0oooo0O0oooo
9750 1996 0 163-175 163

A Theoryv of Function Lattices on
Finite Topological Spaces for Image Processing

Shinshu University, Yatsuka Nakamura (H4 JUR)
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ABSTRACT. The main object of this paper is to for-
mulate image processing for gray scaled and colored
images mathematically. Bounded real functions on a
finite topological space compose an abstraction of gray
scaled images on a plane. We can introduce some op-
erators for such functions using the nature of the un-
derlying finite topological space, the concept of which
was introduced previously by the authors. These op-
erators correspond to some actual image processing
for gray scaled images, which are a sort of neighbor-
hood processing. The boundary, closure and interior
of gray scaled images are defined naturally. Some
other smoothing filters can also be introduced.

1. INTRODUCTION AND NOTATION

The concept of finite topological spaces was introduced by the

authors ([1][4]). Such notions as closure, boundary, etc., which
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relate to those of general topological spaces, were introduced on
this space. Subsets of the space can be viewed as monochromatic
images and such topological notions then correspond to processing

operations for monochromatic images.

Here we consider some functions on a finite topological space
consisting of a function lattice and represent gray scaled images.
Neighborhood operations for underlying subsets are generalized for
such functions. Such generalized operations correspond to various

image processing procedures for gray or colored images.
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- Other operations which were adopted by engineers are also for-

mulated abstractly in such a framework.

Let X be a set. (X,U(.)) is a finite topological space (FTS) if
forallz € X, U(z) C X, i.e, U(.) is a set valued function taking
a value in 2. An FTS (X,U(.)) is filled if for all z € X, ¢ € U(z).

In the following, we assume the FTS treated is filled. For a

subset A of X, we write
A= {z:U(z) C A,
and call it the ¢nterior of A. Similarly, we write
A= {z: U) N A+ ¢},
and call it the closure “of A. The boundary of A isv defined by
| A% = A (A%,

where A° is the complement of A.
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2. GENERAL OPERATIONS FOR GRAPHICAL IMAGES

Given an FTS ¢ = (X, U(.)), two sets Y and Z, K(.) denotes
a mapping from X to U{YV®) : £ € X} such that for all z € X,
K(z) C YY®). Let f be an element of YX, ie., f is a mapping
from X to Y. For any z € X, a restriction of f to U(z), written as
flU(=), is clearly an element of YU,(“’) . When f|U (m) € K(z), we
say f is under K(.). We write | ‘

GImage(K,(,Y) = {g:g € Y* and g is under K}.
For such GImage, the following hold:

(1) Let k be a mapping such that k € YX. If K(z) = { ¥|U(z) },
then GImage(K,(,Y) = {k}, where k|U(z) is a restriction of a
mapping & to U(z), |

(2) if Ky(z) C 1{2(27) for all z € X then GIma,ge(Kl C, ) C
GImage(K>,(,Y), ‘

(3) if K(a:) YU(”) for all z E X then GImage(Ix C Y)=YX,
and :

( ) if K(:c) = ¢ for all z € X, then GImage(K ¢, Y) qS
| Let a be an element of H seX ZK (), Then it is. clear that |
a; € ZK@) for all z € X.

For an element f of GImage(K . Y'), we introduce a transforma-
tion

f222(z) = a(f|U(2)),
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and it is clear that
f<a.> c ZX )
This means that an operation < a > is an operator from GImage(K, {,Y)

to ZX. For this operation, we get the following:

(5) Let k be a mapping such that k£ € XZ. If a,(s) = k() for
all s € YU®)(z € X), then f<®> = k,

(6) let h be a mapping such that h € YZ. If a,(s) = h(s(z)) for
all s € YU(®) then f<*> = ho f,and

(1) if Y = Z and a,(s) = s(z) for all z € X and all s € YU(®),
then f<*> = f. | |

3. PROCESSING FOR GRAY IMAGES

In this section, the notations are almost the same as §2, but we
assume here that Y = Z = R! and for every z € X and every
k € K(z) there exists a real number r, and for all y € U(z), holds
|k(y)| < ro. We write such K as K. It means that we treat only
locally bounded functions on X. -

A set GImage(K,¢,Y) and X7 (in this case, GImage(K o, (,Y) C
Z%X) become vector lattices (see Kelly and Namioka [2]) by an order
defined by

i £ fae fi(z) < fo(z) for all z € X.

Then,



(1) 0 < f and t > 0(¢ is real) implies 0 < tf,

(2) 0 < f; and 0 < f; implies 0 < f1 + f3, and

B) (AAf)+fa=(fit+ fa)A(s2+ fz)and (1 V o) + fs =
(fi + fs) V (2 + fs)-

Let us put fT = fV0and f~ = —fAOfor f € GImage(K,(,Y).
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It is obvious that f* € GImage(K,(,Y) and f~ € GImage(K,(,Y).

Then,

(4) f € Glmage(Kw,(,Y) holds 0 < f*,0 < f=, f < f+,
—f<fand f=ft—f.

For h € Ky(z), we put i;(h) = infyey(s) h(y) and by (R) =
sup,eu(z) P(¥). Then, i € [loex Z%~() and b € [lex 25~

so that we can consider operators f<*> and f<b> for any f €

GImage(Kw,(,Y). We call f<*> the interior of f and f<*> the

closure of f. It is clear that

(5) f € Glmage(K,(,Y) implies f<> e zX ‘and f<b> € ZX
(6) F> < F < <,

(7) (fl A f2)<z> — f<z> Af<z>

8) (fiV f2)<0> = > v 55,

( ) z>vf 1><(flvf2)<z>

(10) 35> A f2<b> > (f1 A f2)<0>,

(11) fi < f; implies f£> < f<*>and f<b> < f<b>,.

(12) (=)< = =(/%), (=) = ~(F>),

(13) 0 < t(t is real ) implies (£f)<*> = ¢(f<*>) and (tf)<*> =
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- H(f<P),
(14) 2 + 52 < (fi + f2)<, and
(18) £ + 5 2 (i + f)<.

The following is an interesting result about the + operation and

closure.

Lemma 1. For f € Glmage(K,({,Y), (F<¥>)T = (f)<®>.

Proof. As f < f*, it is clear that f<®> < (f+)<¥> by (11). More-

over, 0 < (f*)<*> holds. Thus, f<*> V0 < (f+)<*> v 0 = (f+)<®>,

ie., (F<P>)t < (fT)<®>. Next, we see f < f<b> Thus, f+ <

(£<®>)*. Here we divide the cases: If f(z) <0, then 0 < (f+)<t>

or (f)<®> = 0, the former of which derives (FH)<> = (£<0>),

ie., (fT)<®> < (f<*>)*, and the latter of which derives (fH)<t> =
0 < (f)*. K f(z) > 0, then f*(z) = f(z) > 0. Thus

(F) (@) = (f). O

Similarly we have:
Lemma 2. For f € Glmage(Ky,(,Y), (f<) = (f~)<*.

Let us continue to list equations about the interior and the clo-

sure. |
(16) 1 € GImage(K,(,Y),15> =1 and 1<%> = 1.
If we put f°=1— f, then

(17) (f)<> = (F<*>)° and (f)<P> = (f<>)e.
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The boundary of f is defined by
1= £ (Y (= £ A (YY),
Then

(18)O<f<1h01d80<f8<1

(19) f2 < F<,

(20) for B C X, X5*> = xp: where 3 is a characteristic function
of a set B, | IR

(21) for B C X, XS = xpe, and

(22) for B C X, x5°> = xpo.

4. LOCAL MEAN OF FUNCTIONS

Notations used here are the same as §3. Let us assume that for
all z € X, there exists a real signed measure space (U(z), By, m,),
where B, is a o-field in U(z) and a total variation of m, is finite.
We choose K,,(z) as |

Ko (z) = {hs : hy is B-measurable on U (m) and m-integrable}.

For g, € K,(z), we define m,, as

Then, for f € Glmage(Kn, ¢, Y) we can define

£ = [(fU(@)mada),



which is called a local mean of f. Most filtering operations or dif-
ferential operations like Sobel’s operator (e.g., see [7]), can be rep-
resented by these mean operationé. If we put U(z) = X for each
point z, then the Fourier cosine transformation (e.g., see [6]) is
also formalized in such a frame. For mean operations, we get the

following:

(1) if f €Glmage(K,(,Y), then f EGImage(Km,C',Y),
(2) for any real number t; and t3, (a1 f1 + ag fo)<™> = a f5™> +
a2f2<’7‘>, and

" (3) for two (finite )signed measures m; and my, f <mitm2> _
f<-7rZI> + f<’7‘;>. -

If p, is a probability measure for all z € X, then

(4) 0 < f implies 0 < f<>
(5) f1 < f, implies f{P> < P2,
6) for f € GImage(K,(,Y), f € Glmage(K,,(,Y) and f<*> <
) p
f<z7> < f<b>
M) (19 = (7P,
(8) for B C X, x5"” = p.(B), and
(9) if f. T f pointwise, then f<P> T f<P>,

We can add some natural conditions to the definition of means.
If ¥ is a o-field of X, then B, =x NU(z)(= {C NU(z) : C € x}),
and m (B) is X-measurable for all B €. In this case, m is called

a channel on (X,U(.)), and it is the same as the concept of an
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information channel (Khinchin[3], Umegaki[8]).
A channel is called T-stationary if mq,(B) = m,(T~'B) for all

¢ € X and B €X, where T is a measurable transformation on (X,B8).
A stationary channel corresponds to the situation in which a filter of

image processing is invariant under some geometric transformation.

For information theoretic relation

(10) 0 < f <1 holds (—f log f)<P> < —(f<P> log f<P>), where
0 log 0=0,

which means that the entropy increases by a filtering operation.

Now we define a convolution of two information channels my, m,

as

(m @ m)o(B) = [ (B0 U(y)ma(dy),

where Uz(z) = {2z : z € U(y), for some y € U(2)}. Clearly m; ® m,
is again a channel, but it is on (X, Us(.)).

For a convolution, we get the following theorem.

Theorem 1. Iff €GImage(K,(,Y), then (f<m1>)<%nz> — f<mi@ma>.

This theorem shows that two or more successive operations of fil-

tering are substituted by a one time filtering operation.

5. PROCESSING FOR COLOR IMAGES

In this section, we shall formulate color image processings. Let

us put Y = Z = R® and assume a channel m and a o-field on X
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as in §3. As a set valued function K, we put:

KL(z) ={h:< h,e; > is

B,—measurable and m,—integrable,: = 1,2,3},

where e; is a unit vector in Y = R, e.g., 1 = (1,0,0), e2 = (0,1,0)
and ez = (0,0,1). Then, for f €GImage(KL,(,Y) we define

f<m> = Z/U < f(y),e; > dm(y)e;,

i=1 (z)

where < uq,us > is an inner product of vectors u; and u,. A space
GIma,ge(I(,ITL,( ,Y') is not a lattice anymore, but we can introduce

the concepts‘ of interior and closure relative to h as

Fh> = E%) < f(y); k1 > hit < f(2), b > hot < f(2),h3 > ha,

where h, hg, hs are an orthdgonal basis of R®. Similarly,

FE> = sup < f(y),h1 > hit < f(2), hy > hot < f(2), hs > hs.

veU(z)
The complement of f is defined as
fc =1- f7

where 1 is a function taking a constant value of (1,1,1) in Y = R3.

The boundary of a color image f relative to A can be defined as

f<a,h> — ’f<b,h> A (fc)<b,h>.*
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We can introduce an order related to h as
i<h oo 0<< fo— fi,h1 >.
Then Wé see

(1) f<> <, f and f <p F<*#>, and
(2) f<Hh> <, f<ImP> and feim> <, f<bh>,

We consider the following set

K? (z) = {h :< h,e; > is B,-measurable and

mg-square-integrable,s = 1,2,3}.

We can introduce a norm and an inner product in the set K?Z (z)

as:

b = [, < 761 50) > b

and

< fi, fa >me= (U(Q) < fi(y), faly) > Ime|(dy). »,
Thén, the space becomes a Hilbert Sp'aée and for a pfojeétidh P, to
a 3-dimensional subspace (we call this a 3-dimensional projection)

in this Hilbert space,

f<F2 (@) = Po(fIU(2))

defines an operation from GImage(K?Z,(,Y) to ZX. This operation
is called a projective operation and is a formalization of color con-

versions, which depends on the neighborhood colors of each pixel.
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Let us give the following theorem about the projective operation.

Theorem 2. For a projective operation P, there exist & vector
valued functions hyg,heg, hay taking values in Y x U(z) for any

z € X and

5= o < f(y), hiz(y) > |m|(dy)(i = 1,2,3)

where 1 in the left term means the i-th coordinate in R3.

The proof of the above theorem is easy by the following form of
expansion by Schatten [5]:

P, = hiz @ bz + oy @ hop + har @ ha,.
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