi - wl"ya (S)

+ Y A, @) 7 P w0 ()P
k=1,k#i

+ zn: At @) 7 by o (EpnatWp,a(s))
k=1
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_é;,tlmho(gﬂyawll,a(s)) - O) S € I[t,a = (07 \/A(ﬂa C!)),

(4.6) ‘ Wpa(s) >0, 0<s<4/A(1,a),
(47 )0 (0) = 0, waa(y/ (s @) = 0.

By definition of w,,4(s), we have:

VA pa)
/ sN—lw/

. N-2
(48) |I1Uu,u”§(’,\ = 0 u,a(s)stz)\(/’t7a) 2 gp,?x“uli,a”%(’

Prt1 /V Mpe) GN-1
0

. N 1
(4.9) ”“’#ﬂ“pﬁl,)\ = wu,a(s)pk+ld3 = Ay, )2 fp,g’ﬁl)“"inﬂ”ﬁL,

} V Alp,0) _ N
(4.10) ||“’u-,a||g,x = L sV 1wu,a(3)2d5 = A, ) fy,i”uu,a“g-

Furthermore, by (3.1), Lemma 3.5 and Lemma 3.7

1 1 n '
A )00 (9)? = S (1) < 3 e Fr(04a) — Fi(tua(r))
k=1

SCY mopd! < Cpaohil! < Cuhidt = CA(n, Q)€ o;

k=1
that is, for s € [0, \/)\(u_,a)] .
(4.11) w, ,(s)*> < C.
Lemma 4.1 Assume that {(1, )} C R?*! satisfies (C-i). Then
(4.12) M) e (s — 0 (k #9),
(4.13) At o) b e Enatials) = 0 (1<K <n),
(4.14) f_,clth(fp,awu,a (s)) — 0.

Jor a fixed s € [0, {/A(p, @)).

This lemma can be obtained by direct calculation. Hence, we omit the proof.
Lemma 4.2 Assume that {(1, @)} C R} satisfies (C-i). Then |[wyallan, [Weallxs < C.
Proof. By (1.4) and (2.4)

(4.15) €1y t®Pr(upe) < 20+ € Z B (upa) < O, ) (g(Upa), Upa)
k=1 k=1

< CAp, a)|[uu,,,||§-

Since u, o € N, 4, We obtain by (3.20), (4.8) and (4.15) that

2N n n
(4.16) Aw,0) 7 &l ollwpallen = lupald = 2007 m®r(tua) — 0) <23 1@y (uy0)

4—N(p;—1) ——a
< 2Cer ' Mp, @) luall; < CA(p, @) FFEwtm=D y, V2RIV,

i ’
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this along with Lemma 3.2 implies that

N(p;—1)
(4.17) wuallka < CAu, )€, 2am-p—',’%v—zyﬂ NFE0 (VD)
' 4-N(p;—1)
Py 2(p;—1)
= C{)\(,u, a)” aﬁﬁ(—ptﬂiﬂw"—(_iz—m N-2 } i <C.
Next, by Lemma 3.2, (3.20) and (4.10)
N(p;—
il = Ay 0) Y262 0l < OA, )Mo 2 @RI, T
4-N(p;—1)

2(p; -1

2Api=l) ) 2D
= C{)\(p,a)‘lamﬂm#iﬁ’ﬂ—mw—z)} <o

Thus the proof is complete. O
The following two lemmas are variant of Shibata [7, Lemma 4.7]. Hence, the proofs are
omitted.

Lemma 4.3 Let w = w(|z|) be the ground state of (5.2) - (5.4). Suppose that {(1, @)} C
R satisfies (C-i). Then limwyq(|z]) = w(|z]) uniformly on any compact subsets on RN.

Lemma 4.4 Assume that {(u,@)} C R%! satisfies (C-i). Then there ewists yo(z) =
yollz|) € LA(RN) n LP+TH(RYN) (1 < k < n) such that w,q(|z]) < yo(|z]) for z € RV,

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1: From Lemma 4.3, Lemma 4.4 and Lebesgue’s convergence theorem
(4.18) [wpallza = llwllervs Nwpallperix = lwlprey (1< E<n).

We know from Pohozaev’s identity (cf. Strauss [8]) that

_ . 2pi + 1)
pi+l _ i 2
(4'19) ‘ ”w“pﬁ-l,RN - 24 N — pz(N _ 2) ”wHZ:RN’

Furthermore, by Lemma 3.7, Lemma 4.2 and (4.10)

(420) (9, ) = mal+ [ 7 ot 1))t )

= A, )—N/zfﬂa”'wu,a”z,\
~ Vo) hg-(& aW a(s))
o) -N/2¢2 N-1 ok B
+A(p, q) éuya%) s ,aWyal(8)
= (14 o()A @) M2E2 a2

w,,,a(s)st



51

Similarly, we obtain

1
(@21)  (elo)rtna) = lwallfid+ [ r et () o (r)dr
(1+ o(1)A(u, )‘N/2 Pk“nwu,an::ii,

1
(4.22) Op(upa) = F(1+0(1))A(ﬂ’ @) N2 wa e

By (2.4) and (4.20) - (4.22) we obtain

n
: - pr—1
(o)A ) " allwnalls =201 3 = (o)A @) el
k=1

(4.23)
this implies that

(N+2)-p;(N-2) __2

(4.24) {A1(p, @) = Az (p, o)A (p, 0) 2@ p, "7 = 20,
where
(425  A(we) = (1+0(1)wp
pi—1 ;
(4.26) Ao, ) = pz+1(1+o<1>)||wu, h
D.
> k+1(1+0(1))#k>\(u,a) e el dia
k;éz
Then by Lemma 4.1, (4.18), (4.19) and (4.24) we obtain
M1 | T1 i T1
(4.27) (ff’%) _)( 1 _ ) ( (N+2) -pi(N-2) )
QT ”wHQRN p1+1|| pi+1,RN 4+ N - Np’)”wH2R”
where
2(pi — 1) _ 4

=

Nt2—(N—2)p * Nt2—(N—_2)p;
Thus the proof is complete. O
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