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APPLICATIONS OF FURUTA INEQUALITY BASED ON
A SIMPLE CHARACTERIZATION OF CHAOTIC ORDER

MasaTtosii FUJII*, JIAN FEI JIANG** AND E1ZABURO KAMETI***

1. Introduction Throughout this note, we consider bounded linear operators
acting on a Hilbert space, simply operators. An operator A on H is said to be
positive, in symbol A > 0, if (Az,z) > 0 for all z € H. In particular, A > 0 means
that A is positive and invertible, i.e., A > a for some o > 0. It is well-known that
A > B > 0 does not assure A2 > B? in general, but the Lowner-Heinz inequality
says that the function ¢ — ¢ on [0, c0) is operator monotone for 0 < a < 1, ie.,

(1) A>B>0 impliess A™> B~

cf. [19], [22] and [23]. Furuta [9] gave it an ingenious extension which is called
the Furuta inequality, cf. [3,4,5,7,10,11,12,13,14,20,21] and especially {10] for an
elementary and one-page proof; [24] for the best possibility of the domaim in which
the Furuta inequality holds: ’

The Furuta inequality. [f A > B >0, then b e=l Jusag=p
for eacht >0 ( ‘

(2) (ATAPAT)YT > (ATBPAT)V/a

and

(2) (BT APBT)Va > (BT BPBTY/1

(0.-2r)
holds for p > 0 and ¢ > 1 wnth
(1+2r)g>p+2r.

Since log t is operator monotone, i.e., log A > log B for A > B > 0, it induces a
weaker order >> among positive invertible operators than the usual one >, which is
called the chaotic order. Now Ando’s theorem [1] is rephrased as a characterization
of the chaotic order via a form of (2):

Theorem A. For A,B >0, A> B if and only if
(3) (A3 Braf): < AP

holds for all p > 0.

Afterwards, Theorem A is extended to the following result. In other words, the
Furuta inequality is discussed under the chaotic order (3], cf. (7] and [14].
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Theorem B. For A,B >0, A > B if and only if
(4) (A" BPAT)RT < AT
holds for all p,r > 0.

In this note, we first give a simple characterization of the chaotic order. Precisely,
log A > log B if and only if there is an & > 0 such that
(5) A% > B,

As an application, we discuss Furuta's type operator inequality implying Theorem
B. Next we consider the grand Furuta inequality under the chaotic order. It is
given by Furuta [15] as a parameteric formula interpolating the Furuta inequality
(2) and the Ando-Hiai one [2; Theorem 3.5] in the following manner : If A > B > 0
and A is invertible, then for each t € [0, 1],

(6) [AF (A~ BP A1) A} Gousir < Al-t+

holds forr > ¢, p > 0 and s > 1. We here show that if 4, B > 0 and log A > log B,
then there exists an a > 0 such that for each 0 <t < &

(7) {AF(A~3 BPA~$) A} Gonwir < ga—ttr
holds for r > ¢, p > 0 and s > 1. Finally we also discuss a variant of the grand
Furuta inequality under the chaotic order. As a corollary, we have a recent result

due to Furuta [17; Cor. 2.5, which is an essential part in the proof of [16; Theorem
2.

2. Characterization of chaotic order. We begin by stating a simple lemma
which is the heart of this note:

Lemma 1. If A and B are selfadjoint and A > B, then there ezists an o € (0,1]
such that

(8) o > 0B,

Proof. The assumption A > B means that A — B > ¢ > 0 for some €. We here take
0<a<e/(ell LelBlly and o < 1. Then we have

aA aB __ Ooan n n
et —e _a(A—B)+Z;z—!(A - B™)

n=2

O n-2
>acta?y T (A" - BY)
ne2 1A
oy a2
>ae—a’|| ) —— (A" = B
n=2

> ae = a® Y S (IAI + 1817)

> a(e — afel 4 ¢lBlhy > 0.

Lemma 1 implies the following basic inequality :
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Corollary 2. If A,B > 0, then log A > log B if and only if there exists an
ain(0,1] such that A* > B*.

Proof. If log A > log B, then A% > B® for some « € (0,1} by Lemma 1. Con-
versely, if A" > B for some a € (0,1], then A* > 3 4+ § for some § > 0 and

alog A =log A* > log(B* + 6) > log B* = a/log B.

By the above discussion, we have the following simple characterization of the
chaotic order:

Theorem 3. For A,B >0, A > B, ie, log A > log B, if and only if for any
§ € (0,1] there exzists an o = a5 > 0 such that

(9) (e°A)* > B°.

Proof. Since A > B is equivalent to log eSA = log A + 6 > log B for any ¢ > 0,
Corollary 2 iinplies that A > B is equivalent to that for any § > 0 there exists an
a = as € (0, 1] such that (5 A)> > B*.

The result in this section is appeared in [6].

3. The Furuta inequality under chaotic order. In this section, we discuss
the Furuta inequality under the chaotic order. Such an attempt has been made in
our previous papers [5,7] and we obtained Theorem B, which is based on Theorem
A. Now we present the following inequality which is more like the Furuta inequality
(2) than (4) in Theorem B. Technically speaking, it is just an application of the
Furuta inequality (2) as seen below: :

Theorem 4. If A, B > 0 and A > B, then for any § > 0 there ezists an @ = a5 €
(0,1} such that ’

(10) (ATBPA)® < eF A%
holds for p >0, 7 20 and g > 1 with (a+2r)g > p+2r.

Proof. By Theorem 3, for any § > 0 we can choose an o = a5 € (0,1) such that
(e5A)> > B>. Let us put 4; = (eA)>, By =B r = L andpy = 2. If p,gand
r satisfy the condition stated in Theorem 4, then

1 1
(1+2r)g= a(a +2r)q > a(er 2r) = py + 27y,

that is, {Ay, B1;p1,q, 71} satisfies all the conditions for implying the Furuta in-
equality (2). Hence we have

(ATBPAT)S = e~ ¢ (A BPUATY) S

PTG i

<e 7T A7
: ___ﬁg ‘p+2r sp p+2r
:e‘7(66A) q :qu'l y

as desired.

Theorem 4 has the following corollary equivalent to Theorem B:
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Corollary 5. If A,B >0 and A> B, then

(4) (ATBPAT)S < AP

holds for p >0, 7 >0 and q > 1 with 2rq > p+ 2r.

Proof. We first note that if p, ¢ and 7 satisfy the above condition, then (a +2r)q >
p+ 2r for all @ > 0. Hence Theorem 4 implies that for any § > 0

(ATBPAT)G < ¢ ABF"
holds for p > 0, 7 > 0 and q > 1 with 2rq > p+ 2r. Taking 6 — 0, we have the
required inequality.

Remark. (1) In [5], we proved Theorem B, which is based on Theorem A by apply-
ing the Furuta inequality. On the other hand, Corollary 5 (equivalent to Theorem
B) follows from Theorem 4, which is an application of the Furuta inequality via
Theorem 3. That is, we could give a proof of Theorem B not based on Theorem A,
in which Theorem 3 is actually used instead of Theorem A.

(2) We remark that the condition (a + 2r)q > p + 27 in Theorem 4 cannot be
weakened to (1 + 2r)g > p + 2r, which is based on an example due to Furuta [8]:
As a matter of fact, we put

2 2 '
4 5 1/2 0
312(5 10) 701=f< (/) O) A1 = By + C,

andry=1,p1=3,¢1 = % Then it is clear that A; > B; > 0 and

p]+2r1

(ATIBPIATI)QI £ A,

(Actualh 14+ 2ry)qy 2 p1 +2r;.) Let us put A = A ,B = B2’7‘ = l'rl =1

1 2 2
;= » and ¢ =q; = 3 Then A; > B; implies A > B and (1+2r)g=3>
p+ 2r. On the other hand we have

wla\:@
It

i

nﬁu piar

(A"BPAT): = (ADBP'ATY® £ A, & = A%

Concluding this section, we present the following characterizations of the chaotic
order by summing up the above argument:

Theorem 6. For A, B > 0, the following assertions are mutually equivalent;
(1) A> B te., log A > log B.

éz pt2r
q

(2) For any 6 > 0 there exists an o = as > 0 such that (ATB”A’")% A

holds for p >0, r > 0 and ¢ > 1 with (a+2r)q_>_p+2r.



(3) (AT13P A7) <A™ holds forp>0,7>0 and ¢ > 1 with 2rq > p+ 2r.
(4) (AT BPATY#T < AP holds for all p,r > 0.
(5) (A5 3P A%)Y < AP holds for all p > 0.

4. The grand Furuta inequality under chaotic order. Now the grand
Furuta inequality [15] is mentioned that if A > B > 0and A > 0, thenfor0 <t <1

(11) {AS(A~8BPA™3) AT} Gotr < Al-ttr
holds for r > t, p> 1 and s > 1. Taking t = 1 and s = r, we have the Ando-Hiai

inequality [2; Theorem 3.5] as a special case. That is, the following inequality holds
under the same assumption as above;

(12) AT > {A’"/Z(A 1/2pp A~ 1/2yr lr/Z}l/p

for p,7 > 1. On the other hand, taking ¢ = 0 and s = 1, we have the Furuta
inequality (2). Namely the grand Furuta inequality is understood as a parametric
formula interpolating the Ando-Hiai inequality and the inequality by himself.

Now we discuss the grand Furuta inequality under the chaotic order. For sim-
plicity, we assume that log A > log B. The following theorem is an application of
the grand Furuta inequality, too.

Theorem 7. If A,B > 0 and log A > log B, then there ezists an a > 0 such that
for0<t<a

(13) {AS(A™3BPA™3) A5} onmir < AotHr

holds forr >t, p>a and s > 1.

Proof. By Corollary 2, we can suppose that A* > B® for some 0 < o < 1. For
0<t<acgpweput Ay = A% By =B%; t; =% r =Z p = 2 Since
0<t<a<pr>tands>1,wehave 0<t; <1,r; >t;, pp >1 (and s > 1).
Therefore the grand Furuta inequality assures that

{A%(A—%BPA-% SA%}zf-‘t—ﬁ%

j8 - l—ty+r)
= {A12 ( 2 BplA ) A 7 }(N t1}s+ry
1-ty+7y
<Ay
— Acx-—t+r

So the proof is complete.

Incidentally, (13) implies the following inequality on the chaotic order:
(14) AZ(A"2BPAT1) A% « Alp-str

forr>t, p>0and s> 1.

Remark. Exactly the grand Furuta inequality is e\pressed as the monotonicity of
an operator function as follows:
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The grand Furuta inequality. If A > B > 0 and A s invertible, then for each
te (0,1},

Fp,t(A,B,T, S) — A—r/2{/1r/2(A—t/2BpA—t/2)sAr/Z}t—;__‘é_)‘.-::_r A_r/2

is a decreasing function of both r and s for allr >t, p> 1 and s > 1.

Therefore (11) is a special case of the grand Furuta inequality, more precisely. We
now remark that a chaotic version of the grand Furuta inequality can be considered,
which will be done in the forthcoming paper by T.Furuta [18].

5. A variant of the grand Furuta inequality.  Very recently, Furuta
proposed in [16; Cor. 2.5] the following variant of the grand Furuta.inequality (11)
related to a parallelism among Furuta’s type operator inequalities. Actually it is
the opposite of (11) on the sign of ¢:

Theorem C. If A> B >0, then
(15) (A5 (A3 BPAS) A} Grasir < AL+t

holds fort >0, r>0, p>1 and s > 1.

By a similar way to the preceding section, a chaotic version of Theorem C is
given and also an application of Theorem 3:

Theorem 8. If A,B > 0 and A > B, then for any 6 > 0 there erists an a > 0
such that
(16) {A%(A%BPA%)’Ag}?ﬁ%%:T < (eﬁ%ﬁA)o"*'H"'.

holds fort >0, >0, p>0 and s > 1.

Proof. First of all, for a given § > 0 there exists an o = as > 0 such that
Ay = (efA)* > B* = B,

by Theorem 3, and we can add to the condition 0 < a < p by the Lowner-Heinz
inequality. Putting ¢; = i, rp==Land py = 2, Theorem C implies that

t t cattdr
{A-E'(Ai BPA2)° A3 } GFosFT
_S(rt+ts)(a+ttr)

] ty §3% T 14ty 41
P A (B Ay AR e

_S(rtta)(atttr)
<e (pFt)s+r A{*‘tl*‘”

= (e(p_ft%’IFA)aH‘F"_

So the proof is complete.
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Corollary 9. (Furnta) [17] If A,B > 0 and A > B, then

(17) {A’—LLL%—LL" e (A%l BP‘./\'"“II)M\E—LFM P }& < AlwrEp)ats

holds forp>u>0, s> 1, L 2720 and § > —uy. ‘

Proof. If we put t = uy and 7 = 208 + (uy + p)s, then ¢ > 0 and
r>20+uy+p=2(0+w)+ (p-uy)>0.

Hence it follows from Theorem 8 that for any § > 0 there exists an a > 0 such that

(18) (NE(AEBPAR) AR} TRaT < (cTRdsm g)atier

holds for t >0, r >0, p>0and s > 1.
Since a > 0 and ny + 3 > 0, we have

(p+t)s+r _ (p+uy)s+20+ (uy+p)s _ B+ (uy +p)s
a+t+71) = 20uwr+26+ (wy+p)s) (wy+B) + (B + (uy +p)s) ~
Taking the power % on both sides of (18), it follows from (1) that

{A25+gu;+g!a (A:?BPA}%) B+ u"y;- ,}%
= (AR AT B AT AT R S
< ‘{e V~I~4)_:+r‘ A}(a+t+r)'é%

Spa
— e A(P+U"/)8+ﬁ_

Hence we have the conclusion by taking é — 0.

Remark. Furuta proved in [15; Theorem 2] that if A > B, then there exists a
partial isometry U satisfying

(19) AQ(A% BPA%J)SAQ < U‘A(u’1+p)a+ﬁU
holds for p > u > 0, s 21, 127 > 0 and B> —uy. CdnséQuently he obtained
a generalized Kosaki trace inequality; if A > B, then for a continuous increasing
function f on R, with f(0) =0

T (AR(AT BPAT ) AT)) < Tr(f(alre+o))

holdsforp>u>0 s>1, l> />Oand[3> —u.

Finally we make a path from Corollary 9 to (19) clear. As in [16], we use the
lemma that there is a partial isometry U such that XSX < U*SU for given S >0
and 0 < X < 1. Since Corollary 9 says that

X = A_W{/lm(A%BPA%)’ 12{34‘(11‘74'?)3 }%A (uw+;),+e

is a contraction, i.e., (17), if we choose 5 = A(““”“”)’w,,hhen we can apply it to X
and S. Namely we have (19);

g
2

AS(AF BPAT) AT = XSX < USU = U~ Alwr+nst+iy
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