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1. Introduction

- We consider time-global existence and blow-up of solutions of the following system
related to chemotaxis

{ b=V - (Vb—xbVd(s)) in Qx (0,00),
(1.1)

0=As—s+b in Q x (0,00),

under the conditions

ob  Os
% — —6—7—1 =0 on Of)x (0, OO), (12)

b(,O) = bo in ﬂ,

where x is a postive constant and ¢ is a smooth function on (0, 00) with ¢/ > 0. The
system is a simplified Keller-Segel model. Keller-Segel model was introduced by Keller and
Segel [11] to describe the initiation of chemotactic aggregation of cellular slime molds. On
Keller-Segel model and simplified Keller-Segel models, time-local existence of the solutions
has been studied by [19] and blow-up of the solutions has been studied by [4, 10, 9, 14, 18].

The domain (2 and the non-trivial initial function by are only confined to the following
case:

(A1) Q is the open ball of radius L with center at the origin in R .

(A2) by is smooth and nonnegative on 2 , and is radially symmetric when N > 2 .

Under these assumptions, there exists a unique solution (b(z,t), s(z,t)) to (1.1) and
(1.2) defined maximal interval of existence [0, Tinaz) , Which is radially symmetric in z
when N > 2, smooth in Q X (0, Tinez) and b(z,t) > 0, s(z,t) > 0 for (z,t) € Q % (0, Timaz)
M Tpge < 00,

limsup(||b(-, ¢)[|ze + [|5(-, 8) o) = oo,

t—Tmaz
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by which we mean that (b(z,t), s(z,t)) blows up in finite time.
Theorem 1 Let N = 1 and ¢ be smooth on (0,00). Then the solution (b,s) to (1.1),
(1.2) is globally bounded, that i3, Tmaez = 0o and (b, s) satisfies ‘
ilzlg(llb(-,t)llw + [ls(, D)llze) < oo
We put
M,(t) = Lb(x,t)lﬂ“dx for 0 <t < Tz,
where a is a positive constant. That is called the moment of order a, of b(-, ).
Theorem 2 Assume ¢(s) = s? (p > 0), (Al) and (A2).
(1) N=2:
(a) If0 < p < 1, then the solution is globally bounded in.time.
(b) p=1: |
(i) If ||bo|lr < 87/, then the solution is globally bounded in time.

(i) If ||bol|z: > 87/x and My(0) is sufficiently small, then the solution blows up
in finite time. ‘ ,
(c) If p > 1 and M(0) is sufficiently small, then the solution blows up in finite
time. : B

2) If N >3 and Mn_2),.2(0) is sufficiently small, then the solution blows up in finite
(N-2)p+
time.

Theorem 3 Assume ¢(s)': logs, (A1) and (A2).
(1) If N = 2, then the solution is globally bounded in time.
(2) N>3: -

(a) If x < 2/(N —2), then the solution is globally bounded in time.

(b) If x > 2N/(N —2) and M(0) is sufficiently small, then the solution blows up
in finite time. ' '

2. Time-global existence and boundedness

The purpose in this section is to sketch the proofs of Theorem 1 and (i) in Theorems
2 and 3.

Let G be the Green function of —A + 1 in Q with homogeneous Neumann boundary
conditions. For N > 2 we put

E(r) = 2m)™NrCN2g y g p(r) for r > 0,

where , is the modified Bessel function of the second kind of order v (see [13]). E is a
fundamental solution of —A 4+ 1.
For the solution (b, s) to (1.1), (1.2) define the functions S and B by
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S(r,t) = /I t s(z,t)dz, B(r,t) = /H b(z,t)dz ' (2.1)
z|<7r _ z|<r v‘ :
for 0 <r < L and 0 <t < Tyngs, respectively. B and S satisfy
OB n10 [ 1.nOB X 10y 1N OB
a8 | or (r or |t W (B=S)d(s)r or’ (22)
0 oS
_ N-19 [ 1-NO90)
0 =r 5 (r 87‘) S+ B, (2.3)

for0<r < L and 0 <t < T, and
B(O’ t) = S(OJ t) = Oa B(L7t) = S(Lat) = “b()“le

where wy is the surface area of the unit sphere S¥~! in RV.

In order to show the boundedness and time-global existence of solutions (b, s) to (1.1),
(1.2) , we begin with the following lemmas. These lemmas are shown by the arguments
similar to those in [14] and [18], respectively, so we omit the proofs. In what follows, C
denotes a generic positive constant depending on L and N.

Lemma 2.1 Let N > 2. Then
s(z,t) > Cllbol| 2 forzeQandte (0, Trmaxz)-
Lemma 2. 2 If the following condition

sup [|s(,t)[le <00,  sup |[Ve(s(-1))llze < oo,

<t<Trazx 0<t<Tmeazx

holds, then Ty = 00 and :
sup [|b(-, t)|| = < oco.
t>0

For the following lemma, see [18].
Lemma 2.3 Let N > 2. Then the following holds :
B(|zl, ) E(|lz]) < s(z,t) < CllbollrE(lz])  in @\ {0} X (0, Trnaa)-

Sketch of proofs of Theorem 1 and (i) in Theorems 2 and 3. By Lemmas 2. 1
, 2.2 and Appendixes in [14] and [18], it suffices to show that

sup ||s(:,t)]|ze < o0, sup ||Vs(-,1)||lLe < 0. (2.4)
0<t<Tmaz 0<t<Tmazx
In the case of N = 1, (2.4) is shown by the arguments similar to those in [14]. Hence
we will prove (2.4) in the case of N > 2.
We put

pl|bo||Z,uP~! in the case of Theorem 2,
O (u) =

-1

U in the case of Theorem 3
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for u > 0. It follows from Lemma 2. 3, (2.2) and 8B/0r > 0 that B satisfies

9B 9 0B\ | x OB
o8 . N9 [ 1 NOB X 1-N9D
o =" & (r ar>+qu’(E)T, or

We can construct the function W(r) such that
W(r) ~rN asr — 0,
llbollzr < W(L) and  B(r,0) < W(r) for0<r <L,
and that

- dr dr r

Hence, the comparison theorem yields that

d
0>pN-12 <T1~Nﬂ> + u_Jlng’(s)rl‘NCii—W for0 < r < L.
N

B(r,t) < W(r) for0<r<L,0<t< Thaz,

which implies B(r,t) < CrV.
Since B(r,t) < Cr" for 0 <r < L and 0 <t < Tinas, it follows from (2.3) that

S(r,t)SCrN forOSrgL,0§t<Tma,;.

Then we have that

15(I2l,2) — B(l=l,?)|
wn|z|¥-1 :

for z € Q and 0 <t < Tpnae. The boundedness of ||s(,t)||=~ with respect to ¢ € [0, Tinaz)

follows from the estimate above of |Vs| and :

?eifrzl s(z,t) < %i

|Vs(z,t)| = <C

for 0 <t < Thnaz,

where || is the volume of Q. Thus the proofs of (i) of Theorems 2 and 3 are complete.

3. Blow-up of solutions

The purpose in this section is to show the blow-up of solutions for the system (1.1),
(1.2) in the case of N > 2 . ) :

In order to show the blow-up of solutions (b, s) to (1.1), (1.2) in [14] and [18], a differ-
ential inequality on a moment My(t) of b is constructed by use of some estimates of s, and
under some conditions on by it is shown that the moment of b converges to 0 as t tends
some T € (0, 00) by use of the differential inequality.

The following lemma is an immediate consequence of Holder’s inequality.

Lemma 3.1 Let f be an integrable function on Q, and p,, p» and p; be numbers satisfying
0<p1<p2<ps. Then

(p3—p2)/(p3—p1) (p2—p1)/(p3—p1)
[ \flladz < { [ 1f1laldz} { [ 1fleaz} .
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Let S and B be the same functions as in (2.1). The following lemmas are stated in [15]
and [18].
Lemma 3. 2 The inequality holds :

d

a < _ k-2
ZM(t) < k(k+N -2) A b(z, t)|z|t2dz

X[ (s(a,0)b(5,0) (8ol 1) — Bllel, 0}
wN JQ
on (0, Traz), where k > 2 .

Lemma 3.3 Let N > 3. There exists a positive constant 6 such that

0

5; (TN_lS(ﬁﬂ,t)) > 0 m {.’B € RN : le < 6} X (OaTmam)a

where r = |z|.

Lemma 3.4 Let N > 2. Then the following holds :
_
wa|z|N-1

in O\ {0} X (0, Trmaz)-

(@ 1) < [ Bl = shdelibolls + [ K@y, iy

Sketch of prdof of .(ii) of Theorem 2. Lét k = (N —2)p+ 2. In order to prove the
theorem, it suffices to show the following inequality "

d 2/k (k—2)/k
—_ < ¢
| dth(t) < k(k+ N —2)||boll7x Mi(2) 3.1

+C|bo|[BLE D% My (2)%/* — Clbol[51

for t € (0, Trmaz)- In fact, if My(0) is sufficiently small so that the right—hand side of (3.1)
is negative at t = 0, there exists Tp € (0, co0) such that

My(t) >0 as t— Ty

Hence, Ty must be finite and Tryer < Tp. By Appendixes in [14] and [18], we have

limsup ||b(+, t)|| e = oo.

t—Tmax

Let us first show (3.1) in the case of p > 1. Using Lemmas 2. 3 and the properties of
the fundamental solution, we obtain that

[ 7@ bt 0Bl Ol Ndz 2 CllbllZ (32)
and that
S(lal,t) < Clibollzaof* (33)



37

It follows from Lemma 2. 3 and (3.3) and the properties of the fundamental solution that
[ 7@ 0b(z, 08, DlalN dz < Clboll Ma) (34

Lemma 3. 2 together with (3.2), (3.4) and Lemma 3.1 yields (3.1).
Let us consider the case 0 < p < 1. By Lemmas 2.3 and the properties of the
fundamental solution, we have '

|7 @ b, 0B (le), )lal* N da
f o (3.5)
> Clboll%s* [ b, 1)B(lal, e = < bl

It follows from Lemmas 2.3 and 3.3 and the properties of the fundamental solution
that ' ’ ‘

/H 6S”"'l(iv,t)b(l‘,t)S(lxl,t)lﬂ?Ik_Ndx < CHboIl][izL/]| Eb(ﬂ?,t)ll‘lzdfc- (3.6)
z|< _ z|<
By Lemma 2. 1 “and (3.3), we have |

/ Pz, 8)b(, 1) S(|z], ) [z |~V d

s<lel<L

| | E=N42 : ’ S
<Cllbolfs [ _ bt 2de | (37)

<lzI<L

< Ollolfgadt™ [ b, Dlafda.

6<|z|<L
Combining (3.6) with (3.7) yields that
[ 5@, Dbl 9 (1, Dlaldo < Cllblfs Mal) (338)

By (3.5) and (3.8), the similar argument to that in the case of p > 1 gives us (3.1). Thus
the proof is complete.

Sketch of proof of (ii) in Theorem 3. Observe that it follows from Lemma 3. 4
and the properties of the fundermental solution that for 0 < t < Tpner and 0 < |z| < L/2,

1
= {wN(N—znmlN—?

T O + 1)} ol

For 0 <t < Typaz and 0 < § < L/2, we then have that
1
Lb(m,t)B(lxl,t)de

> 1 { 1
= |ibollzr | (N —2)wn

+ca} /mgb(x,t)quLt)dx



(N e 2)wN
2>
2(1 + C6)|lbol| 1
(N —2)wy 1 )2
> b — =Myt
= 2(1+ C6)||boll 1 (“ oller = ¥(0))
(N = 2wy [, 2
> e i
> Siras (bl = mM0),
where (-); = max{-,0}. It follows from Lemma 3. 3 that

[ b(m,t)S(|x|,t)W:2ls(Tt)dx

B(6,1)? | o | (3.9)

1
= b 2 / R (3.
on [ b DlePdet [ b 080y de (3.10)

< CMy(t)
in (0, Tyez). Hence, combining Lemma 3.2 with (3.9) and (3.10) concludes that

() < fon - G2 s+ 001+ )0t

on (0, Trnaz). Suppose that § is sufficiently small so that 2N (1+Cé) — (N —2)x < 0. Using
the ‘argument similar to that in the sketch of proof of Theorem 2 , then we have the proof.
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