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ON A TOY FOCK SPACE GENERATED
BY PERMUTATIONS

NAOFUMI MURAKI

ABSTRACT. An example of independence, conditional expectation and
martingales in quantum probability theory is constructed on the permu-
tational Fock space which is a kind of discrete “Fock space” generated by
all the permutations from the natural numbers. Besides a discrete time
analogue of quantum Ito’s formula for the permutational Fock space is
obtained.

1. INTRODUCTION

The notion of “Fock space” is a nice tool for the purpose of constructing various
examples of “independence,” “white noise,” and “quantum stochastic calculus” in
quantum probability theory or noncommutative probability theory.l'%3#* For exam-
ple, the followings are known. ' _

For a one-particle Hilbert space H, let H°" be the r-th symmetric tensor power,
HA" the r-th antisymmetric tensor power, and H®" the r-th tensor power. Let
Dposon = ®rH" be the boson Fock space, @ fermion = ®,H"" the fermion Fock space,
and @ free = B, H®" the free Fock space. Let us specialize the one-particle Hilbert
space ‘H to be the complex Hilbert space L?(R,) of all L*-functions of time ¢ > 0.
Then the three Fock spaces are equipped with very rich probabilistic structures. The
boson Fock space @poson leads to the commuting independence, the noncommuting
pair of classical Brownian motions, and the bosonic stochastic calculus of R. L.
Hudson and K. R. Parthasarathy® with quantum Ito’s formula. The fermion Fock
space D fermion leads to the anticommuting independence, the noncommuting pair of
fermion Brownian motions, and the fermionic stochastic calculus of D. Applebaum
and Hudson® with fermion Ito’s formula. The free Fock space ® free leads to the free
independence of D. Voiculescu,” the noncommuting pair of free Brownian motions
of R. Speicher,® and the free stochastic calculus of B. Kiimmerer and Speicher®
with free Ito’s formula. There have been also known several discrete models of Fock
space.}? For example, the toy Fock space ®4,, introduced by J. L. Journé and further
studied by P. A. Meyer®'%!! is an elementary but interesting discrete model for the
bosonic stochastic calculus and the fermionic stochastic calculus. Journé’s toy Fock
space Py, is connected with theory of spin systems.?
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In this paper, for the purpose of constructing an example of probabilistic notions
in discrete time quantum probability theory, we introduce the permutational Fock
space which is a kind of discrete “Fock space” generated by all the permutations from
the natural numbers. This “Fock space” can be viewed as a variation of Journé’s
toy Fock space ®y,,.

The motivation of finding such Fock space is explained as follows. Let us consider
the discrete and finite time situation. That is, we take the set T, = {1,2,---,n} as
the set of times, and let the one-particle Hilbert space H to be the I*-space I*(T},) of
all functions of time k& € T,,. Let us calculate the dimension of the r-particle space
M, for each cases of boson (H, = H°"), fermion (H, = H""), and free (H, = H®").
We easily get

»H, = the number of repeated combinations (in the boson case)
dim(H,) = { ,C, = the number of combinations (in the fermion case)
oIl = the number of repeated permutations (in the free case)

This encourages us to guess the existence of “Fock space” ® = @, H, such that its
r-particle space H, satisfies

dim(H,) = ,P, = the number of permutations.

Our aim in this paper is, (i) the construction of such “Fock space” ® which we call
the permutational Fock space, and (ii) the construction, over such “Fock space” @,
of an example of probabilistic notions in discrete time quantum probability theory,
i.e. “independence,” “filtration,” “conditional expectation,” “martingales,” “process
with independently and identically distributed subalgebras,” etc.

The paper is organized as follows. In §2, we construct on the set T of all natural
numbers the permutational Fock space ® with the basic operators, i.e. the creation
operators, annihilation operators, conservation operators, and exclusion operators.
The pair (A, ¢) consisting of the C*-algebra A generated by all the creation and the
annihilation operators with identity and the vacuum state ¢ is a quantum proba-
bility space to be studied in this paper. In §3, we obtain the weak Fock expansion
theorem for bounded linear operators on the permutational Fock space ®. In §4, we
examine the independence structure arising from the permutational Fock space ®.
We obtain a process { A }rer With independently and identically distributed subal-
gebras A, C A with respect to the vacuum state ¢. In §5, we examine the filtration
structure { Ay }rer of the C*-algebra A where Ay is the C*-algebra generated by
all the creation and annihilation operators up to time k with identity. In §6, we
construct the natural conditional expectation ¢, from the C*-algebra A onto the
C*-subalgebra Ay C A with respect to the vacuum state ¢. In §7, we obtain the
uniform Fock expansion theorem for operators in the C*-algebra A. We examine
the predictable representation theorem for operator martingales on the quantum
probability space (A, ). In §8, we examine a discrete time analogue of quantum
Ito’s formula for discrete time operator processes on the quantum probability space
(A, @). The last §9, contains some complementary remarks.

Before closing this introduction, we remark that the independence of the dis-
crete time quantum stochastic process { A }rer With independently and identically
distributed subalgebras A; C A obtained in this paper is neither the commuting in-
dependence, nor the anticommuting independence, nor the free independence. But
it is an example of the Kiimmerer independence.®14
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2. DEFINITION OF PERMUTATIONAL FOCK SPACE

‘In this section, we give the definition of permutational Fock space.

Let T = {1,2,3,---} be the set of all positive natural numbers which is inter-
preted as time. For a natural number r = 0,1,2,- .-, we denote by 7P, the set of
all permutations o of length r from T. We also denote by Per(T) the disjoint union
UrrP, under the convention that P = {A} the singleton where A denotes the null
permutaion, i.e. the null string from 7. Denote by H, the complex Hilbert space
I2(7P,) of all [*-functions over the set 7P,. We call H, the r-particle space, and their
direct sum ® = @, H, the permutational Fock space over T. It contains the natural
complete orthonormal system {e,|o € Per(T')} labelled by all the permutations o.
A special vector e, is called the vacuum vector, and denoted by (2.

For any permutation ¢ = (i1,---,%,) € Per(T), we denote the associated set
{i1,---,ir} by [0]. We wright |o]L[7] if and only if [¢]N[r] = @. For any pair of per-
mutations o = (i1, ,4), 7= (J1,+-+,Js) € Per(T) s.t. {i1,--, i} N{J1, -+, Js} =
@, we denote by (o, 7) a new permutation (¢1,--,%r, j1,- - -, Js) obtained from com-
position of ¢ and 7. Furthermore, when 7 = (j) a permutation of length 1, we
wright in the short notation (o, 7) = (0, j), (1,0) = (j,0), and so on. We define the
mautiplication of basis vectors by

o — { ewn (i [o] L []),

0 (otherwise).

This multiplication is extended to the dense subspace ®g9 = “the linearspan of
{e;|o € Per(T)}’ C @ through the bilinearity. Furthermore it can be still extended
to the dense subspace ®q = “the algebraic direct sum of the r-particle spaces”
C ® because of the boundedness of multiplication of vectors with the fixed particle
number, i.e. |Juv|| < ||ull||v|| for u € H,NPo and v € H;NPpp. This multiplication
gives to @, a structure of associative algebra.

For each time ¢ € T, the creation operator dj is defined by

d‘,“e o J— e(i:ilxiZ:“'y‘ir) (lf 1 ¢ {ilv i2> e 77;1‘})v
(Fnt2etr) 0 (otherwise).

The creation operator dj is just the left multiplication operator e, — e;e, with
respect to the above mentioned multiplication in ®.
'The annihilation operator d; is defined by -

_ €(ig, i ifr>1andi=1),
di e(i11i27"',‘ir) fuaad { 0("/21 77'7') ( )

(otherwise).
These operators are bounded linear operators on @, and ||d; || = ||d; || = 1. The
annihilation operator is just the adjoint of creation operator: d = (df)*. The

creation and annihilation operators djf, d; (i,j € T) satisfy the following relations:

(df)? = (d7)* =0,
d,-_dj =0 (for 7 # j),
dz_d:' =1- EUGPGI‘(T\{‘i}) dz;,i)d(;,i)'
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Here I denotes the identity operator on ®. The infinite series in the righthand
side of the last equality converges in the weak topology of B(®) which is the space
of all bounded linear operators on ®. These relations may be compared with the
CCR (canonical commutation relations)® in the boson case, the CAR (canonical
anticommutation relations)® in the fermion case, and the relations for the Cuntz
algebra® in the free case. The conservation operator df is defined by df = drd;.
For any permutation o = (iq,---,t,) € Per(T), put
df =df---df, d;=d; ---d

419

dd=dld; and df=dy=d;=1

Then, the creation and annihilation operators df, d; (0,7 € Per(T)) satisfy the
following relations:

( d?; - Z dE ?%i)
[VLir], i€ [qa]

(if 3a, B € Per(T) s.t. [a]L[Bl,0 = a, T = (o, B)), |

dydy = 4§ dy— 2 orind
rILlol, i€ [of

(if 3a, B € Per(T) s.t. [o]L[B],0 = (o, B), T = a),

0 (otherwise).

\

The serieses in the righthand side converge in the weak topology of B(®).

For the discussion in the following sections, it is convenient to introduce a new
operator. The exclusion operator d? is defined by df = d; df. For any permutation
o € Per(T), put d5 = d;d}. Then we have

. e (if [o] L)),
doer { 0 (otherwise).

Note that d2 = d® whenever [o] = [7]. So we can define, for any finite set U C T', an
operator df; := dS using o s.t. [0] = U. The exclusion operator dj; is a projection
operator and satisfies the following relations:

{ sdt = drdy and dyd; =dydy (if ULfo]),
dzfd;/ = dpuv- ‘

Let A = C*(I,d},d;|i € T) be the C*-algebra generated by all the creation
and annihilation operators with identity. The C*-algebra A has a special state
#() =< Q] - |Q > called the vacuum state. The pair (A, @) is interpreted as a
quantum probability space.
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3. FOCK EXPANSION

In this section, we prove an expansion theorem for bounded linear operators on
the permutational Fock space ®.

Denote by B(®) the von Neumann algebra of all bounded linear operators on
®. Let us show that the space B(®) has a “basis” {d}d }, in the “weak” topology,
consisting of normally ordered products of the creation and annihilation operators.
The expansion theorem like the following Theorem 3.1 and Theorem 3.2 which assert
that every operator in a sufficiently large class can be expanded to the infinite linear
combinantion (or integration) of normally ordered products of the basic operators
is sometimes called the Fock expansion theorem.!3

At first let us show the following purely “algebraic” Fock expansion. Denote by
L(®o,0) the set of all linear operators A : ®g¢ — Dg o which is possibly unbounded.

Theorem 3.1: Ewvery operator A € L(®o0) has the unique expansion of the
form

_ + 7
A= Z agrdyd;,
a,T
where a,, are scalars, and o, T runs over all permutaions from T.

Proof: At first let us show the existence of the expansion. For a given A €
L(®o,), put

’

< es|Aer > — < ey |Aey >

Aor = 9 (if o = (f1,+,8n) # A, 7= (J1, -+, Js) # A, and 4r = ju),

< e;|Ae; >  (otherwise),

\

where ¢’ = (i3, ,4,_1) and 7" = (j2,- -+, Js). Then, the family of scalars {a, r|o, T
€ Per(T)} satisfy the condition that, for each 7, a,, = 0 except for finitely many
number of indices o. By this condition, the operator ¥, , asrdfd; can be well
defined as an element in L(®g). Let us calculate the matrix element

< e\ Xortordid e, >, A p € Per(T), then we have

< e,\l Za‘md;d;e# >

o,
= a,r <ejldjd e, >
o,
= > < es|Aer >< ey|ldide, >
og=ANort=A
or o= (ill"WiT) 56 A7
T= (jly"'}js) # Ayi'r #]1 >
+ Z (< es|lder > — < ey|Aer >) < ey|dide, >
U=(i1:""air)#A)
T:(jl?"‘:js) #FA, ir=5
=Y <e,|Aer >< ey|dfdre, >
o,T
- > < eq|Aer >< ey|did; e, >
0'#1\,7‘#1\,7:7-:]'1



=Y <e,|Aer >< ey|d;d e, >
o,T
- > < es|Aer >< ey|didid e, >
o,7€Per(T)ieT

=Y <eslde; >< e\ldy (I = d7)de, > .

o,T i

Here the operator E,, = d} (I — Y; d;)d; is shown to be an elementary operator in
the sense that E,,e, = €, (if p=7), =0 (if p # 7). So we get

< ey ag.didie, >=<ey|Ae, > .

a, T

Hence we get the Fock expansion A = ¥, ; as-dfd; .

Now, let us show the uniqueness of the expansion. For the proof of the unieque-
ness, we only have to show the “linear independence” of the family {d}d |o,T €
Per(T)}. Assume that ¥, . asdfd; = 0, where the family of scalars {as|o, T €
Per(T)} satisfy the condition that, for each 7, a,, = 0 except for finitely many
number of indices 0. Then we have ¥, . as,dfd e, = 0 for all p € Per(T). By
specialization p := A, we have ¥, a, rdfdjes = Y, agaes = 0 and hence we get
asp = 0 for all o € Per(T). Next, by specialization p := (i) from 7P;, we have

> asadidyes + Y a06)dg dgeq = 0,
a o

and hence we get a, (5 = 0 for all o € Per(T). Similarly, by specialization p := (i, j)
from P2, we get ag,; ;) = 0 for all o € Per(T’), and so on. Finally we get a,, = 0 for
all 0,7 € Per(T). This concludes the “linear independence” of the family {d}d;},
and hence the uniqueness result. O

Let us investigate the “topological” Fock expansion for operators in the setting
of the “rapidly decreasing sequences.” We call a family £ = {5 }scper(r) Of complex
numbers a rapidly decreasing family if it satisfies

> (max[o))*|zs| < 0o forall k=1,2,3,---.

g

Denote by S the set of all rapidly decreasing families £ = {z,}. Then S naturally
has a structure of countably Hilbert space.!® Let S* be the dual space of S. Denote
by £(S,S*) the space of all continuous linear operators from S to §*. The weak
convergence operators A, — A in £(S,S8*) means < u|Aplv >—< u|Alv > for
all u,v € S. In this setting, the following “topological” Fock exapnsion theorem
is easily obtained by the similar discussion in the proof of Theorem 3.1 and some
simple evaluations.

Theorem 3.2 (Weak Fock Expansion for B(®)): Every operator A € B(®) has
the unique expansion of the form

A=Y "a,.did;,

as an element of £(S,S*), where a, ; are scalars, and o, T runs over all permutaions
from T
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This means that each operator A of the von Neumann algebra B(®) can be
expanded to the Fock expansion in the weak topology of £(S,S*). Contrary to
Theorem 3.2, we will show in §5 (resp. §7) that each operator A of the C*-algebra
Ay (resp. A) has the another form of “Fock expansion” which is useful in the later
discussion.

4. INDEPENDENCE
In this section we examine the independence structure in the quantum probability

space (A, ).

The axiomatic theory of “independence” and “white noise” in quantum prob-
ability theory was studied by Kiimmerer.!* The “independence” in the sense of
Kiimmerer was stated as follows.

Definition 4.1: A time indexed family {Bj }xer of subalgebras of a unital algebra
B is independent in the sense of the Kiimmerer with respect to a state ¢ of B, if the
factorization for time ordered products holds, i.e.

@(B1---Bm) = ¢(B1) - - - ¢(Bm)
whenever B; € By, and ky < ky < -+ < k.

Such form of independence is referred to as the Kiimmerer independence. The
important examples of the Kiimmerer independence are the commuting indepen-
dence,® the anticommuting independence, 3 and the free independence.”®

Definition 4.2: A family of subalgebras, By C B is independent in the sense of the
commuting independence if the algebras commute with each other (i.e. [By,Bi] =0
if K # 1) and @(By - - - Bm) = ¢(B1) - - - ¢(Bm) whenever B; € By, and i # j implies
ki # k;.

Definition 4.3: A family of unital subalgebras, By C B is freely independent if
©(By -+ By) = 0 whenever B; € By, k1 # ks # - -+ # km and p(B;) = 0 Vi.

We omit the definition of anticommuting independence.> The commuting inde-
pendence appears in the boson Fock space ®poson. The anticommuting independence
appears in the fermion Fock space @ fermion. The free independence appears in the
free Fock space @ free. ‘

Let us investigate the independence structure in the permutational Fock space
®. For each time k € T, let Ay = C*(I,d}, d;,) be the C*-subalgebra of A generated
by df and d; with identity /. Then the time indexed family of subalgebras {Ai}ier
is “independent” with respect to the vacuum state ¢ in the following sense.

Theorem 4.4:  ¢(A;---Ap) = ¢(A1) - §(An) whenever A; € Ay, and t # j
implies k; # k;.
For the proof of this theorem, we prepare a lemma which is easily proved.
Lemma 4.5: The algebra Ay has a basis {I,d{,d; ,d},dy} as a vector space.
Proof of Theorem 4.4: It is sufficient for the proof to restrict ourselves to
consider the special case that ky = 1,kp = 2,---,kp, =n. Foreachi=1,---,n, let
| A= Y ) dbd;+d9d;

T3,Ti
03,7 EPer({i})
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be the expansion of A; by the basis {1,d],d;,df d;,d} of A;, where {i} is the

i 9 Uy !
singleton consisting of only one element i. Since A; € B(®), A; has the another
expansion

A= Y v dtd;

o, %
o,7€Per(T)

by the “basis” {d}d; |0, T € Per(T)} of B(®). The coefficients b’s can be represented
by a’s :

aseA +a®  (foro=171=A),
afl (for (o,7) = (A, () or (0,7) = ((8), 1)),
B = affg—a¥  (foro=r=()),
—a® (for 0 = 7 = (p,1) where p € Per(T \ {i}) and p # A),
0  (otherwise).

\
Note that bS,?T =0if

< 7 # A, and the right terminal of 7 is not equals 7 >
or K 7 # A, the right terminal of 7 is 7, and o # 7 >>.

Let us consider the vacuum expectation

<QA - A >= Y Y D < Qldfdr - d) 10>
01,71, 0n,Tn
For the vector d_ 2 not to vanish, 7, must be equal to the null permutation A. For
Tn q p
the term
pD) p@ "'bg?,/\ < Q>

01,71 702,T2

(n)
[of

not to vanish, it is necessary that b, , # 0, and hence it is necessary that o, = A

or 0, = (n). Next, for the vector d;  df di not to vanish, it is necessary that
Ta-1 = A or 7,1 = (n). By the way, for the term b{), b@ ... bf,':), A<Q--- ]2 >
not to vanish, it is necessary that b‘(,’;j?m_ , 7 0, and hence it is necessary that

<< Tn—l - A >>,
or € T,—1 # A, and the right terminal of 7;,_; equals n — 1 >.

Therefore, for the term bV b2 ng{A < Q]---|©2 > not to vanish, it is nec-

01,71 702,72
essary that 7,1 = A. Repeating this discussion, we can see that, for the term

SIS b‘(,":), A < 8-> not to vanish, it must be hold that

NM=Tp=-+=Tp=A.

This implies that o; = A or o; = (¢) for each ¢ = 1,---,n. In such case we have
< Qdid;, - --df d; |Q >= 0if there exists ¢ such that o; = (z). Therefore the only

term which survives is bX)A fe bf\nk < Qldidy ---dfd;|Q >. So we have
< QA AnlQ >= 00 - T =< QA > - < QA0 > .

This implies the factorization: ¢(A;--- An) = #(A4;1)---¢(4,). O
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Corollary 4.6: The family of C*-subalgebras { Ai }rcr in the quantum probability
space (A, @) is independent in the sense of Kiimmerer.

‘The time indexed family of subalgebras {Ax}xcr can be viewd as a discrete time
quantum i.i.d. process, i.e. a process with independently and identically distributed
subalgebras, in the Kiimmerer independence. '

Remark 4.7: The following simple example shows that the independence arising
from the permutational Fock space is not the free independence. Put A; = dy, A2 =
dy, A3 =1 —d}, Ay = df and A5 = df, then we have A; € A, (i =1,---,5) with
ky # ky # ks # ks # ks and ¢(A;) = 0 (i = 1,2,---,5) but ¢(A1Az4344A45) = 1.
Besides it is easy to see that the independence in the permutational Fock space is
neither the commuting independence nor the anticommuting independence.

5. FILTRATION

In this section, we examine the filtration structure of the quantum probability
space (A, ¢@).

Put Ty = {1,2,---,k}, and let Ay = C*(I,df,d; |i € T;) be the C*-subalgebra
of A generated by all the creation and annihilation operators up to time k, with
identity. Then the increasing family {Ak}rer of C*-subalgebras of A can be inter-
preted as the filtration of A. Let us find the canonical basis of the algebra A;. Put
Ly = {(o,U,7) | 0,7 € Per(Tx), U C Ty, UL[o]U|[7]}. Then we have

Theorem 5.1 (Fock Expansion for Ay):  Every operator A € Ay has the
unique expansion of the form :

A= Z Qo,UT d;_ dz] d; 3

(UyUyT)ELk
where a,y are scalars.

Proof: At first let us show that the set {d}dyd; }(ou,rer, U {0} is stable under
the multiplication. Let us compute the product (dfd$,d;)(d}.dg.d), then

( didy(dyds)dydy
(if 3a, B € Per(Ty) s.t. [a] L8], T = a, ¢’ = (a, B)),
(b dydr) (dhdydz) = | didy(dydy)dy.ds

(if 3o, B € Per(Ty) s.t. [@] L8], 7 = (o, B), 0’ = @), '

0  (otherwise).

\

Here we used the multiplication formula given in §2. Furthermore the factors in the
above expression can be rewritten as

pgr [y (or [ LU), . [ dpdg (for [6] LU,
v 0 (otherwise), pU 0 (otherwise).



This implies that (d}dyd;)(df.dyd;) is equal to either df djdydsdy.d, or
dfdydsdydgdy or 0. Hence we get the stability of {d}dyd; }(U,U'r)eLk U {0} under
the multlphcatlon This implies that {d}d};d; }ur)cL, is a generating system for
the vector space Ay,.

Let us show the linear independence of the family {d}dyd; }u,r)er,. Assume
that >  agu-dfdyd; = 0. Using

(O',U,’T)ELk
=1- Z ?‘/,ih
(v,1) s.t.
[v] LU, v € Per(T),
ielU
we have
Y oy dedyd;
(o UyT)EL
= Z aa,@,frd:d; + Z Z aU,U,Td: dZ/d;

o,T7ePer(T}) U#0 o) LU
UCTy (7] LU

0,7 € Per(T})

= Y au.did -y Z Y. Gourdsdl,gd;

(o,U,T)ELg U#D [o] LU (v,1) s.t.
[7'] 1U [y] LU, ieU
v € Per(T)
— Z aa,Uﬁdj,'d; - Z Z Z aa,U,Td;Ld‘()w)d;
(o,U,T)ELy U#D [o] LU (v,4) s.t.
(7] LU [v] LU, i€ U,
v € Per(Ty)
- X > @00,y diy iy -
U#D [o] LU (v,%) s.t.
[r] LU h iU, iel,

v € Per(T) \ Per(T})

The third term of the last equality can be rewritten as

_ Z ( Z aa-’Uq-) d d(/.L z)d;

(A i, v) st (o,U,T) s.it.
A, v € Per(Ty), 1 €U C Ty,
i € Tk, UL [A]U [} U [v],
p € Per(T) \ Per(Ty), -~ a,T € Per(Ty),
“the left terminal of pu” € T'\ Tk, dp € Ty st. A= (o,p),v=(T,p)

[A] U [¥], (1], {¢} : mutually disjoint

By the “linear independence” of {d;dj|a, B € Per(T)}, we get

Z Ao, U,r = 0

(o,U,7) st.
icU C Ty,
UL AU (g U [v],
o, T € Per(Ty),
dp €T st. A= (o,p),v=(7,p)

for all quadrupple (A, p,4,v) s. t. A\,v € Per(T}), i € T, p € Per(T) \ Per(T}), “the
left terminal of ” € T'\ T} and the triple [A] U [v], [¢], {¢} is mutually disjoint.
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Let us show that a,p, = 0 for all (o,U,7) € Li. For each triple (},i,v) s.t.
AV €Ty, i€Trand i ¢ [A] U [v], put .

I(\,v) = max{length(p)[3N, v/, p € Ty, s.t. A= (N,p),v=(V,p)},

where length(p)= r for p € rP,. Let us first cinsider the case of I(A,v) = 0. Put
[ := p1, where p, is any permutation s. t.

(1] = T \ (AU Y] U {}),

then we get ay (i34 =0. Put 14 == pa, where po is any permutation s. t.

2] = Ten \ (MU V] U {5, 5})

with ¢ # j and {¢,7} C T \ ([A\] U [v]), then we get

Oy + iy =0,
and hence a, ¢; j;,» = 0. Repeating this discussion, we have
[ sy =0,

ak1{iyj}7'/ = 07
a ik} = 0,

aA,{'i,j,k},V = 07 ’

L axma@up)y = 0

Hence we get ay y, = 0 for all triple (A, U,v) € Lg s.t. I(A,v) =0 and U 3 1. Next
let us consider the case of I(A,v) = 1. For A = (i1, -+,%) and v = (j1,- -, Js),
put X = (¢1,---,%,_1) and v/ = (j1,+-,Js—1). By the discussion similar to the
preceeding one, we get

{

ax{i}v + ax {i}v = 0’

ax iy + ax iy + Oy T ox gy =0,

ax (i} + ax 3 + ax ik} + o ikt =0,

ax (i} + ax i + O Ggty T 0N G T AN (ke T AN (iR}
+ax {igk}e T Ox figkyy = 0

Z a)t,U,l/ + Z a,\/,U’U/ =0.

U s.t. U s.t.
i€ U C Ty, ieU C Ty,
Ul AU ], UL [A]U [v],

\

Hence we get

Afi}y = A\ Jigly = O\fik}y = 0 = A figk}y = 00 = OATN\(AUR) Yy = 0.



Here we used the assumption I(X,v') = 0. So we have ayy, = 0 for all triple
(A, U,v) € Lgs.t. I(A\,v) = 1and U 5 i. By the induction on the number [ = (A, v),
we finally get

axuy =0 (for (A\,U,v) € Lg, [N\ U [v] L{z}, U 219).
So we have
asur=0 (for (o,U,7) € Ly, U # 0).

This necessarily implies 3", ;cper(zy) Go,0,-84 d; = 0, and hence we also get agg,r = 0.
So we get the linear independence of the family {d7d},d; }(o,u,r)cL,. So we conclude
that this family is a basis of Ay)y O

6. CONDITIONAL EXPECTATION

In this section, we construct a kind of “conditional expectation” £, : A — ¢, (A)
from the algebra A onto the subalgebra Ay with respect to the vacuum state ¢.
The conditional expectation €, will be used in the next section to define the notion
of operator martingales.

Before constructing the conditional expectation, let us first examine the decom-
position of the algebra Ay. Put By = C*(d},d; |0 € Per(T}), o] > k), then the
algebra By can be decomposed to the following form as a vector space.

Proposition 6.1:
By = @  dopAeudey @ D denhey

o,7€Per(T,_1) ocPer(T, 1)

® B Adpy @ Aud

TEPer(Ty_1)

Proof: At first let us show that the set
{da‘,,k)Ad(_T,k), di;’k)B, Cd, 4y, Ddz|A, B,C, D € Ag_v},0,7 € Per(Tj-1)} U {0}
is stable under the multiplication. Using the fact that dj, is a projection and formulas
didy = didt (fork¢lo)), dydy=did; (for k¢ [o)),
didy = di, didp =dp,
we get the multiplication rule as follows:

df, yy (Ady A')d (r=0')
Ad d, A' ‘ (k) k) ’
(d(a'k) (Tk)( (o’ k) 'rk) { 0

(otherwise),

di (Ad:B')  (r=0)

+ d- -+ N (o,k) T ’
(d8, 4 Adg, 1)) (C'dzs 1) = 0, (dg;k Adg, ) (D/d3) = 0,
(i py By A py) = 0, (digpy B) (9 B') = 0,

(A BIC dipr 1y) = A 1y (BC )i g



7

(d k)B)(DI ):dz;,k)(BD/)7
(CA)dyy  (r=0),

0 (otherwise),

(Cdr ) (dgr g A'di 1)) = {

(Cdey 1) (A 1y B') :{ (CdBdy (r=0d"),

0 (otherwise),
(Cdir ) (C'drr 1) = 0, (Cdg, ) (D'd}) = 0,
(DdR) (A A’ 1y) = 0, (Ddy)(d k)B) =0,

(Dd3)(C'd ) = (DC)dg 4y, (Dd3)(D'd}) = (DD')dy,

where A, B, C, D A, B, C, D’ € Aj_q). This implies that vector space C =
ZU‘Td(crk)Ak 1 (’rk) + Ea- (o,k) Ak 1] + E‘r Ak 1] (Tk) + Ak 1 dk forms an algebra
The equality Bk = (C is obvious. We also get the direct sum property from the
linear independence of the finite family of operators {df dy;d; }ourer,- O

Besides the algebra A can be decomposed to the direct sum of Bj’s ( i <k
with CI. , .

Proposition 6.2: Ay =CI® By ®--- @ By.
Corollary 6.3:

Ay = A ® D dopnhendey © D dopAey

o,7€Per(Ty_1) ocPer(Tx_1)

7] @ -Ak—l]d(_T’k) @ Ak—l]d).;-

7€Per(Tk 1)

Using the decomposition of the algebra Ay, let us construct a conditional ex-
pectation. Let ex_14 : Ay — Ag_1) be a linear map defined by

¢

(if A € Ay_1),

(ifAe EBa,Teper(Tk_l)dfff,k)-Ak—lld(_f,k))’
(if A € Boeper(t,_1)%y 1y A1),

(if A € Sreper(m,_1)Ab-119 (7 1))

(if A= Bd} € Ax_yd}).

Er 1k (A) = 9

Do o o

\

For j < k, pnt,aj,k =€.,.,,0-- then the following holds.

7,3+l k 1,k?

Proposition 6.4: The map €t A — Aj), 7 <k, satisfies the followings for
all A€ Ay and all B, By, By € Ay

(1)e, . (B)=B; (2)¢,,(A*) =¢,,(A)* (3)¢;,(A*A) >0;

(4) e (A NSHAN (5) g, (AT A) > €, (A)'e;  (A);

(6) 3(e,,(A)) = §(A); (7)€, (B1ABy) = Bie,, (A)Bs.

Proof: We only have to show that the map Eier sat1sﬁes (1), - (7).
(1) Obvious from the definition.
(2) Let
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where Ay, Ay ry By, Cr, D € Ag_q), then
= Aj+ Zd(Tk) ~dor + ZB dig sy + Zd(fk)c* + D*dy

and hence ¢, , (A*) = Ag+ D* =¢,_,,(A)*.

(3) By the multiplication rule discussed in Proof of Theorem 6.1, we get
Een(ATA) = AjAo+ AAD+D*'Ay+D'D+ Y. BB,
o€Per(Ty_1)

= (Ao+ D) (A + D)+ > B;B, > 0.

(4) From e, (1) = I and (3), we get || ¢,_,, [|= 1. Hence [ ¢, _,,(4) |<|| Al
(5) Since €,_,, (A)*e,_,,.(A) = (Ao + D) (Ag + D), we get

Eprn(ATA) — ¢, (A)e,_  (A) =) B:B, >0.

(6) We have

< QA|Q2 >
=< Q|4 + Z iy Aord py + Ao Be + Y Crdy + Ddz|Q >

=< Q|(Ao + Dd,;) 0 >=< Q|(4o + D)2 >=< Qe, , . (4A)|Q>.
(7) We have
BiAB, = Bi(Ao+ Y d{ yAcrdisy + > dixBs+ Y Crdiyy + Ddy) By

- BlAQBg + (B]DB2)d;C
+{; Bld?_a,k)Aa'de(—T’k)B2 + ;Blda_f,k)BUB2 + ZBlC’T'd(—T,k)Bz}'

Since the last term {- - -} vanishes under & we get

k—1,k?

€k_1,k (BlABz) = B1A0B2 + BlDB2 = Bl(Ao -+ D)Bg = B]E A)Bz O

k—l,k(

The system of maps {¢;,|j < k} is consistent, i.e. ¢, o¢,, =¢,, for j <k <l
So we can define in the natural way a map E : UpAx) — A;j) as the extension of
each ¢, . Furthermore amap e, : A — Ay can be deﬁned in the natural way as the
contmuous extension of &, because of the norm continuity of & €,. Then the following
is easily obtained.

Theorem 6.5: The map ¢, : A — Ay satisfies the followings for all A € A
and all B,B1,B; € Aj:

(1) g, ( ) B; (2) e, (A%) = £, (A); (3) e, (A" A) > 0;

(4) |l €,(A) 1<l Al (5) ((A*A) > e, (A) e, (A);

(6) ¢(c;,(A)) = ¢(A); (7) 8,-](BlABz) = Big; (A)Bs.

Hence it is natural to interpret the map €, as a conditional expectation from the
algebra A onto the subalgebra Ay with respect to the vacuum state ¢.



Remark 6.6: Conditional expectation for an operator algebra was originally
introduced by H. Umegaki’® in the theory of von Neumann algebras. Note that the
map €, satisfies the properties of conditional expectation in the sense of Umegaki,
up to the faithfulness of the state ¢ and the weak continuity of the map. The map

g, is rather a conditional expectation in the C*-algebraic setting.

7. OPERATOR MATINGALES

In this section, we discuss about operator mdrtingales on the quantum probabil-
ity space (A, ¢).
Let us introduce the notion of adapted operators, previsible operators and opera-

tor martingales. These notions are defined in the parallel way to those in the Journés

toy Fock space.? An operator A € A is called a k-adapted operator if A € Ay. An
operator A € A is called a k-previsible operatorif A € Ay_1). Let {Mj}rer be a time
indexed family of adapted operators My € Ay. We call it an operator martingale if
€4 (M) = My, for k < K. A time indexed family {ux}xer of operators is called a
previsible process if each uy is a k-previsible operator.

k k
The creation process Dif = " df, the conservation process Dy = d; and the
k .
annshilation process D, = Zd]_ are important examples of operator martingale.
5=1

k
Note that the process Dj = Zd; is not an operator martingale (it is rather a
=1 '
k ,
submartingale) but the process H dj is an operator martingale. Let us define the
=1
k
inclusion operator e, by ey = I — d;, then the process Ef = Ze; is an operator
J=1
martingale. For a finite subset U C T, put e; = [Txcv €. The explicit action of the
inclusion operator eg; is

et co { e, (ifU C o)),

0 (otherwise).

We get two expansions:

dy= Y (-1)*Vey,  and ey = Y (-1)FVdy.
VCcUu vcu

Using this expansion, we can see that the family {d}e};d; }v,rcL, becomes another
basis of the algebra Ay. We also get the following uniform Fock expansion for
operators in the C*-algebra A because of the the norm continuity of the conditional
expectation €, : A — A;p.

- Theorem 7.1 (Uniform Fock Expansion): Each operator M € A has the unique
expansion of the form

M=lim Y mey-died;

I (o,U,T)EL;

79
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in the uniform topology.

In Journé’s toy Fock space @y,,, the following predictable representation theorem
for operator martingales holds.? Let aj (resp. aj, aj) be the creation operator (resp.
annihilation operator, conservation operator) in Journé’s toy Fock space ®y.2

Theorem 7.2 (Predictable Representation?): FEach operator martingale { My }rer
on @,y can be uniquely expanded to the form

k
Mk:mI+Zu —G—Z:ujczj—+—Z:ujJ 1,2,--),
=1
where m is a scalar, {u }rer, {ug trer and {u}}rer are previsible processes on @y .

This means that each operator martingale on ®,,, has the canonical expansion as
a sum of triple of discrete time “stochastic integrals” of previsible processes where the

“integrators” are the three basic martingales, i.e. the creation process Af = af,

k k
the annihilation process A; = Z a; and the conservation process Ay = Z aj.
1=1 Jj=1
In the case of permutational Fock space @, the similar representation holds for
only a special class of martingales. Denote by D(T}) the set of all triples (o, U, T) €
Ly st. 0= (41, --,4) Withé; > -+ > i, and 7 = (Jy,---,Js) With 53 > -+ > J,.
Then the following is easily obtained. ’

Proposition 7.3:  Let { My }rer be an operator martingale such that each M, has
the Fock expansion of the form

My= Y mgy.dieyd;,
(o,U,T)eD(T})

then { My }rer can be expanded to the form
k k
M, =mlI + Zd+u+ + Zu di +Y dfuid; +Y ule; (k=1,2,--),
i=1 =1
where m is a scalar, {u] }jer, {u; }jer, {uS}jer and {u$}jer are previsible processes
in the algebra A.

For a general martingale, another form of predictable representation holds.

Proposition 7.4:  FEach operator martingale { My }rcr can be expanded to the
form

: k
My =mlI + Z Z (a J)u(a 7) + Z Z u(—’l’,j)d(:'yj)

J=locPer(Tj_1) J=17€Per(Tj_1)

k k

-+ o) — e _ 0

+ 2; > oy Ueanmanes + Z} Uj€;
J ‘7:

=lo,7€Per(T;_1)

; s + - o . M T on
where m is a scalar, Uisiy Yirg) W) (ry) N U5 are j-previsible operators.



Though the process with independent increments {Dj}icr is not an operator
martingale, the process {Dj }rer is useful to describe the discrete time analogue of
quantum Ito’s formmula in the next section because it allow us to make quantum
Ito table simple.

8. ANALOGUE OF QUANTUM ITO’S FORMULA

In this section, we examine in the quantum probability space (A, ) a discrete
time analogue of quantum Ito’s foumula.

Generally speaking, quantum Ito’s formula which is given in the continuous time
quantum stochastic calculus®%? is the rule to compute the product M;N; of two
stochastic integrals M; and N;. In a differential form, quantum Ito’s formula can
be viewed as the rule to compute the product dM;dN; of two stochastic differentials
dM,; and dN,, appearing in the following equation:

d(MtNt) == (th)Nt + Mt(dNt) + deNt°

The corresponding multiplication table described by the stochastic differentials of
the basic operator processes is often called the quantum Ito table.

Well, in our case of discrete time situation, the increment of the product My Ny
of two discrete time “stochastic integrals” M) and Ny is equal to

My Ny, — My_1Ni—1 = & N1 + Myp_1mk + EeTk-

Here & = My— Mj_1 and np = Ni— Ni_1. Hence we interpret the rule for computing
the product &mx of increments of two discrete time “stochastic integrals” M and
Ny as a discrete time quantum Ito’s formula.

For simplicity, we restrict ourselves to consider a special class of operator pro-
cesses (= discrete time analogue of stochastic integrals) which is stable under the
pointwise multiplication and which contains the basic operator processes, i.e. the
creation process { D} }xcr, the conservation process { D} }xer, the annihilation pro-
cess {Dj, }xer, and the exclusion process { Dy }rer-

Let {My}rer and {Ni}xer be two operator processes of the following form:

k k k k
M, = mil+ ZAJd;—BJdJ_CJ + Z DJd;—EJ + ZFJd;GJ + Zde},
=1 7= j=1 =1

J

k k k k
Ny = nl+ Y AdfBid;C;+ Y DydfE;+ Y Fid;Gj+ 3" Hidj,
j=1 J=1 j=1 =1

! ! I !
where m, n are scalars, and Aj, B;, C;, Dy, E;, F;, Gj, H;, A}, By, Cj, Dy,

E}, Fj, G%, Hj are j-previsible operators from A; 1. Then the pointwise product

{ M Ny }rer of two operator processes {Mg}rer and {Ni}rer becomes to a finite

sum of operator processes where each summand is an operator process of the above
form. So the set of all such operator processes is stable under the multiplication.
Now let us define a continuous linear map 6 : A — A by

ey (fo=T1=A),

S(dfepd;) =
(deidr) { 0 (otherwise),
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then we get
di Ad{ = 6(A)d;,  (for A € Ay_y).

Using the map 8, we have the following.
Theorem 8.1 (Analogue of Quantum Ito’s Formula): Let { My }xer and { Ny }rer

be two operator processes given above, then the pointwise product { My Ny }rer is cal-
culated based on the followoning rule.

(Ad;»LBdJTC’) (A'ij’d;C") = Adj(Bé(C’A’)B’)d;C",
(Ad;TBd;C) (D’djE') = Adj(BcS(C’D')E’),
(Aijd;C’)(F’d;G') =0, (AdjBd;C) (H’d;) =0,
(deE) (A'd;“B'd;O') =0, (Dd;’E)(D'djE) =0,
(Dd;»’E) (F'd;G") = de(EF’)d]TG’,
(Dd;FE) (H’d;) = de(EH’),
(Fd;G)(A'd;’B’d;C) = (Fé(GA')B’)d;C’,
(Fd;G)(D'djE') = (F(S(GD')E’)d;
(Fd;G)(F'd;G") = 0, (Fd; G)(D'd;) = 0,
(Hd;)(A'd;“B’d;C") =0, (Hd;)(D'd}'E') =0,
(Hd;)(F'd;G") = (HF")d; G,
(Hd;)(H’d;) = (HH’)d;,
where A, B,C,D,E,F,G,H, A", B',C",D',E', F',G', H' are j-previsible operators from
A;_1). This rule is summarized in a quantum Ito table:

A'dTB'd; C’ D'd]F Fld; G H'dS
Adj Bd; C | Ad} (B§(CA")B")d;C"  Ad}(BS§(CD)E") 0 0
Dd}E 0 0 Dd}(EF')d; G Dd}(EH')
Fd; G (F§(GA")B')d; C' (F§(GD')E")ds 0 0
Hdj 0 0 (HF)d; G' (HH')d3.

This is a discrete time analogue of quantum Ito’s formula.

9. ADDITIONAL REMARKS

Finally we close this paper with some complementary remarks in the quantum
probability space (A, ¢).

Remark 9.1 : We can naturally define the canonical pair py,q. (kK € T) by
o = dif +dy and pp = i(djf — d;;). Here 3 is the imaginary unit. The spectrum
of the self-adjoint operator gi (resp. pi) is Sp(gx) = {—1,0,+1} (resp. Sp(px) =
{—1,0,+1}) and the probability distribution on the spectrum of operator g (resp.
pr) under the vacuum expectation ¢ is P({—1}) = P({+1}) = 1/2 and P({0}) = 0.
So the operator gi (resp. px) takes values %1 almost surely in the vacuum state ¢.
Hence the operator g (resp. px) can be interpreted as a quantum Bernoulli random
variable. Besides the operator process {q1 + - - - + gk }rer (resp. {p1+ -+ + Dk }rer)
can be interpreted as a quantum random walk because it is a process with stationary
independent increments in the Kiimmerer independence. It is easily proved that the



limit distribution of central limit type for this random walk is the Wigner semicircle
law with mean 0 and variance 1.1°

Remark 9.2 : In the permutational Fock space ®, there exists naturally a unitary
operator F defined by Fe, = i#(?De,. The operator F can be interpreted as a kind
of Fourier transform because of the relations:

FAGF = ~idf, FlGF=idy, F'\QF=dy, FldF=dy,
fﬁlqkf: —Dks fwlpkf: qk-

Remark 9.3 : Put Xy = qx, Yr = px and Zy = dj, — dp, (k € T'). Then, for each
k € T, the triple (Xj, Yk, Zr) is a realization of the angular momentum commutation
relations up to the factor 2. That is '

(X, Yal = 27k, Ve, Zk] = 2 Xk, [ 2k, Xi] = 26Y%.

Since the family of subalgebras { A }xer is the discrete time quantum i.i.d. process
in the Kiimmerer independence, this representation can be interpreted as a noncom-
muting, non anticommuting, non freely independent, but “independent” system of
spins. Compare this with the case of Journé’s toy Fock space ®;,, where the cor-
responding two representations of angular momentum commutation relations form
the commuting spins and the anticommuting spins.?

Further discussions and generalizations of the permutational Fock space @ will
be presented elsewhere.!”18

1 K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhaiiser, Basel,
1992).

2 P. A. Meyer, Quantum Probability for Probabilists, Lecture Notes in Mathematics, Vol. 1538

(Springer-Verlag, Berlin, 1993).

M. Schiirmann, White noise on Bialgebras, Lecture Notes in Mathematics, Vol. 1544 (Springer-

Verlag, Berlin, 1993).

4 M. Ohya and D. Petz, Quantum Entropy and its Use (Springer-Verlag, Berlin, 1993).

5 R. L. Hudson and K. R. Parthasarathy, “Quantum Ito’s formula and stochastic evolution,”
Commun. Math. Phys. 93, 301-323 (1984).

S D. B. Applebaum and R. L. Hudson, “Fermion Ito’s formula and stochastic evolution,” Com-

mun. Math. Phys. 96, 473-496 (1986).

D. Voiculescu, “Symmetries of some reduced free product C*-algebras,” Operator Algebras and

their Connections with Topology and Frgodic Threory (H. Araki, ed.), 556-588, Lecture Notes

in Mathematics, Vol. 1132 (Springer-Verlag, Berlin, 1985).

8 R. Speicher, “A new example of independence and white noise,” Prob. Th. Rel. Fields, 84,
141-159 (1990).

9 B. Kiimmerer and R. Speicher, “Stochastic integration on the Cuntz-algebra Ou,” J. Funct.
Anal. 103, 372-408 (1992).

10 P, A. Meyer, “A finite approximation to boson Fock space,” Stochastic Processes in Classical
and Quantum Systems (Eds: S. Albeverio, G. Casati, D. Merlini), 405-410, Lecture Notes in
Physics, Vol. 262 (Springer-Verlag, Berlin, 1986).

11 P, A. Meyer, “Fock space and probability theory,” Stochastic Processes — Mathematics and
Physics II (Eds: S. Albeverio, Ph. Blanchard, L. Streit), 161-170, Lecture Notes in Mathemat-
ics, Vol. 1250 (Springer-Verlag, Berlin, 1987).

83



Ph. Combe, R. Rodriguez, M. Sirugue Collin and M. Sirugue, “Weyl quantization of classical
spin systems, quantum spins and Fermi systems,” Feynman Path Integrals (Eds: S. Albeverio
et al.), 105-119, Lecture Notes in Physics, Vol. 106 (Springer-Verlag, Berlin, 1978).

13 N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics, Vol. 1577
(Springer-Verlag, Berlin, 1994).

B. Kiimmerer, “Markov dilations and non-commutative Poisson processes,” preprint.

15 H. Umegaki, “Conditional expectation in an operator algebra,” Téhoku Math. J. 6, 177-181
(1954).

N. Muraki, “Examples of independence, limit theorem and Brownian motion in noncommu-
tative probability theory,” Proceedings of the Fourteenth Symposium on Applied Functional
Analysis, 66-81 (1995).

N. Muraki, “A new example of noncommutative de Moivre-Laplace theorem,” to appear.

N, Muraki, “Noncommutative Brownian motion in monotone Fock space,” to appear.

DEPARTMENT OF APPLIED SCIENCE, FACULTY OF ENGINEERING, YAMAGUCH! UNIVERSITY,
UBE Ci1TY, YAMAGUCHI 755, JAPAN
E-mail address. muraki@po.cc.yamaguchi-u.ac. jp

84



