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ABSTRACT: A steady supersonic flow of a rarefied gas past a flat plate at an angle of
attack is analyzed numerically on the basis of the $\mathrm{B}\mathrm{o}\mathrm{l}\mathrm{t}_{\mathrm{Z}}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}- \mathrm{K}\Gamma \mathrm{O}\mathrm{o}\mathrm{k}-\mathrm{w}_{\mathrm{e}}1\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}$ equation
(the so-called BGK model) with the diffuse reflection boundary condition. An accurate
finitedifference method giving the correct description of the discontinuity of the velocity
distribution function, which was developed in the authors’ recent study for the case of a
flat plate at zero angle of attack, is employed. The behavior of the velocity distribution
function as well as that of the macroscopic quantities is clarified, and the overall quantities
such as the drag and lift on the plate are obtained accurately.

1 INTRODUCTION

A steady supersonic rarefied gas flow past a flat plate is one of the basic problems’ in
rarefied gas dynamics, to which a great deal of literature has been devoted so far (see,
e.g., Refs. $[1]-[7]$ and their references). In our recent paper,[7] we illvestigated the case in
which the plate is parallel to the un垣 orm flow (i.e., at zero angle of attack), aiming to
establish the precise description of the flow field around the plate on the level of the ve-
locity distribution function of the gas molecules. Using the $\mathrm{B}\mathrm{o}\mathrm{l}\mathrm{t}\mathrm{z}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}- \mathrm{K}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{k}$-Welander
(BKW) equation $($or the so-called BGK $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1)^{[},89$

] we developed, on the basis of the
method in Ref. [10], an accurate finite-difference scheme that gives the correct description
of the discontinuity inherent in the velocity distribution function in the gas. Then, by a
careful numeriCa.l analysis, we clarified the features of the gas flow, in particular, those
around the leading and trailing edges, for a wide range of the Knudsen number. In the
present study, we extend the analysis to the case where the plate has an angle of attack
and obtain the accurate behavior of the macroscopic quantities as well as that of the
velocity distribution function around the plate.

2 PROBLEM AND BASIC EQUATION

Let us consider a uniform supersonic flow of a rarefied gas (with density $\rho_{\infty}$ , tempera-

数理解析研究所講究録
974巻 1996年 77-83 77



ture $\tau_{\infty}$ , and flow speed $U_{\infty}$) past a flat plate (with chord length $L$ and temperature $T_{\omega}$ ;

with infinitely long span and without thickness) at angle of atta($\backslash \mathrm{k}\alpha$ . Let us assunle that

the plate is placed at the $\mathrm{p}\mathrm{o}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-L/2<X_{1}<L/2,$ $A\mathrm{Y}_{2}=0$ , where $AY_{i}$ is the Cartesian
coordinate system, and that the uniform flow is perpendicular to the $\mathrm{s}\mathrm{p}\mathrm{a}11\mathrm{W}\mathrm{i}_{\mathrm{S}}\mathrm{e}$ direction of
the plate [i.e., the velocity of the uniform flow is $(U\infty^{\cos\alpha}’ U\infty\sin\alpha,$ $\mathrm{o})$ ]. We investigate
the steady behavior of the gas on the basis of kinetic theory under the asunlptions that
the behavior of the gas is described by the BKW equation and that the interaction of the
gas molecules with the plate is described by the diffuse-reflection $\mathrm{b}_{\mathrm{o}\mathrm{U}1}1\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$ condition.

The BKW equation in the present spatially two-dimensional case is written $\mathrm{a}\mathrm{s}^{[8,9]}$

$\xi_{1}\frac{\partial f}{\partial X_{1}}+\xi_{2}\frac{\partial f}{\partial X_{2}}=A_{C}\rho(f_{e}-f)$, (1)

$f_{e}( \rho, \tau_{v_{1}},, v2,v3;\xi i)=\frac{\rho}{(2\pi R\tau)^{3/2}}\exp(-\frac{(\xi_{i^{-v_{i}}})^{2}}{2RT})$ , (2)

$\rho=\int fd\xi$ , $v_{i}= \frac{1}{\rho}\int\xi_{i}fd\xi$ , $T=. \frac{1}{3R\rho}\int(\xi_{i}-v_{i})2.rd\xi$ , (.3)

where $\xi_{i}$ is the molecular velocity; $d\xi=d\xi_{1}d\xi 2d\xi 3;f$ is the velocity distribution function
of the gas molecules; $\rho$ is the density, $v_{i}$ is the flow velocity $(v_{3}=0),$ alld $T$ is the
temperature of the gas; $R$ is the specific gas constant; and $A_{c}$ is a constant ($A_{c}\rho$ is the
collision frequency of the gas molecules). The boundary condition on the plate $\mathrm{i}_{\mathrm{S}^{[8,\mathrm{g}}}.$

]

$f=f_{e}(\rho_{w}, T_{w}, \mathrm{o}, 0,0;\xi_{i})$ , for $\xi_{i}n_{i}>0$ , (4)

$\rho_{w}=-(\frac{2\pi}{RT_{w}})^{1/2}\int_{i}\xi n_{i}<\xi_{i,0}n_{i}fd\xi$ , (5)

where $n_{i}=(0,1,0)$ on the upper surface, and $n_{i}=(0, -1,0)011$ the lower surface. The
condition at infinity is

$farrow f_{e}(\rho_{\infty’\infty’\infty^{\mathrm{c}}}\tau U\mathrm{o}\mathrm{s}\alpha, U\infty\sin\alpha, \mathrm{o};\xi_{i})$ , as $(_{A}\mathrm{v}_{1}^{2}+X_{2}^{2})^{1/_{2}}arrow\infty$. (6)

By introducing appropriate nondimensional variables, we find that our boundary-value
problem is characterized by the four nondimensional parameters: $T_{w}/\tau_{\infty},$ $M_{\infty},,$ $Kn,$ alld
$\alpha$ , where $M_{\infty}=(5RT_{\infty}/3)^{-1/2}U_{\infty}$ is the Mach number at infinity, and $Kn=\ell_{\infty}"/L$ is the
Knudsen number, $p_{\infty}$ being the mean free path of the gas molecules in the equilibrium
state at rest with density $\rho_{\infty}$ and temperature $\tau_{\infty},$ $[\ell_{\infty}=(8RT_{\propto\}}/\pi)^{1/2}(A_{c}\rho_{\infty},)^{-1}]$ .

3 NUMERICAL ANALYSIS

We first eliminate $\xi_{3}$ from Eqs. (1), (4), and (6) by the standard procedure and then
solve the resulting boundary-value problem of two simultaneous integr-differential equa-
tions numerically by exploiting the accurate finite-difference method developed ill Ref. [7].
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As pointed out in Refs. [10] and [11], the velocity distribution function of the gas molecules
is, in general, discontinuous in the gas around a COllVeX boundaiy (see also Ref. [12]). In
the case of a flat plate, the convex nature of the boundary is concentrated at the leading
and trailing edges. As a consequence, at a point in the gas, the discolltinuity (of the
velocity $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{f}}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$) appears for the molecular velocities in the two directions:
one is from the leading edge to the point under consideration, and the other is from the
trailing edge to $\mathrm{i}\mathrm{t}^{[7]}$. The discontinuity decays with the distance from the edges owing to
molecular collisions. Thus, it is appreciable at the points whose distance from the leading
or trailing edge is less than a few mean free paths. Such behavior of the discontinuity is
described precisely by the method mentioned above, in which a lnethod of characteristics
is incorporated in a standard finitedifference scheme. The reader is referred to Ref. [7]
for the details.

4 RESULTS

Some of the results of the numerical analysis are presented in this section. Here we
restrict ourselves to the case of $T_{w}/\tau_{\infty}=1$ and $l\downarrow/I_{\infty},$ $=3$ .

In Fig. 1, we show the streamlines of the flow and the isolines of the density, the
temperature, and the local Mach number $M=(v_{1}^{2}+v_{2}^{2})^{1/2}(5R\tau/3)^{-1’2}/$ around the plate
for $\alpha=30_{-}^{-}$

’ and $Kn=0.05$ and 0.5. In Fig. 1 (a) are shown the contours of $\rho,/\rho_{\propto)}=0.2m$

$(m=1, \cdots, 4,6, \cdots, 15),$ $\perp.01$ , and $4+m(m=0, \cdots , 5)$ ; $T/\tau_{\infty}=1.01$ and 1.2+

0. $2m$ $(m=0, \cdots , 11)$ ; $M=0.2m(m=1, \cdots, 14)$ and 2.99, and in Fig. 1(b) those of
$\rho/\rho_{\infty},$ $=0.2m$ $(m=1, \cdots, 4,6, \cdots , 15)$ , 1.01, and $4+m(m=0,1,2);T,/\tau_{\infty},$ $=1.2+0.2m$

$(m=0, \cdots, 9);M=0.2m(m=1, \cdots, 14)$ . For $Kn=0.05$ [Fig. 1 $(\mathrm{a})$ ], a curved shock,
originating from the leading edge, develops below the plate. A weak compression layer is
also formed upward from the leading edge, but it decays rapidly with the distance from
the edge. There is a significant density variation in the gas, $\mathrm{i}.\mathrm{e}_{0}.$. the density increases to
$9.22\rho_{\infty}$ , on the lower surface and decreases to $0.198\rho_{\infty}$ on the upper surface. For $Kn=0.5$

[Fig. 1 $(\mathrm{b})$ ], the variations of the flow properties are milder, and the effect of the plate tends
to extend upstream.

In Fig. 2 are shown the marginal velocity distribution function $g= \int f(X_{1,2}\Delta \mathrm{t}^{r}, \xi_{i})d\xi 3$

at eight points on the line $\lambda_{1}^{r}/L=$ -0.248, as a function of $\xi_{1}$ and $\xi_{2}$ , for $a=30_{-}^{-}$ alld

$Kn=0.5$ . Figures $2(\mathrm{a})^{-}2(\mathrm{d})$ show the $g$ below the plate, and Figs. $2(\mathrm{e})-2(\mathrm{h})$ that above

it [Fig. $2(\mathrm{d})$ and $2(\mathrm{e})$ are the $g$ on the lower and the upper surface, respectively]. The

height of $g$ significantly increases on the lower surface and decreases on the upper surface

because of the large density variation. [Note that the scale for $g$ is different in Fig. 2 $(\mathrm{d}).$ ]

The discolltinuity of $g$ for the molecular velocities in the two directions melltioned in

Sec. 3 [i.e., $(\xi_{1}, \xi_{2})$ with $\xi_{1}/\xi_{2}=(_{\lrcorner}\mathrm{Y}_{1}+L/2)/X_{2}$ and $\xi_{1}/\xi_{2}=(_{\lrcorner}\mathrm{x}_{1}^{-}-L2)’,\lrcorner\lambda^{r}2(\xi_{2}>0$ for
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(a) (b)

Fig. 1 The streamlines of the flow and the isolines of the density $\rho$ , temperature $T$ , and
local Mach number $M$ for $T_{w}/\tau_{\infty}=1,$ $M_{\infty}=.3$ , and $\alpha=30^{\mathrm{o}}$ . (a) $Kn=0.05,$ $(\mathrm{b})$

$Kn=0.5$ . (See the main text.) The plate is not shown in the figures for the isolines.
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Fig. 2 The marginal velocity distribution function $g$ at eight $\mathrm{p}\mathrm{o}\mathrm{i}_{\mathrm{l}1}\mathrm{t}\mathrm{S}$ alollg $\mathrm{t}\wedge \mathrm{h}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}x_{1}/L=$

-0.248 for $T_{w}/\tau_{\infty}=1,$ $M_{\infty}=3,$ $\alpha=30^{\mathrm{c}\mathrm{t}}$ , and $Kn=0.5$ . (a) $\lambda_{2}^{r}/L=$ -0.697, (b)
$X_{2}/L=-0..3,$ $(\mathrm{c})X_{2}/L=$ -0.204, (d) $X_{2}/L=0_{-},$ $(\mathrm{e})X_{2}/L=0_{+},$ $(\mathrm{f})X_{2}/L=0.108$ ,
(g) $X_{2}/L=$ 0.204, (h) $X_{2}/L=0.507$ . Here, $c_{\infty},$

$=(2R\tau_{\infty})^{1/2}$ . The lines $\xi_{1}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ and
$\xi_{2}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ (corresponding to every three computational lattice lines) and the discontinuity
lines are drawn on the surface, and the discontinuity is expressed as vertical cliffs.
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$\Delta \mathrm{X}_{2}^{r}>0$ and $\xi_{2}<0$ for $X_{2}<0$)] is appreciable in Figs. $2(\mathrm{b}),$ $2(\mathrm{c}),$ $2(\mathrm{f})$ , and $2(\mathrm{g})$ . The
decay and the shift of the location of the discontinuity with the distance from the plate
are clearly demonstrated by these figures.

Let $(\hat{F}_{1},\hat{F}_{2}, \mathrm{o})$ be the force on the surface of the plate per unit area and $E^{\mathrm{A}}$ be the
energy transferred to it per unit time and unit area. The distributions of $\hat{F}_{1},\hat{F}_{2}$ , and $\hat{E}$

on the upper and lower $\mathrm{s}\mathrm{u}\grave{\mathrm{r}}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{s}$ for $\alpha=30^{\mathrm{O}}$ and $Kn=0.05$ an$\mathrm{d}0.5$ are shown in Fig. 3,
where $\hat{F}_{1}^{+},\hat{F}_{2}^{+}$ , and $\hat{E}^{+_{\mathrm{S}\mathrm{t}\mathrm{a}}}\mathrm{n}\mathrm{d}$ for $\hat{F}_{1},\hat{F}_{2}$ , and $\hat{E}$ on the upper surface, and $\hat{F}_{1}^{-},\hat{F}_{2}^{-}$ , and
$\hat{E}^{-}$ those on the lower surface. Let us denote by $(F_{1}, F_{2},0)$ the total force acting on the
plate and by $E$ the total energy transferred to it per unit time, $\mathrm{I}$) $\mathrm{e}\mathrm{r}$ unit $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{w}\mathrm{i}\mathrm{S}^{1}\mathrm{e}$ length.
The drag $F_{D}=F_{1}\cos\alpha+F_{2}\sin\alpha$ and the lift $F_{L}=-F_{1}\sin\alpha+F_{2}\cos\alpha$ on the plate (per
unit spanwise length) and $E$ for $Kn=0.05$ and 0.5, and $\alpha=0^{\mathrm{O}},$ $10^{\mathrm{t}_{-}^{-}}’,$ alld $30^{\circ}$ are given in
Table 1. These are mainly determined by the distributions of $\hat{F}_{1},\hat{F}_{2}$ , and $\hat{E}$ on the lower
surface because those in the upper surface are much smaller in rnagnitude (cf. Fig. .3).
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Fig. 3 The distributions of the $X_{1}$-and
$X_{2}$-components of the force, $\hat{F}_{1}$ and $\hat{F}_{2}$ ,
on the surface of the plate per unit area
and of the energy $\hat{E}$ transferred to it per
unit time and unit area for $\tau_{w/}/\tau_{\infty}=1$ ,
$\Lambda I_{\infty}=3,$ $\alpha=30^{\mathrm{t}_{-}^{-}}’,$ alld Kn $=0.05$ and
Kn $=0.5$ . (a) $\hat{F}_{1},$ $(\mathrm{b})\hat{F}_{2},$ $(\mathrm{c})\hat{E}$ . Here,
the superscript+(-) indicates the value
on the upper (lower) surface.

Table 1 The drag $F_{D}$ and lift $F_{L}$ on the plate (per unit spanwise length) and the energy
E transferred to it (per unit time and unit spanwise length) for $T_{\omega}/T_{\iota \mathrm{X}},$ $=1$ and $M_{\propto)}=3$ .

$\frac{\overline\alpha(\mathrm{d}\ominus \mathrm{g})\frac{(\frac{1}{2}\rho_{\infty\infty}U^{2}L)^{-1}F_{D}}{Kn--\mathrm{o}.05Kn--0.5}\frac{(\frac{1}{2}\rho_{\infty\infty}U^{2}L)^{-1}F_{L}}{Kn--0.05.Kn--\mathrm{o}.\overline{3}}\frac{(\frac{\overline 1}{2}\rho_{\infty\propto}[\gamma 3L)-1.E}{Kn-0.1\cdot 33-_{0.\mathrm{o}}5Kn-0.50^{-}222}}{0^{[7]}0.2650.43800},‘$

’

10 0.310 0.510 0.310 0.315 0.132 0.241

$\underline{\underline{300.7300.9670.9120.7320.146}}$0..347
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