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From the Attic

Toshiyasu Arai ( $h# 7 m—)

Faculty of Integrated Arts and Sciences
Hiroshima University

Abstract
We gather the following miscellaneous results in proof theory from the attic.
. A provably well founded elementary ordering admits an elementary order preserving map.
. A simple proof of an elementary bound for cut elimination in propositional calculus
. Equivalents for Bar Induction, e.g., reflection schema for w logic
. Direct computations in an equatinal calculus PRF
. Intuitionistic fixed point theories are conservative extensions of H A.
. Proof theoretic strengths of classical fixed points theories

. An equivalence between transfinite induction rule and iterated reflection schema over 1%,

O =~ O U B W N

. Derivation lengths of finite rewrite rules reducing under lexicographic path orders and provably total
functions in theories between /¥, and X,

Each section can be read separately in principle.

1 Provably Well Founded Relations

In this section we show that if an elementary recursive relation < is provably well founded in Peano Arithmetic
PA, then there exists an elementary recursive order preserving map f of < into an initial segment of ;. This
gives an improvement on a result by Harrington and Takeuti (cf. [24], Theorem 13.6 and [10], p.33).

We say that a binary relation < is provably well founded in PA if
PA(X) F ¥n(Vk < nX(k) D X(n)) DVnX(n)

where PA(X) denotes the Peano Arithmetic with an additional unary predicate X. Let <., denote a standard
elementary recursive ¢y well ordering and ERA the Elementary Recursive Arithmetic.

Theorem 1.1 If < is an irreflezive, transitive and provably well founded (not necessarily a total ordering)
relation on w, then there exists an ordinal a < gy and an elementary recursive function f so that ERA proves
that

Va(n £ n)&Vn,mk(n<m<kDn<k)D
Vn,k[(n < kD f(n) <o f(k) & f(n) <c, o]

Proof. Work in ERA. From the proof in [24] pp.149-154 we see that there exist an ordinal @ < ¢; and an
elementary recursive function h so that h(k) is an additive principal number<,, w®, i.e., h(k) = w? for some

3 and

VelVn < k(k < n D h(k) <., h(n))] (1)
(< denotes the usual ordering on w. A definition of the function & will be sketched below.)
Define

fln)= rgfx{h(no)#~~#h(m) tng < - <m=n&ng,...,n_1 < n}

Here max, denotes the maximum with respect to the ordering <., and note that < is irreflexive. The
function f is elementary recursive and we have

Claim 1.1 n < k = f(n) <, f(k)
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Proof of Claim 1.1. Bl Assume n < k. Choose a sequence ng,...,n; so that f(n) = h(no)# - --#h(n;), no <
..<n;=n&ny,...,ni-1 < n. By transitivity of < we have n; < k for any 7 <. Partition the set {0,...,]
into two sets A and B as follows: A = {i <l :k < n;}, B={i <!l:n; <k} (<is irreflexive.) By (1) we
have h(n;) <, h(k) for each i € A, and hence # Y {h(n;) : i € A} <, h(k) since h(k) is additive principal.

(# S {@0,...,an} denotes ap# - #an.)

On the other hand we have, using the transitivity of <,

#> {h(n:) i€ B} <,
Igax{h(ko)##h(km_l) tkog < <bkm_1 <k&ko,. .. kpn_1 < k}

Therefore we get f(n) <¢, f(k). o o

Sketch of a definition of the function h.
We follow notations and terminology in [24].

1) Define a TJ proof exactly as in [24], p.149. That is, a TJ proof may have TJ initial sequents as extra initial

sequentes:
TJ initial sequent Yz < tX(z) — X(t) (X (t) is called the prznczpal formula of the TJ initial sequent.).
Also a TJ proof ends with a sequent of the form — X(my),...,X(my). We identify the mth numeral

with the number m.
2) The ordinal assignment o(P) for a TJ proof P is defined as in [24].

3) A TJ proof is called noncritical if one of the reduction steps for PA which lowers the ordinal applies to it.
Otherwise it is called critical.

4) We say that a TJ proof P’ is the noncritical reduct of a noncritical TJ proof P if P’ is obtained from P by
applying a reduction step for PA which lowers the ordinal.

5) We call a formula in the end-piece of a TJ proof, a principal TJ descendent if it is a descendent of a principal
formula of a TJ initial sequent. If P is a critical TJ proof, then the endsequent of P contains a principal
TJ descendent (cf. [24], pp.151-152.).

6) Let P be a critical TJ proof of — X(mo) X(my), and k be a number such that k£ < m; for every i < n.
For some 7 < n the fornula X (m;) in the endsequent — X(myg),...,X(my) is a principal TJ descendent
of a TJ initial sequent Yz < m; X (z) — X(m;). Then add the formula X (k) to the endsequent and
replace the TJ initial sequent Yz < m; X (x) — X(m;) by the following proof:

— k=<m; X(k) — X(k)
k<m; O X(k) — X(k)
Ve < mX(z) — X(k)

If P’ is obtained from a critical P and k in this way, then we say that P’ is the critical reduct of P at k.

7) Since < is provably well founded, we have in the system formed from PA(X) by adjoining TJ initial
sequents, a proof P(a) of the sequent — X (a) for a free variable a. Then, for each k, P(k) denotes a TJ
proof of — X (k) obtained from P(a) by substituting the numeral k for the variable a.

8) Now let us define, for each number k, a TJ proof P; by induction on k so that for every n, if X(n) occurs
in the endsequent of Py, then k < n (&4 k < n or k=n).

8.1) The case ~3n < k(k < n): Then P, = P(k). The endsequent of Py is — X(k).
8.2) The case 3n < k(k < n): Pick an ng < k so that k < ng and Vn < k(k < n = o(Pp,) <¢, o(Pn)).
8.21) If P,, is noncritical, then Py is defined to be the noncritical reduct of P, . '

8.22) If P, is critical, then Py is defined to be the critical reduct of F,, at k. In 8.21 the endsequent is
unchanged, while in 8.22 it is augmented with the formula X (k). In any cases we have o(Px) <¢, 0(Pn,)-

9) Finally we set: h(k) =g w°*). Then the required condition (1) is clearly enjoyed.
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2 Elementary bound for cut elimination in propositional calculus

It is well known that the length of the shortest cut free proof is bouded by an elementary function of the
length of the original proof in propositional calculus, e.g., cf.[15]. In this section we give a simple proof of this
fact.This yields S9(X) # T9(X) as a corollary.

Let LK, denote a classmal propositional calculus in a Tait calculus. To be deﬁnlte LK, denotes the calculus
for the propositional part in [20]. T', A denotes sequents, i.e., finite sets of formulae. (Az)T,-A, A (for an
atomic A) is the only initial sequent in LKj. Inference rules are (A), (V) and (cut). A precise fomulation of
these rules is irrelevant to our proof. Each proofin LK, is a tree of sequents.

For a proof P in LKy, the depth of P, denoted by dp(P), is defined to be the depth of the tree P, i.e., the length
of the longest branch in the tree P. The length of P, denoted by lh(P), is defined to be the total number of
occurrences of inference rules in P. Clearly we have [h(P) < 2%(P) since each inference rule is at most binary.

Theorem 2.1 If Py is a proof of a sequent Iy in LKy, then there exists a cut free proof P of Ty so that
dp(P) < lh(P,). Therefore Lh(P) < 2M(Fo),

Proof. First eliminate cuts in the given proof Py by a usual cut elimination procedure, e.g., in [20]. The
resulting cut free proof is denoted by P¢/. We say that two infernce rules Jy and J; are similar if 1) these are
the same type of rules, e.g., both rules are (A) and 2) their auxiliary formulae and principal formulae are the
same. We denote this equivalence relation by Jy ~ J;. For example,

4, T,A4,; A,By A,B;
T,A0AA; % A ByAB; &

JoxJ; & (Ao,Al) = (BQ,B]_),

Then it is obvious that for each inference rule J in P¢/ there exists a J' in Py such that J ~ J’. Hence

k < Ih(Py) with the maximum number k of equivalence classes of inference rules in a branch in P¢/. Thus it

suuffices to show that we can collapse two similar inference rules in a branch into a single one.. For example if

a rule
A, T, 4

F,Ao AAy Jo

is above the left uppersequent A, Ag of another rule

AaAU AaAl

A, Ag N4, Jo

then eliminate Jy to get the sequent I', Ag A A1, A and absorb the formula Ag A A; into the principal fomula
at Ji. In this way we get another cut free proof P such that no branch in P contains a pair of similar inferehce
rules. Therefore dp(P) < lh(P,) as desired. 0

Let S9(X) denote a bounded arithmetic obtained from Buss’ Si in [5] by adding a unary predicate X
together with the equality axiom for the extra X and replacing X% — PIND by X! (X) PIND. 34(X)
denotes the set of sharply bounded formulae in the language augmented by X. Also T3 (X )is obtained from
S3(X) by replacing X5(X) — PIND by £}(X) — IND. We show:

Corollary 2.1 S(X) i/ X(0) AVe(X(z) D X(z + 1)) D VzX(z), i.e., SIX) # TI(X).

Assume that S3(X) F X(0) AVz(X(z) D X(z + 1)) D YzX(2). Let S denote a system arising from SI(X)
such that 1) the language of S is the same as one of S9(X), 2) we add initial sequents ', X(0) in S and 3) we
add an inference rule

T,x(t+1) 07
Then we have S F X (a) for a variable a.

Let T denote a propositional calculus arising from LK such that 1) the atoms in T are X, (n € w), 2) we add
initial sequents I', X in T and 3) we add an inference rule (prg,, ) for each n € w

DX (rgn)
I‘aXn+1 Prgn

For each (X)) sentence A a propositional formula A* is associated as follows: 1) for an atomic A without
X, A = Xy if A is true, A* = —X, otherwise. 2) X (£)* = X,, with the value n of the closed term ¢. 3) *
commutes with any propositional connectives. 4) (3z < tA(z))* = VV{A(:)* : i < n} with the value n of the
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closed term ¢ and similarly for Yz < t. For a sequent I' = {Ay,..., A} consisting solely of £}(X) sentences,
we set [ = {4f,..., 4%}

Let T'(a) denote a X}(X) sequent whose free variables are among the sequence @ = (ag, . . ., a,,) of variables.
For a sequence 7t = (ng,...,nm,) of natural numbers I'(72) denotes the result of simultaneous substitution n;
for a;. Then it is easy to show:

Lemma 2.1 If S  T'(a), then there exists a polynomial f(G) such that for any 7 there exists a proof Py of
I'(n) in T such that
Ih(Pr) < f(Ia])=f(Inol,...,| nm |).

(| n | is the length of the binary expansion of the numbern.)

This follows from the fact that for each term ¢(@) there exists a polynomial g such that Ya(| ¢(7) |< g(| @ |)).
Therefore we would have a polynomial f such that for each n there exists a proof P, of X, in T with
Ih(P,) < f(l » |)- It is fairly easy to extend Theorem 2.1 to the caluculus T. Thus we would have for a
polynomial f such that

for any n there exists a cut free proof P, of X, in T (dp(P,) < f(| n |)). (2)

We say that a sequent is positive if the atom X, occurrs only positively in it for any n. Put F*¥ T iff there
exists a cut free proof P of ' in T such that dp(P) < k. Also we denote k |= T if T is true under the truth

assignment
X, = if n < k then true else false.

Then for any positive I' we have F¥* T' = k |=T'. Now (2) runs /("D X, and hence Yn(n < f(| n |)). This is
a contradiction.

Remark. Add all polynomial growth rate functions to the language. Denote the set of true £J sentences in
this extended language by T'rs,. Let S9(X) + Trx, denote the theory obtained from S9(X) by adding Trs,.
Then we see

SX)+ Trs, i X(0) AVz(X(z) D X(z + 1)) D VzX(x)

from the above proof. Observe that S3(X) + Trs, F X2 — IND since each instance of X%, — IND is in Tryg,
for a bounded formula A € £% without X.

3 Equivalents for Bar Induction

In this section we give some equivalents for Bar Induction.

L; denotes a second order language containg 1) the language of the first order arithmetic, 2) set variables
X,Y,... and 3) unary function variables f,g,.... £) denotes the set of bounded formulae in Ly and II} the set
of arithmetical (=first order) formulae possibly with second order parameters. We take the theory Xy — CA
as our base theory. The theory X3 — C A has the following axiom schemata besides the axioms for first order
constants:

1. Graph Principle: VelyX (j(=,y)) D IfVeX (j(z, fz))
(j:a pairing function),

2. Comprehension Axiom for £3-formulae and
3. IAVX[X(0)&Vr{X(n) D X(n+ 1)} DVnX(n)]
In this section we use signs D and — interchangeably to denote the propositional connective 'implication’.

Definition 3.1 1. BI denotes the axiom schema:
Hypl & Hyp2& Hyp3 D Q<> for a P € £J and an arbitrary formula @ (<> is the empty sequence),
where

Hypl : YVf3zP(fz) (fz =< f0,..., f(z—1) >)

Hyp2 : Ve € Seq(Pec D Qc)
(Seq denotes the set of godel numbers of finite sequences of natural numbers).

Hyp3 : Ve € Seq[VzQ(cx < z >) D Q]
2. For a binary relation <, W f(<) g VfIz(f(z+1) £ fz)
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3. Prg[<,Q] o4 Yz{Yy < 2Qy D Qx)
4. I(<,Q) <4 Prg[<,Q] D VzQz

5. TT denotes the axiom schema W f(<) D I(<,Q)
for <€ £ and an arbitrary Q.

6. TI' denotes the axiom schema VXI(<,X) D I(<,Q)
for <€ L3 and an arbitrary Q.

7. Ng <q VfVzIc € Seq(lh(c) =z & f € ¢) &4 VfVzIc € Seq(c = fz)

8. For a formula F(z,y), Fne(F) ¢ Ve3lyF(z,y) and
c=Fz &g lh(c) = x & Vi < 2F (4, ¢(i)) with the ith component c(z) of the sequence c.

9. NG denotes the axiom schema Fnc(F) D VzIe(c = Fz)
for an arbitrary F'.

10. VE(T1}) denotes the axiom schema VX A(X) D A({z}F(z))
for an A € I} and an arbitrary F.

Theorem 3.1 (cf. [14]) Over £ — CA, the following aziom schemata are mutually equivalent:
Ng+ BI, Ng+TI, TI' and VE(II})

The theorem is seen from a series of the following propositions. Except the direction Ng + BI — VE(II})
these are due to Howard and Kreisel [14]. Also we learned a weaker result 11 — C 4 + BI — VE(II}) from [4],
p.52.

Remark. We have also a second order parameter-free version of the theorem.
Proposition 3.1 1. Ng+ BIFTI (¢f. [14], Theorem 5A)
2. TI+ BI (cf. [14], Theorem 5C)
3. TI'+11
4. VE(I§) + BI
5. TI'+- Ngand VE(II}) - Ng
6. Ng+ BI+1L —IA
7. Ng+ BiF NG
Proof. 3. 1t suffices to show, in 3 — CA, W f(<) + VXI(<,X) for a <€ ZJ. This follows from
VmmgX D>In<mng X)) D3IfVm(mg X D fm <m&m ¢ X)

4. Asin 3, we have
Hypl & Hyp2 & Hyp3 D X <>

fora P € £ in ©3 — CA. Taking this formula as A(X) in YE(II}) we get any instance
Hypl & Hyp2 & Hyp3 D Q<>

of BI.

5. This follows from 71, VE(II}) + ITL, — I A.

6. A(0) & Vn(A(n) D A(n + 1)) we have to show A(a). Put Pc = a < Ih(c) and Qc = A(a—Ih(c)). By Ng we
have Hypl. By BI we conclude @<>, i.e., A(a).

7. This follows from 6. Im|

A formula A(f') (f: foy. -+, fn) is said to be in f normal form if each function variable f;, i < n occurs
only of the form f;(y) = z for some variables y, z in the formula A( f ).
In a canonical way, each quantifier free formula R( f ) is transformed into its f normal form 3T Ry(&, f) with
new variables 7 and a quantifier free Rp.
Let R(f) be a quantifier free formula and F = {z,y}F(z,y) be a binary formula (abstract). Also let 3ZRo(Z, f)

denote the f normal form of R(f). Then R(F) denotes the result of replacing each f(z) = y in 3ZRy(Z, f) by
F(z,y).
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Proposition 3.2 1. For each quantifier free and f normal form R(z, f) there exists a P € £ such that:

(a) every free variable occurring in P is either a new number variable ¢ or a variable occurring in R(z, f)
except z, f.

(b) for any binary formula F,
NGV Fne(F) — [3zR(z, F) < Je(F € c& Pc))
with F € ¢ &4 ¢ = F(Ih(c)). ‘ ’
2. For a quantifier free and f normal form R(z, f), and a binary formula F,

Ng+ BIF Fne(F)&VfizR(z, f) — JzR(z, F)

3. For a quantifier free R(z, f) and a binary formula F,

Ng+ BIt Fne(F)&Vf3cR(z, f) — JxR(z, F)

4. For a fomula A(z,y,X) let F denote the binary formula:
F=F(X) =g {z,y}y ~ py.~A(z,y, X))

with y ~ py. A &g [By—A& y = min{y : ~A}] V [Vyd &y = 0]
Then for any formula V,
Ng+BI + Fne(F(V)) and
Ng+ BI F VzIy-A(z,y,V) — VaVy[F(V)(z,y) — ~A(z,y,V)]
that 1s, ‘_
Ng+BI + 3JzA(z, F(V)(x),V) — JaVyA(z,y,V)

Proof.

1. Let Poc denote a formula obtained from R by replacing each f(y) = z [f(y) # 2] by ¢(y) = z & y < lh(c)
[c(y) # z& y < lh(c)], resp. Then put Pc <4 dx < [h{c)Pyc. We need NG to show that
Frne(F)&3zR(z, F) — 3e(F € c& Pe).

2. Assume Fne(F) & VYfIzR(z, f). Let P denote the formula formed in 1. Then we have Hypl for this P.
Put
Qeg Fec— 3d(F €cxd& Plc*d))

By F(lh(c),z)& Q(c* < z >) — Qc, we have Hyp2 & Hyp3. Thus by BI @ <> and hence 3d(F €
d & Pd). The assertion follows from 1.

3. This follows from Proposition 3.2.2 and the definition of 3z R(x, F').

4. This follows from Proposition 3.1.6.

Lemma 3.1 Ng+ BI+ VE(II})
Proof For an A4 € I} and an arbitrary V we have to show VX A(X) — A(V).

Stepl First transform A into a prenex normal form whose leading quantifier is 3. For example assume
A(X) < FzoYyoIz:Vy1 Ao(X) with a quantifier free Ag. We need only logical axioms to obtain this
equivalence. Hence for any formula V' we have A(V) < JzoVyo3z,Vy; Ao(V). Thus we can assume that
A is in prenex normal form, e.g., of the form Jz¢Vyo3z;Vy; Ao(X).

Step2 Second transform A into its Herbrand normal form. Pick new function variables fy, f1 and put Ag =
Ao (o, fo(2o), %1, f1(zo,21)). We have logically 3zoVyoIz1Vy1 Ao — VfoV¥ fidzoIz1 An. Put

Fo =g {zo,y0}(yo = pyo.—3x1Vy1 Ao)
i =g A{zo,z1,y1}(y1 =~ py1.3yo(Fo(xo, yo) & ~Ao))
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By Proposition 3.2.4, Ng + BI proves that
Fre(Fo(V)) & Fre(Fyi(V))
and
3$03£1A0($0, F()(V)(:Co), Zq, Fl(V)(xo, iL‘l), V) b HxOVyOE!leylAO(V)

Hence, in Ng+ BI, VX A(X) — VXV foVf13zo3z, Ay and
VXVfoVfidzodz  Ag — Jxzodzi Ao(zo, Fo(V)(zo), 21, F1(V)(20,21),V). Thus Proposition 3.2.3 yields
Hmovygal’lvyle(V) = A(V)

Now Theorem 3.1 has been proved from these propotions and lemma.

Next we show that Bar Induction is equivalent to the reflection schema for w logic.
We change our language L; to Ly:From L; 1) remove the function variables, 2) add the n-ary predicate
variables X (i € w) and 3) restrict function constants to 0, S (S:successor). The resulting language is denoted
Ly. Thus closed terms in Ly are numerals. We understand that predicate constants corresponding to primitive
recursive relations are included in L.
Let LK, denote a Tait’s calculus for this second order language L,. A second order terms is just a predicate
variable X" and hence in LK, the inference rule (3;) for the second order existential quantifier runs:

T, F(X)
T,IVF(Y)

Also let RF N denote the reflection schema for the calculus LK.

Proposition 3.3
Y0 - CAF RFN — 1}, —IA

Proof. (—) For each n we have LK, - A(0) AVz(A(z) D A(Sz)) D A(n).
(<) By cut elimination and the partial truth definition. o

Let AC Ay denote the second order arithmetic Arithmetical Comprehension Axiom with Restricted induc-
tion. Since AC'Aj is finitely axiomatizable, we get the

Corollary 3.1 (cf. [22], Lemma 2.7)

ACAO - RFNACAO > Héo —IA

Let X9 C w x w be a binary relation. LK,,(Xo) denotes the w logic with the relation Xj:

1. The language of LK, (Xg) is obtained from L, by adding the binary predicate constant X, and removing
the first order free variables. Any sequents in LK, (Xo) have no first order free variable. ‘

2. Axioms (=initial sequent) in LK, (Xo) are diagrams for the relation X, besides the usual axioms for the
constants and logical ones.

I', Xo(n,m) if Xo(n,m) , and T',=Xo(n,m) if =Xo(n, m)

3. Inference rules in LK, (X) are those of LK> except the following changes. First replacing the usual rule
for first order universal quantifier by the w rule:
{T',A(n) : n € w}
(w)
I'VzA(z)

Second restrict the rule (3) for the first order existential quantifier to:

I, A(n)
I,3zA(z)
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By a preproof we mean an w-branching labelled tree of sequents and some data. Data should include names
of axioms or inference rules and finite cut degrees. A preproof have to be locally correct with respect to the
data. An w-proofis a well founded preproof.

w — RFN denotes the schema saying that if a sequent T' has an w-proof in LK, (Xy), then the sequent I' is
true.

Theorem 3.2
Y0 -CAgFw—RFN < Ng+TI

Proof. (—) We have II}, — IA and hence Ng. Assume W f(<). We have to show Prg[<, A] — VzA(z). It
suffices to show that there exists an w-proof of the sequent —Prg[<, A],VzA(z). Wlog we can assume that no
second order free variable (except the ’constant’ Xo) occurrs in <€ £J. Thus n < m has an w-proof when
n < m is true and similarly for the case n £ m. Using this fact we can construct a preproof of the sequent
-Prg[<, A],YzA(z) which must be well founded bt our assumption W f(~<).

(«~) Again by cut elimination and the partial truth definition. Here cuts are eliminated through Mints’ con-
tinuous cut elimination procedure in Mints [18]. To ensure that the resulting cut free preproof is well founded
we need 119 — CA, i.e., Arithmetical Comprehension Axiom (cf. [18] or [11]). But II{ — CA follows from
Ng+ TI « VE(II}). : |

w — RFN is also equivalent to the so called w-model reflection schema over AC Aq.
Let T be a theory in L. By w—model — RF Ny we mean the following schema for an arbitrary formula A(X):

A(X) — J countable M = (M, :n€w)(Mo=X &M =T &M = A[X])

When T consists solely of axioms for constants in L,, we denote simply
w—model — RFN.

Proposition 3.4 (Henkin-Orey’s w-completeness theorem) In AC Ay,
there ezists an w-proof of A(Xo) in LK, (Xo)

iff
for any countable w model M > Xq M = A[X(]

Corollary 3.2 ACAg+w — RFN « w— model — RFN and hence
ACAg - w —model — RFNyca, = TI' (cf. [22])

4 Direct computations in an equatinal calculus PRE

Let PRE denote the theory PRA minus induction aziom. The axioms of PRE are defining equations for
primitive recursive functions: 0 (zero) denotes an invividual constant ans S the successor function. Function
constants and their defining equations are generated as follows.

1. (projection) I’ (z1,...,2n) = 2; (1 <i<n,n>0)

2. (composition) f(z) = h(g1(Z),..., gm(Z)),
where T denotes a sequence 1, ..., &, of variables.

3. (primitive recursion 1) f(0) = k, f(Sy) = h(y, f(v))
(k is a natural number).

4. (primitive recursion 2) f(Z,0) = g(&), f(z,Sy) = h(Z,y, f(Z,y))

In what follows our concern is restricted to Horn clauses £ O e with an equation e and a finite set E of
equations. Therefore it is better to consider PRE as an equational theory with an extra axiom E. By E |- e
we mean the equation e is derivable from the set £ in PRE.

For a function constant f, CI(f) denotes the finite set of function constants which are used to define the
constant f (and the successor S). Specifically,

1. (projection) CI(I*) = {IP} U {S}

2. (composition) CI(f) = Cl(h) U|J{Cl(g;) : 1 < i< m}U{f}
3. (primitive recursion 1) CI(f) = Cl(h) U {f}

4. (primitive recursion 2) CI(f) = Cl(g) U Cl(h) U {f}



For a term i, Cl(t) = | J{C!{f) : f occursint}.
For an equation ¢ = s, Ci(i = 5) = Cl(t) U Ci(s).
For a set E of equations, CH{E) = | J{Cl(e) : e € E}.

Let £ denote the set of rules I — r which are obtained from one of the defining equations ! = r by replacing
the equality sign = by the arrow —. Viewing the set R as a term-rewriting system, s —pg ¢ or simply s — ¢
denotes the relation ”the term s rewrites to the term ¢ by R” in the sense of [7]. Also — denotes the reflexive-
transitive closure of — and < the smallest congruent relation containg the relation R.

The following is a folklore.

Proposition 4.1 1. -— 15 Church-Rosser, i.c., SHCh o &
2. — 1s terminating.
3. s—1t = Cl(s) CClH)

Therefore we have

Proposition 4.2 For an equation e, F e is decidable by computing the normal forms of the both sides of e.

Proposition 4.3 For an equation ¢, if - e, then there exisis o direct (in the sense of [21],.343) computation
D of e; every function constant occurring in D is in Cl(e).

This directness does not hold if we replace - e by E+ e.
Counterexamples (H. Friedman [9])

1. Sz = Syt z = y: Apply the predecessor function pd.
2. 0= Sz F y = z: Apply the descriminator 4, 6(y,z,0) =y, 6{y,z,Sz) = z.
Our theorem below says that these are only exceptions.
Definition 4.1 PRE’ is obtained from PRE by adding the following two rules for an arbitrary equation e:

Sty = Sto 0=St
n=i & —= )

Theorem 4.1 For a finite set E of equations and an equation e, if E & e, then there exisis a direct computation
D of e from £ in PRE' every function constant occurring in D is in CI(E) U Cl(e).

Corollary 4.1 For an open formula A, if b A, then there exists a direct cferz'vatz‘on D' of A in PRE' and
hence a weakly direct derivation D of A in PRE; every function constant occurring in D’ [in D] is in Cl(A)
[CU(A) U Cl(pd) U CI{(§)], resp.

Proof of Corollary. Write 4 in CNF A{C : C € T} and consider each conjunct C separately C is equivalent
to B — E for some finite sets £’ and E of equations (E' — E denotes a sequent in Gentzen s sense). Then
use the theorem and the fact: E'+ F = E’'F e for some ¢ € E. a

We don’t know an answer to the problem raised by H. Friedman [9].
Problem.

1. Is - A decidabie for an open A7
2. Is e - decidable for an equation e?

But we conjecture the following.
Conjecture. Let t; and ¢; be normal terms with respect to —g. Then
ty =ty F & t; = 5™t for some term ¢y and t5 = 570 with m > n or vice versa.

This means that the theory PRE can discriminate between terms only when one is 0 and the other is of the
form St. Unless the equation t; = i3 is of the form St = u where the term u occurs in ¢ and u contains a
variable, the conjecture is easily seen to hold. Also if u is a variable #, then, by H. Friedman [9], we have
St(z) = « /. That’s all what we know about the conjecture.

The rest of the section is devoted to a proof of the Theorem 4.1. Fix a finite set E of equations. #;=ts
denotes ambiguously the equation t; = t5 or 5 = 1.
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Definition 4.2  I. d(F) denotes the smallest set of equations such that
1) E Cd(E) and 2) d(FE) is closed under the rules (S), (sub) and (red):

C[tl/l'] tlitz su t=u
efta/] (sub) t'=u

(red)

where t —g t'

2. t —g t' ©45 there exists a term to and a finite set {u;=v; : i < n} C d(£)(n > 0) of equations such that
t= to[to, ..., Un-1/%0,- .., Zn-1] (simultaneous substitution) and to[vo,...,vn-1/Z0,...,Ln-1] St
(=R denotes the reflexive closure of —R.)

3. 5 [&E] denotes the reflexive-transitive [-symmetric] closure of — g, resp.
Clearly ¢ € d(F) = Cl(e) C CI(E) and hence we have the
Proposition 4.4 1. t —g t' = Cl(') C Cl(t) U CI(E)
2. EFti=t; =t Spty
Lemma 4.1 Assume that 0 = St ¢ d(E) for any term t. Then —g is Curch-Rosser, i.e., Spclpo <*—E

Proof of Theorem 4.1. If 0 = St ¢ d(F) for any t, then we get the theorem by the Lemma 4.1 and the
Proposition 4.4. Assume 0 = St € d(E) for some term ¢. Then there exists a direct computation D of 0 = St
from E in PRE'. By adjoining the rule (6} we get a desired computation of t; = ¢3 from E. a

In what follows we assume that 0 = St ¢ d(E) for any term .

Definition 4.3 1. t —7 s is defined inductively as follws:

(a)_t —rt

() t =1 5 = f(t) —1 f(3) where, for sequences t = t1,...,t,, 5§ = s1...,5, of terms, t —; § &g
t; —1 s; for any z.

(c) (projection) t; —; s = IP(t1,...,ts) =1 s
(d) (composition) ¢t —; 5§ = f(t) —1 h(91(5),...,9m(5))
(e) (primitive recursion 1) f(0) —s k; t —r u = f(St) —1 h(u, f(u)) if f(0) = k.
(f) (primitive recursition 2) t —; 5§ = f(£,0) — g(5);
t—rs&u—rv= f(t, Su) —r1 h(5,v, f(5,v))

2. t —p1 s <qf there exist a term ¢o and asequence {u;=v; : i < n} C d(F) such that t = to[uo, ..., un-1/%0,
s.

As usual we have
* *
1_ —)R:——)I

* *
2. —EB=—"EI

3. — is strongly confluent, i.e., satisfies the diamond property:
Vi, s,udv(t —y s&t —>ru=s—orv&u—yv)

Thus it suffices to show the following lemma.
Lemma 4.2 — gy s strongly confluent.
Define

t1 <cpty &

there exist a term ¢o and a sequence {u;=v; : i < n} C d(E) such that

= to[Ug, R ,un_l/xo, ceey Cbn_l] and ty = to[vo, e ,Un—l/x(), - 7-7777,—1]-
Since d(E) is closed under the rule, (sub) < ¢ is transitive. Therefore it suffices to show:

Claim 4.1 If we have M| «—1 M «—¢cg N —1 Ny, then there exist terms Na, Mo, L such that My «<cg N2 —7
L —; My <¢cg Ni.. )

...,(L’n_l]—i
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Proof of Claim 4.1. We prove this by induction on m + n, where m [n] denotes. the depth of a derivation of
M —y My [N — N1, resp.

Case 0 M=N ¢ d(E) Then M1=N; € d(E) Take Ny =L =My = N;.
Casel M, = M: Take Ny= N, L= M, = N;.
Case 2 M = f(t_) -7 f('a) = M; witht —; u:

2.1 N = f(%) —1 f(w) = N1 with  — @: For each ¢ we have
U; g ti —cEp UV —1 W;. By IH U; <CE ’Ug —r1 8; < t: —CE W; fOI‘ some ’U;,Si,tg.

2.2 N = I(v) —; w; = Ny with v; —»1 w;: Asin 2.1,
My = IM(9) —cg IP(u1, ..., Uim1, V), Uig1, - .., Un) —1 8§ —1 1, —cg w; for some v}, s;, 1.

2.3 N = f(9,0) = g(@) = N, with 9 — o (0= 131,‘..,1)”_1): By IH pick v}, s;,t; for ¢ # n as in 2.1. Then
M, = f(ﬁ,un) “—CE f(f)l,O) —7 g(§) —7 g(t/) “—CE g(ﬁ;) =M by 0=t, € d(E)&tn —r U, = 0=u, €
d(E) '

2.4 N = f(9,Svs) —1 (W, wn, f(@,wn)) = N1 with ¥ —7 @ and
Un —7 Wy: Pick ¥/.#',5s0 that &t «»cg O —1 § 1 t/ —¢cE 0.

2.41 t,=Sv, € d(E): Then u,=Sw, € d(E).
Ml = f(a)yn) “<CE f(ﬁlvswn) g § h(gywn)f(gywn)) I
h’(tlawna f(tlawn)) HCE h(ﬁ)a wn7f(ﬁ))wn7 .f(ﬂ);wn)) = Nl

2.42 Otherwise: t, = St with { —¢p v, for some ¢t. Also, for some u, ¢ —; u by a shoter or equal length
derivation that ¢, = St —; Su = u,. By IH pick v’,s,f’ so that u «<cE v/ =18 —rt' =cg w,. Then
M1 = f(’a,un) “—CE f(f;’,Sv’) —7 h(§,s,f(.§,s)) I h(t,,t/,f(t/,t/)) —CE h(lZ}, Wn, f(ﬁ),wn)) = N1

2.5 N = f(0) —1 k= Ny: Similar to 2.3.
2.6 N = f(Sv) —1 h(w, f(w)) with v —1 w: Similar to 2.4.
Case3 M = I'(t) —1 u; = My with t; —1 u; and N = IP(9) —1 w; = Ny with v; - w;

Case 4 M = f(t,0) —r g(@) with { —; w2 N = f(v,v) with 0 <5¢cEg v, i.e., 0=v € d(E) or v = 0. By our
assumption, v # Sv’ for any v'. Therefore it must be the case v = 0 and N = f(5,0) —; g(@) with
v —1 w. Use IH.

Case 5 M = f(t,5t) —1 h(u,u, f(4,u)) with { —7 @ and ¢ —; u: As in the Case 4 we have N = f(ﬁ,Sv) —r
h(®, w, f(v,w)) with @ —; @ and v —; w. Note that if St —cg Sv, then t —¢g v by the rule (5).

Case 6 M = f(0) —; k: Similar to the Case 4.
Case 7 M = f(St) — h(u, f(v)) with ¢ — u: Similar to the Case 5.

This completes a proof of the Claim 4.1.

5 Intuitionistic fixed point theories

In [3] Buchholz shows that an intuitionistic fixed point theory I ADZI is conservative over Heyting Arithmetic HA
with respect to almost negative formulae. The proof in [3] is based on a recursive realizability interpretation
of the theory I bll Having seen a preliminary version of [3] we-can extend and strengthen this result.

Our proof runs as follows. First an extension of an intuitionistic iterated fixed point theory I b; is interpreted
in the intuitionistic analysis EL + AC — NF. This is done by imitating Aczel’s proof in [8] which shows
that the classical fixed point theory ID; is interpretable in a second order arithmetic ¥} — AC. Then by N.
Goodman’s theorem [12] one can conclude our theorem. A proof of N. Goodman’s theorem is based on either
a combination of a realizability interpretation and a forcing or a proof theoretic analysis in G. Mints (18]. It

seems that a direct analysis of I b; based on one of thses methods is desirable.

Definition 5.1 1. EL denotes the intuitionistic elementary analysis defined in [25] p.144. Function vari-
ables in F'L are denoted by «, 5,7, ...
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2. The axiom schema AC — NF: VndaA(n,«a) D ABVnA(n, (8),)
with (8), = Amf(j(n,m)) and a pairing function j.

3. L denotes the language of EL. For a list of set parameters X = Xo, X1,..., L(X) denotes the expanded
language obtained from L by adding X.

4. EL(X) [EL+ AC — NF(X)] denotes the extension of EL [EL + AC — NF] by expanding the language
to L(X), resp. . ) .
Each axiom schemain EL [EL+AC— N F]is available for L(X) formulaein EL(X) [EL+AC—NF(X)],

resp.
Lemma 5.1 For each n and each list X of set parameters there ezists a formula Sy, (20,21, . .. ,Zn; X, @) in
29(zo, 21, .., 2n; X, @) such that for every formula A in X3(zo,1,...,%n; X, ) there is an integer e such that

EL(X)F A HE?(e,xl‘,..‘,xn;X,a)

Proof. By formalizing the enumeration theorem. This is done in EL(X). cf. Ch. 3, Sect. 6 and 7 in [25]. O

Definition 5.2 Let Y be a list of set parameters and F a set of formulae in L(Y). Pick an X ¢ L(Y).

1. POS(F;Y) =4the set of all L(Y,X) formulae which are built up from formulae X () (¢: a term) and
formulae in F by means of A,V,V¥m,Im (first order quantifications).

2. POS*(F;Y) =4 {® € POS(F;Y) : FV(®) C {:c}}-for a fixed number variable z. F'V(®) denotes the
set of free variables occurring in ®. Thus no function free variable occurs in ® € POS*(F;Y).

3. POS(Y) = POS(Fy;Y) and POS*(Y) = POS*(Fg;Y) with the set Fy of all formulae in L(Y).

4. POS(Y;Y) = POS(Ay;Y) and POS*(Y;Y) = POS*(Ay;Y) with the set Ay of atomic formulae ¥;(t)
forY; €Y.

5. POS = POS(D).

Remark. POS(F ;Y) is narrower than strictly positive formulae (with respect to X) because A D X(t) ¢
POS(F;Y) but is wider than POS in [3]. If we set A D X(¢) € POS(F;Y), then one would need IP

(Independence of Premise) for a proof of Lemma 5.3 below.

Lemma 5.2 For each ® € POS there exist a list Y of set parameters, a & € POS(Y’;Y) and a list A of
frmulae in L such that o
EL(X)F ® « &'[A)Y]

where [A]Y ] denotes the simultaneous substitution.

A formula in L(Y) is said to be an n — £}(Y) fomula (2} formula in normal form with set parameters Y')
if it is of the form JaVnR(a,n,Y) with an open formula R in L(Y) in which no function variable except o
occurs.

Lemma 5.3 For each ® € POS(Y;Y) and each A(z) in n — S}(Y) there exists a C in n — S1(Y) such that
EL+AC—-NF{Y)F ®[4/X] = C
Proof by induction on the length of ® using the facts:
EL(Y)F AV 3aB « 3a(AV B)
EL(Y)FVY2AVVYB « JaV2Vy[(z = 0 A A) V (z # 0 A B)]

Lemma 5.4 For each ® € POS*(Y;Y) there ezists a formula P*(Y, z)
inn — X}(Y) such that

EL+ AC ~ NF(Y) F VY2{P%(Y,z) & ®[{«} P2(Y,z)/X]}
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Proof by Lemmata 5.1 and 5.3. Put B(u,z;Y) = 3aVySs(u,u,y,z;Y, ). Pick an n — T}(Y) formula
C = 3JaVyCo(u,y,z;Y, @) such that ®[{z}B/X] « C. Pick an e so that Co(u,y,z;Y,a) « Ss(e,u,y,2;Y, ).
Then P®(Y,z) = B(e,z;Y) is a desired one. o

By Lemmata 5.2 and 5.4 we get the

Lemma 5.5 For each ® € POS there ezists a formula P®(z) in L such that
EL + AC — NF FVz{P%(z) — ®[{z} P%(2)/X]}

Let EL + AC — NF + I:D; denote an extension of EL + AC — NF. Its language is obtained from L by
adding a unary set constant 1% for each ® € POS*(Y) (Y: a fixed set parameter) and its axioms are those of
EL + AC — NF in the expanded language plus the axiom (FP)2:

(FP)? Vi< nV¥z[I¥(z) & ®(I2,, 17, 2)]
where I®(z) = I®(j(i,z)), I2;(k,2) =k < i A I%(z) and ® = ®(Y, X, z).

Theorem 5.1 EL+ AC—-—NF + I‘Df1 1s a definitional extension of EL 4+ AC — NF, i.e., the set constant I®
1s definable in EL+ AC — NF, and hence,

via N. Goodman’s theorem [12], EL+ AC — NF + IADj1 is @ conservative extension of HA for each n.

Proof. Construct PE, P2,... P2 | successively by Lemma 5.5. 0O

6 Classical fixed point theories

Let L, denote the second order language obtained from the language of the first order arithmetic by adding
set variables X,Y,... Let T O ACA( denote a second order arithmetic containg ACAy. Assume that T is
I} — faithful, i.e., any M}-consequence in 7T is true. Then, by [11], we have for a recursive theory T

| T |=qp sup{a : T+ I(<) for some recursive well ordering < of type a} < w{¥

where I(<) denotes the II}-sentence VX Prg[<, X] — VzX(z). Prg[<, X] denotes that X is progressive with
respect to < as in Section 3.

The proof theoretic ordinal | T | of T is free from pathology, while the following alternative definition of the
proof theoretic ordinal make sense relative to a vague natural well ordering <:

| T |o=gs sup{e: T + I(=<,T57) for some recursive well ordering < of type a}

where II;” denotes the set of arithmetical formulae without set parameters and I(<,II;”) the schema of
transfinite induction of < applied to a formulae II;™.

Let FP—-ACA} and FP-- ACA’ denote second order arithmetic in the language L, (without set constants
P, differing from [16]) which are obtained from ACAq and ACA, resp. by addind the following £] axiom:

(FP) AXVz(A[X, 2] — X(z))

for each X positive arithmetical formula A[X,z] in L, (A[X, 2] contains no free variable except X and z.)
Then G. Jager and B. Primo [16] shows that

Theorem 6.1 (G. Jager and B. Primo [16])
1. |FP— ACA) |= &
2. | FP— ACA |=¢,,
3. FP— ACA}, and =} — AC are proof theoretically equivalent each other.

Here note that | ACAq |= €o, | ACA |= &, and | =1 — AC |= peo0. Also FP — ACA) is proof theoretically
stronger than AC Ag, e.g., by a truth definition for arithmetical formulae in II;~ FP — ACAj F Con(AC Aop).

We observe that the above theorem follows from a result due to G. Kreisel[17] or [24], pp.176-177:

Theorem 6.2 Let T be a recursive, I1}-faithful second order arithmetic containg AC Ay.
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1. (G. Kreisel[17])

| T |=sup{a : T + I(<) for some X} well ordering < of type a}

2. Let Trs: denote the set of true X1 sentences in Ly. Then

| T |=|T+Try; |

Proof. Assume T + A | I(<) for a primitive recursive well ordering < and an A € Try1. Define a 1 well
ordering <4 by
n<4MmMegn< m& A.

Then we have T'  I(<4). By the Kreisel’s result, the order type of < is equal to the order type of <,<[T|. O

The theorem is applied to the nth fold iterated fixed point theory F' P, — ACAj. FP, — ACAj is obtained
from AC Ay by adding the 1 axiom (FP,):

(FP,)3X,,..., XiV2 \ (z€ Xi & A(X], X1, Xioy, @)
1<i<n

for each X; positive formula A; in the language Ls + {X1,..., X;}.
FP, — ACA’ is obtained from FP, — ACAj by adding the full induction schema Héo —IA.

Corollary 6.1 For anyn € w,
1. | FP, — ACAj |= &0
2. | FP, — ACA' |= ¢,

Thus the theories F P, — AC A} is weak with respect to the proof theoretical ordinal | T'|. But these are
proof theoretically much stronger than AC Ag. In the following we compute the other proof theoretical ordinal
| FP, — ACAj |o, etc. '

In what follows let < denote a standard well ordering of type I'g (the first strongly critical number). Ordinals<
I’y and their codes are identified and denoted by «, 3, ...

Definition 6.1 1. Let T be a first order theory containg PA. A first order theory ID(T) (fized point
theory over T} is defined as follows: The language Lyp(ry of ID(T) is obtained from the language Ly of

T by adding the set constants {P4 : A[Xt,z] € Ly(X), X positive }.
Agzioms ID(T) = T+ induction schema for Lipey + (FP)

(FP)VYz(z € Py < A[Pa,z])
2. IDy = PA and ID,yq = ID(ID,,).
3 L= LIb(T) and L% = L™ 4+ second order variables XY, ...
{. the norm of ID,, (n # 0) is defined to be the following ordinal with | k |4< o & k € I5°:
inf{a: VA[X,z] € L%X)Vk €w[ID, F k € Py =| k |a< o}]
5. FP, — ACA = ACA for the language L} +ID,
Clearly ID,, and FP, — ACA) [FP, — ACA and F P, — ACA’] have the same arithmetical provable formulaec

L° =TI}~ resp. For a fixed A[X1,Y,z], we write P, for Py, with A, = A[Xt,3", P, 2]. Thus ID, has

i<n
extra constants P; (¢ < n) for each A.

Definition 6.2 Let ® be a set of formulae.

1. I(< a,®) denotes the schema of transfinite induction up to each § < o applied to a formulac &.
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2. A first order theory H(®)<* is defined as follows: its language= Lo + the language of ® + {H4 : A €
;™ (2, X)}
(A€ (®,X) ©q4 Aisa II§ formula relative to X formulae € ®).
H(®)<* = PA for the language of H(®)<* + (H):

(H) Vz(z € HS & A[HSP, )

for each f < o. Hy’ = Yo<s Ha

Thus (H) says that {H} : v < 8} forms the jump’ hierarchy relative to formulae€ ®.
Theorem 6.3 1. For each B € L™ (m < n),
ID, B H(L™)<%m 4 [Dy - B IDy + (< an_my1,L™) F B
where a; = €0, 0py1 = a0 with the Veblen function paf.
2. | IDy |o= any1
3. For each B € L™ (m < n),

FP,—ACA+B & H(L™)<P»-m»4ID,+ B
& ID, +I(< Bo—ms, L™)F B
where f1 = €eoy ﬂn+1 = Soﬁno

4. | FPy — ACA |0= Bn+1

5. the norm of ID, = ap, (n #0)

6. the norm of FP, — ACA = 3,
This is proved by using usual techniques in [16] and [8].
Proof of 1 and 2. An infinitary system I DOO(L") I D over the language L™) is designed as the first order
part of FP — ACA* in [16], in the language L", i.e., fixed points rules in IDOO(L”) are only for P, and
constants Py,..., P,_; € L™ are treated as set parameters in IDOO(L”). Thus ID” (L®) is the first order part

of FP — ACA* in [16]. Put B, = A\,_, FP; D B for B € L™*! where FP; denotes the axiom for the constant
P;. : [m]

i<n

Lemma 6.1 1. ID,y F B=ID" (L") 5% B,
2 FPyy —ACAF B=ID" (L") B,
For a proof we set the rank rn(F) = 0if F € PN, with respect to P,. The rest is the same in [16].

Lemma 6.2 For an e-number a,

1. Ibw(L”) F$e B with B € PN, = VB < o[(IX%) F$& {BYB{B + w*}] where {3} B{B’} denotes the
result of replacing each negative P, by I<P and each positive P, by ISP and (I£*) is an infinitary
system whose extra rules are, for each £ < o,

r, [_']A[Irfﬁ’ Zi<n P, 8]
T, [-)s € If

2. (If*) P2 B= (I3%) F5%*° B

3. Iboo(L”) F<* B, with B € L"(P, does not occur in B)
= ID” (L") FE**° B,

Lemma 6.3
H(X)<“" F I(< pa0, X)

We give a sketch of a proof of this lemma below. From this lemma we see the
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Lemma 6.4
H(L™)<%=m F I(< apn_m+1, L™) (M < n,a0 =0)
Thus we have shown the direction
IDp + I(< 0pemy1, L") F B = H(L™)<%-m + D, - B

Next consider the direction A .
ID,+B = IDy + I(< anems1,L™)F B

Assume ID,, + B with' B € L™, m < n. By Lemma 6.1 we have for a; = ¢ IDOO(L”‘l) D—f“‘ B,. By Lemma
6.2 we successively have

ID™(L™Y R By, (IS ") FSarT By and (I5%-m) b5o*=m+ B

<Up-m

By a patial truth definition we get ID,, + I(< ap_m41,L™) F B.
Finally consider the direction

H(L™)<%=m 4 [D,,+ B=ID,+ B
This follows from Lemma 6.5 below. We interprete H(L™)<®»-m 4 ID,, in ID,, as follows:

o leave L,, formulae unchanged.

e the ’jump’ hierarchy Hy (A € TI{™(L™)) up to< an_m is interpreted as P}, Py so that Pf = Ha, P, =
—H 4 (simultaneously defined as fixed points over L™). Then for each B in the language of H(L™)<*»-m+
ID,, let B’ denote the result of replacing the positive H4 by Pj’ and negative Hy by P; .

Lemma 6.5 1), H(L™)<® - +ID,FB=1ID,+ B, i.e.,
ID, FVz(z € HS & ~(c ¢ HY)) for each B < apm.

2 ID, FI(< apomy1, L™) (m < n)

Proof by simultaneous induction on n — m. We have 2), and 2),41 = 1),. It remains to show 1), = 2)p,.
By Lemma 6.4 and I(< ap.mt1,L™) € L, we get 2),. O
Thus we have proven Theorem 6.3.1 and 2.
Finally consider the norm of ID,. The upper bound a, for the norm of I D,, is obtained from Lemmata
6.1 and 6.2.
To obtain the lower bound, define a fixed point W = W, by

VB(BEW < Vy < By eW))

By Lemma 6.5.2);, we have ID,, - I(< &y, L'). Hence by W € L! and
ID, FYB(Vy < B(yEW)— B EeW), weget ID, 3 €W for each 3 < a,.

Proof of Lemma6.3. Put A = w® and

15 (v) ©4 VY € | Rec(H)I(7,Y)
§<pB

where
1. HY denotes the §'* jump of the set X
2. Rec(HgY) denotes the set of sets recursive in Hg(.
3. I(7,Y) denotes the transfinite induction up to y applied to Y.

Also for each a < A,
AX (1) ©ar 7> 0— VY6 > 0T V(B &w (54 1) < o — IF (070)]

Then we can prove the following lemma as in [8]:
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Lemma 6.6 For each a < A,
H(X)*F Prg[A}]

Lemma 6.7
HX)AFI(< N

where I(< X) denotes the schema of transfinite induction up to each ordinal< A and applied to any formula in
the language of H(X)< .

Proof. For o < A let 5o denote a finite set of ordinals< « inductively generated as follows:
1. a € Sa | _
2. UB=Fr+ -+ Pn€Sa, 1> > By &pbr,..., B, are additive principal, then 81, ..., 8, € Sa.
3. If py6 € Sa, then 7,6 € Sa.

We show inductively that V3 € Sa H(X)<* + I(5).
Assume that v > 0& ¢y6 € Sa, I(y) and I(6). For a given formula U we have to show I(¢y6,U). Since A = w?
is additive principal, w? -2 <w???.2 = 452 < a-2 < A, Also H(U)<* = H(X)<* since U € Uscx Rec(HY)
and X is additive principal. Thus by Lemma 6.6 we have Prg[AY,]. By I(v), we have AY,(v) and hence
VBUIEY 2(B) — I5* (¢1B)]. By I(6) we have I5* (). Thus I3 (76) and I(p76,U). O
Now Lemma 6.3 follows from Lemmata 6.6 and 6.7.

7 Iterated reflection formulae and rules of transfinite induction

In this section we give an equivalence between transfinite induction rule and iterated reflection schema over
the fragment 1%, of PA.
In this section < denotes a standard ¢¢ well ordering.

Definition 7.1 1. For an additive principal number o > w and a set ® of formulae, 71 R[a, ®] denotes the
transfinite induction rule up to o and applied to a formula A € ®: Put Prg[Ad] <4 Va(Vy < zA(y) D
A(z)). Then for each A € &

Prg[A]
Ve < aA(z)
is an instance of the rule T1R[x, ®].

2. For a theory T containg the fragment [X; let 7'+ TIR[a, ] denote the theory obtained from T by
adding the rule TTR[a, ®]. Also T + TIR(™)[a, ®] (m € w) denotes a formal systemC T + TIR[o, ®] in
which the rule TTR[x, ®] can be applied nestedly at most m times.

For example 8) T+ TIR[a,®] =T and 1) in T + TIRM[a, ®] the rule T1R[a, ®] can be applied only
when T+ Prg[A] (A € ®), etc.

3. For a theory T' D IE; let CT(a) denote the iterated reflection formula defined in U. Schmerl [19]. Thus

in IX; we have
(a) CT(0) < RFNp,,,(T)
(b) Cl{e+ 1) « RFNy,,,

(c) CT(X) « Va < ACT(a) for a limit ).

(T+C3{e))

4. ( n ) =g T+ {CZ(B) : f < a} as in [19].
*Jr

Proposition 7.1 Ouver 1Y,
TIR[W>** %,] = TIR[W*® 10,44]

Proof. This is contained in the proof of Theorem 4.1. e) in [23] D
A formula A(xz) is called reflezively progressive (in x) with respect to a theory T if
T+ VeVy < zPrr(”A(y)”) D A(z)]

with a canonical provability predicate Prr for T and the godel number ” E” of an expression E.
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Proposition 7.2 (¢f. [19],p.337)
TF A(x) & A(z) is reflexively progressive with respect to T

Remark. The proof of the direction [<] in [19] uses L6b’s theorem and the facts:
1. THy<z2 Prp(Py< ")
2. T+ < is transitive

Thus any X; binary relation < Proposition 7.2 holds if < is demonstrably transitive in 7. In other words,
reflexive progressiveness is nothing to well foundedness although the name remind us the latter.

Lemma 7.1 For A€ 4y and T D IY,,

1. B(e) = CF(a) D A(e) is reflexively progressive with respect to T
if THCT(0) D PrglA].

2. T+ Prg[A] = T+ CT(0) F Prg[Vz < w(1 + a)A(z)).
3. Tt Prg[A] = T+ CF(a) D Ve <w(l+a)A(z).
Proof.

1. Assume T + CT(0) D Prg[A]. We can assume that a # 0 since
T+ CF(0) D A(0). Then we have by A € I,41,

T Vg < aPrr("CL(8) D A(B)") & C7 (a) D V6 < aA(f)
By our assumption T'+ CT(a) D Prg[A].

2. Assume T + Prg[A]. Consider the case o = 0. Then we have to show T + CF(0)  Vz < wA(z). This
follows from T+ Vn < wPrr(” A(1)”) or better T - Vn < wPrp("Vz < nA(z)”). Other cases are similar.

0

Lemma 7.2 Assume T D I%,, and A is a Il,1-sentence. Then
TrA=T+TIRD W M, 4] F CIE+A(w?)

with

W = w* a#0
=T4 L0 otherwise
Proof. Let B(wf + p) denote the II,;-formula:

B<w&p<wk
VI C Iy {Provys, (p,” =4, ~Ci>" (8 - 1),T”) > Try,.,, (" \/ T”)}

where
1. 41 =the set of godel numbers of 11,4 ;-formulae

2. Provrs, (p,”T”) is a proof predicate for IX,, which says that p is a proof of a sequent I' in IY,,. Here
IY,, is formulated in a Tait’s calculus.

3. Tr,,, denotes a partial truth definition for II,,; ;-fomulae.

nt1

4. B—1=4if f =n <wthen n—1else 2, and CI%n(~1) denotes a true formula, e.g., 0 = 0.

We assume that when T' C II,,+1 and Provrs, (p,” -4, ﬂC’iE"(ﬁ'— 1),T”), every sequent in the proof p is of the
form —A,-CI¥»(8 — 1), A for some A C'1l,,41. This follows from a partial cut elimination which is available
inI¥ CT.

We show that T + Prg[B]. Argue in T. We have A and Vy < AVYp < wB(wy + p). Hence CL®=(3 - 1). By
induction on p < w we get \/T. If a &, ;-formulac {-~A,~CIZ»(8 — 1)} is analysed by an inference rule (3),
then use the fact: A and CI¥»(3 — 1) are true. a
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Theorem 7.1 For eacha>0and 0 <n,m < w,
IS, + TIR™W*® M, 4] = IS, + CI¥ (™ - m)
with

w

m—1 otherwise

a_m:df{w"-m a#0

Proof. [C] By induction on m > 0, we show, for A € I,
IS, + CPPr(w® - m) & Prg[A] = IZ, + CIE»(w* . (m 4+ 1)) F Yz < w!**A(z)

where IX, +CI%(w® . 0) = IS,. Put T = IL,+CIE(w* . m). By Lemma 7.1 T + CT (w®) D Vz < wit® A(z).
Also T + CT(w*) = IS, + CLE»(w® - (m + 1)).
[D] This follows from Lemma 7.2. o

In what follows we concentrate on the case n = 1. For a limit ordinal A < &g, {A[z]}zc. denotes the
fundamental sequence given in the Definition 3.7 in [23], i.e., w* 2] = w® - (z + 1).

Definition 7.2 Fast growing functions Fy,.
1. F,. .
(o) Fo(x) =2z+2
(b)) Fayr(z) = FE(2)
(c) Fx(0) =2
(d) Fx(z) = Fy[z)(z) for a limit A and = # 0
2. Fy(x) | denotes a Xy formula saying Fo(z) is defined ’.
3. Fy | &g Ve €w(Fuo(z) |): a I, formula
R. Sommer [23] shows that the graph {(a, z,y) : Fa(z) = y} is A definable.
Definition 7.3 Tot(T), PR(F) and ER(F).
1. For a theory T D I3, Tot(T) denotes the set of provably total recursive functions in 7.

2. For a set F of functions on w, PR(F) [ER(F)] denotes the primitive [elementary] recursive closure of
F, resp. '

Lemma 7.3 1. Each f € Tot(IX; 4 Fy |) is majorized by an Foipn for some n <w. Thus Tot(IX; + Fy |
) C PR(Fy).

2. ISk Fy |— Fay1 |. Thus Tot(IS) + Fy |) = PR(F,).
3. IL1 b Fayu | RFN,(IZ; 4 F, |) = 1™ HFe(0)

Proof. 2. It suffices to show IY; + F, | VyV:c(Fg,r)(y) 1). Fix y as a parameter and use I¥; to show

Vx(F(g,m)(y) 1) by induction on z.
3. [—] by a formalization of a proof of Lemma 7.3.1 in IX;. [«] follows from 2. O

Lemma 7.4
I3, F C{El(a) = Ly(lta) l

Proof. [—] By the Lemma 7.1.3, it suffices to show I - Prg[A] with A(z) <4 F, |€ II,. This follows from
the Lemma 7.3.2.

[«] Put B(a) ©a Fu140) 1= CI*1(a). We show this formula B() is reflexively progressive with respect to
I¥;. Argue in I¥; and assume that

VB < aPrys, (" B(B)") & Fy(140) | -
Case 0. o = 0: By the Lemma 7.3.3, F, |— C{E‘(O)

Case 1. o # 0: Assume 3 < a & Prrs,("CI®(8) — A”) for a A € 1I,. By a cut, Prs,("F 144 1— A7).

By w(l+ 8) +w < w(l + «a), we see Foa4p)4w | from Fu44) | Again by the Lemma 7.3.3, we have
RFNm,(I% + Fu14p) |). Thus Trp, (”A”). O

Observe that w't® - m = w(1 + w* - m). Therefore from these lemmata and the Theorem 7.1 we see the
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Theorem 7.2 For eacha >0 and 0 < m < w, _
T =g 1T, + TIRM™[Ww!** ] = IT) + C17 (w®-m) = IT1 + Fi4a.m |

and

Tot(T™) = PR(F140.1)
Corollary 7.1 For 0 < k,m < w with m # 0,
TI™ =4 ISy + TIR™ W'+ Tg) = IS + CI% (W* - m) = IS1 + Fyupr |

and
Tot(T{™) = PR(F14x.,,)

8 Derivation lengths of finite rewrite rules reducing under lexico-
graphic path orders

In this section we discuss a relationship between the derivation lengths of finite rewrite rules reducing under

lexicographic path orders and the provably total recursive functions in theories T,gm) defined in Corollary 7.1.
In Weiermann [26] and Buchholz [2] it is shown that

Theorem 8.1 (Weiermann [26] and Buchholz [2])
The derivation lengths of finite rewrite rules reducing under a lezicographic path order are bounded by a multiply
recursive function Fi4x.,, (k,m € w).

First we introduce a variant of a slow growing function G« in {1].

Definition 8.1 1. Od, P and Sa € {0,1}.

(e) P COd.
(b) 0€0d, S0=0.[Sa =0 a< Q]

(c) ar,...,an € P&a; >--->a,(n>2)=> a1+ - +a, €0d.
[Here a < fega<for a=p]
Slay+ -+ ap) =max{Se; : 1 <i<n}=Sa;.

(d) a€0d|Q=4 {a€0d:a<Q} >w*€P. Sw*=Sa=0.
(¢) a € Od=da € P. Sdo = 0.
Flo<n<w&leP|Q={{eP:E(<Q}=>0"EecP SO"E=1

2. Ka C P|Q
(a) KO=10
(%) K(a;1+ -+ an) =U{Ka; : 1 <i<n}
(¢) Kw* = Ka
(d) Kda = {da}
(¢) K(Q"-§) = K¢
3 a<p

(@) B#0=0< B

(b)) er+-+a, <B4+ +PBm(;,fj EP&n+m>2) &
i.n<mVi<n(o =p;)or
1. A < min{n,m}ar < B & Vi < l(e; = 5)]

(c) a€e PIQ=a<Q™(

(d) o < df = w* <dB, and da < fB = da < wP

(e) o < B(< Q)= w* <wh

(f) da < df &
. a< P& Ka<dfor



i, da < K8
X <fegVaeX(a<B)and a<Y o4 IBeY(a<p)]

(9) A"£<Q™ (&

. n<mor

. n=m&é<(

4. Conventions

(a) 1=’ n=14+---41for n<w.
() 0=0,00¢=¢ Q" =01 and Q= QL.

() QP61 ) = 6 44 07,
for Q>€122€n)§1)7£nep

(d) « € Po &g [a < Q& aePlor [a=Q"¢>Q for some n,¢]
(e} a# denotes the natural sum.

Definition 8.2 Normal Forms

1. We write @ =nyp, o1 + -+ ap
fn>l,a=ar+--+an, 01> >0, &Vi<n(a; € P)

2. For each o € Od with o # 0, 3'n < w I(ap, ..., an) 3N, ..,&,) such that

a=0% 8+ +Q%LH&0=a < <a,<w
0<£17)§T/<Q&70§£@<Q

In this case we write

n
@ =q_Np Qa4+ Q%6 =a-nNF ) QT
1=0

3. For each o € Od with o # 0,
dn <widm <wIlay,...,a,)3INE, ..., €)1, - - ., Bm) such that

a=) Q% E+Y Bik0<an < <o <w&b<Er,...,6n < Q
i=1 i=1

B < <P <Q&Vi<m(f; € P)&n+m>0(n,m>0)
in this case we write

& =NF ZQQ‘ Ci+ ) Bi=NF Y i+ > Bi with ;= Q% ¢
i=1 3

i=1 i=1 i=1
Definition 8.3 The norm Na of o € Od

1. NO=0
Na=max{n Na;:1<i<n}lfora=yxp a1+ +a, <Q

Nw*=Na+1

Nda=Na +1

5. No=max({k - 1} U{N¢& :i <n})for a=q_nF Q£+ -+ Q% £y with 0 < k = @, < w.

Definition 8.4 (cf. [2], [26]) @ <i B
1. B#0=0<y B [2ero]

2. B=NF P14+ -+ Bmn (Bi € Po,m >2):
Hay,...,am)la= o1t #am & Vi < m(a; <i B;) & Fi < m(a; <k Bi)
= a <i f [multisel]
[Here o; may be 0 and/or € Po. a <z 8 &4 a<p B or a=p]

8. BePa&ka=Nr ai+ -+ an(a; € Pa,n>2):

117
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(a) SB=0:Vi<n(a <y B)& Na < NB+k = a <y f [inaccessibility]
(b) SB=1: Vi <n(ej <g B) = a < B [additive principal]

4. 0,BEPQ&O=8Sa<SB=1= a<;p [Stufe]
5 0,8€PakSa=S8=1&a=q npr Q€& B =q_Nr O™ -(:

(a) n<mor

(b) a1 =B &€ <k ¢

= o < B [lezicographical]
6. a<; B<Q = w*<; w? [monotonicity]
7. da < B < Q = da <g wP [subterm]
8 a<pdB& Nw* < NdB+k = w® <y dB [inaccessibility]
9

(a) a <p B& Ko <y dB& Nao < NB+k [inaccessibility] or
(b) do <p Kf [subterm]
= da<p df

Lemma 8.1 1. Na is a norm, i.c., the set {3 € Od : B < a & NB < n} is finite for each a € Od and
necw.

2. The set {3 € Od: B <i a} is finite for each a < Q and k € w.

Definition 8.5 G,a for a € Od|Q
Grpa =g max{k €w: IHag,...,ap)ar <p - <p g =al}

First we show that the function G« is provably total in the fragments T,Em) of I%,.
Definition 8.6 (cf.[2])

1. Dy =g {(a0,...,01) COd|Q:Vj < NVa < aj(a € (ao,...,05-1))}

2. Wi =4 {& € Od|Q :3d € Dr(a € d)}

3. Ap(X, @) &g a< Q&P <p off € X) for a unary X

4. Ap(X) =gq5 {@ € Od|Q: Ap(X, )}

Note that Dy, Wi, My € ¥; and Ar(X, ) € £o(X1). The following lemmata are seen as in [1].
Lemma 8.2 (Wy.1) IT; - A (W)) = W

(Wg.2) For each F € £, Ul
IElk—Ak(F)gF — Wy CF

and
It FVYa e Wi (VB < oF(B) — F(a)) — Wy C F.

Lemma 8.3 (IX)) a,f € W}, — a#f € W;
Lemma 8.4 (121) B =NF, Gi+- 4+ 8 &Vi< n(,@, S W’k) — e W
Lemma 8.5 (IX;) o € W} — w® € W,

Lemma 8.6 For {ag,...,an,B0,...,8,} C Od |,

YO w0 G & (ana0) < (B Bo)
1=0 =0

g N < nfag < Fr&Vi(l<i<n—a; =p5)]
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Lemma 8.7 For each k,m with0 <k,m<w&m#0,

1+k
T b Vao, ..., apgr € Wafd(Q2F - (m — 1) + Y Q- ;) € W}
i=0

Proof by induction on m > 0. Argue in T,gm—l). Assume do,...,dp41 € Dy, di = (ﬁé;-'-,ﬂ{i_ﬂ with
l; = lh(d;). Show the £; formula

1+k
B(jo, - jr41) ©ap dQF  (m—1)+ Q' fi) e W,
=0

is progressive with respect to the lexicographic order for j; < l; (i < k + 1). Then the rule TIR[w'** 1I,] =
TIR[w*** %] implies the assertion.

For a proof of the progressiveness use a subsidiary induction on £« for a <, d(Q*** . (m — 1) + Ezli': Qi ﬂ;)
and the Lemmata 8.4,8.5 and 8.6. m]

Lemma 8.8 For eachl < w,

T F Vo € W, (d(Q2F -m 4+ Ql+ ) € W,
k

Proof by metainduction on ! < w.

Claim 8.1 T(™ F d(Q2+* . m) € W,.
Proof of the Claim 8.1. By induction on fa, we show
o <p d(Q“’c -m) —a €W,
Cosider the case a = df <, d(Q*** .m). Then g = Q% .m/ +Zzli: Qi . 3; for some m' < m, B; < Q. By the

Lemma 8.7 it suffices to show {B, ..., B14x} C W,. This follows from f; <, d(Q*** - m) and IH. |
Now the lemma, follows from the Claim 8.1 and the IH on [. O

Now by a metainduction on £a we have the

Lemma 8.9 For each a < d(Q*t* - m + Qw),
T b aeW,

Next we define the lezicographic path order over a vocabulary having m function symbols of the arity 2'+ k.
Let ar(f) denote the arity of the function symbol f when the symbol f has a fixed arity.

Definition 8.7 .7-',5’3)
1. A set .T,Eg) of function symbols

fﬁg) =g {list} U{4, :p<m}U{f; : ¢<Q}

where list is varyadic, ar(A,) = 2 + k for each p < m and ar(f,) =1 for each ¢ < Q.
Precedence of these symbols is given by

list <Ag < - <Am-1 < fo<--- < fg-1

2. For a given countable set Var of variables, Term denotes the set of terms over ]-',Em) U Var. Applying
the symbol list to the empty sequence we produce an individual constant 0 =4 list(%.

g= g,g’g) denotes the set of ground (=closed) terms in Term.
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For sequences ¢ = (%o,...,tn-1), § = (S0,...,51—1) of terms, let <, denote the multiset extension of <ip, :

5 Ko tiff
35,..., En_l[g Sk x5 1 &Vi< n(Ei <ipo ti) &< n(Ei <ipo ti)],
where &~ denotes the permutative congruence, * concatenation and

(So,. .. ,81._1) <ipo t <df Vi< I(Sj <ipo t).

Put t = gt,t = (o, ..., tn-1)-
8§ <jp, t if one of the following conditions is fulfilled:

1. 5 <jpo t; for some ¢;.
2. s=h5,5=(so,...,51-1) wWith h < g: 5; <jp, t for each s;.

3. s

gs:
(a) g=1list:3 Kppo
(t) 9 =4, (p <m):

Jj<l=n=24k[Vi<j(si =ti) &sj <ipot; &Vi(j < i <l — 5 <ippo 1]

(c) 9= fg, (9 <Q): s0 <ipo to-
Definition 8.9 The norm |t | of a term ¢.
1. |v|=0(veEVar)
2. |list(ty,...,tp) |= max({n} U {1+ ¢ |: 1 <i<n})
3 | Ap(titk,.--,t0) = max({1+k,ppU{|t; i< 2+k})+1
4. | fo(t) |= max{l + k,m,q,[t [} +1
Definition 8.10 (c¢f [6]) nt € Od for a ground term ¢t € G
1. wlist(ty, ..., tp) = W™ Fw™in
2. whp(bisr, -, to) = d(Q*F - p+ 31T Q1 - mty)
3. wf,(t) = d(Q** .m+ Q. g+ 7t)

Definition 8.11 (Buchholz [2]) s <j ¢
Putt = gt_, t= (to, - :tn—-l)'
s < t if one of the following conditions is fulfilled:

1. s < t; for some t;.

2. s=hs,5=(s0,...,81-1) with h < g:
sj <g t for each s; and | s |[<| | +k.

3. s

gs:
(a) g = list:5 < t with the multiset extension < of <4 and | s [<|t | +k.
(b) 9 =4, (p <m):
j<l=n=24+kVi<j(si=ti)&s; <pt; &Vi(j <i<l— s <i
and |s|<|t]|+k.
(c) 9= fs, (< @Q): so<ktoand|s|<|t]|+k..
Lemma 8.10 1. s <jp,t —| so |[<|to |+ | s | for any substitution o.

2. 5 <ipot — 50 <| Lo for any substitution o.
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3. If a finite rewrite rule R = {(I,r)} over .7-',573) is reducing under <ipo, then »rC<n with n = max{| r |:
(I,r)eR}.

4. |t |= N=t for any ground termt € G.
5. s<pt—ws <y 7wt fors,t €G.
6. |t|<l—mt<;d(Q*F - m+Q-Q) forteg.

w{m)

Let R = {(I,7)} be a finite rewrite rule over Fro such that R is reducing under <jp,. The derivation
length funciion Dhyp is defined by

dhn(t) =df max{i Ew: 3(10, . ,f()[t =t R —R tg]}
Dhz(n) =4 maz{dhr(t):|i|<n}

Lemma 8.11 The derivation lengih function Dhgr(n) is majorized by the function Gn(d(92+k -m+Q-Q)),
i.e.,

Ino¥n > no[Dhr(n) < Ga(d(Q** -m+ Q- Q)]

Proof. By Lemma 8.10 pick an ng depending on R so that dhg (i) < Gr (nt). If n > no and |t |[< n, then by
Lemma 8.10 again, 7t <, d(Q*** .m 4+ Q- Q). Thus dhz(t) < Gu{d(Q*** - m + Q- Q)) by <n,C<n. 0

Next we show that the computation of a multiply recursive function F,14x.,,
(¥, m € w) can be regarded as a derivation in a finite rewrite rule. We learnt this view from Hofbauer [13].
For a term t let 5t denote the term list(0,#1,...,t,) if t = list(t1,...,t,) and list(t) otherwise. 0(™) =
§...80 = list(0,...,0) is the mth numeral. Observe that | 0™ |= 70(™) = m.
Consider she following interpretation:

0:= {ist(}; +1:=85; Fo(xo) = Ap{@14k,..., %1, %0)
with o = w!** . p+ 3% Wi . 2,110 <p < mand
Fw’*’"»m+(1+q) = fq (q < Q)
Definition 8.12 Crzegorczgk-Ackermann Rewrite Rule Rg for Fy, a <w!t* .m 4+ Q
1. Fu(b) =2
(2) 4p(%,0) — 2= 586
(b) f,(0) =2
2. le"?"»p+a+x1+1($0 +1) = Ap(i,givl,giﬂo, ——y
Ap(Z,21,4,(2,S21,20)) = Fw1+"-p+a+z‘1(Eu1+’°-p+or+a:1+1(m0))
with o= 5w iy
3. fo(Sz) = fo-1(J4(2))
4. Forar (o +1) = fa(S%) — Am-1(Sfo(=0), 8, fo(zo))
= w1+“-m(E.u1+’°~m+1(50))
5. Fw1+k.p(2?() + 1) = A.p((_),SCEo) — .Ap_1(55.’130,(_),5'x@)
= w1+"-(p-1')+wk-(:rg+2)($0 + 1\’ (? # @}

X

£3

6. Fw1+k,p+a+wi (x5+1-_+1)(m0 +1y= Ap(a_),Sl'i+1,0,Sl'o) —
Ap(ir,mi+1,SSxO,O,Sa:0) = F‘wl-i-k.p+a+wnr'+1+wi~1_(x0+2)(150 +1)
(i #0)
with o= Z;;’:—? wiTlg;

7. Fo(zo +1) = Ag(0, Szo) — SSA0(D, 20) = Fo(zo) + 2
Definition 8.13 1. NG denotes the set of ground terms over 0, S, Ap, f;.
2. For each t € NG, no(t) € w is defined by
(a) no(0) =0
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(b) no(St) = no(t) +1
(C) no(Ap(t1+k, e ,tl,to)) = nO(fq(t[))) = 'I’LO(to)
Lemma 8.12 1. The Grzegorczyk-Ackermann rewrite rule Ro is reducing under <;p,. '
2. For each (I.7) € Rg and each substitution o with lo,ro € NG,
no(ra) < no(lo) + 2
3. Rq is terminating. Let t denote the unique normal form oft € NG. Then t is a numeral and val(t) =4f
no(t) denotes the value of the ground term t.

4. Forte NG,
val(t) < no(t) 4+ 2dhr,(t)

Let Dh(<1po,.7-',57)) denote the set of derivation lengths functions Dhg such that R is a finite rewrite rule
over f,g'qn) which is reducing under <;,.
Lemma 8.13 For each ¢ < w

L Fi4x.y, is elementary recursive in Dhy, .

2. Fi4k.mqq is majorized by the function Gn(dnimg) with

_ QW (m—-1)+ QM .w ¢=0
MTemg =df 1 24k .y 4 Q- g+ w otherwise

Proof. Casel ¢ = 0:We have, by the Lemma 8.12

Fw1+k.m(n) = Fw1+k,(m_1)+wk.(n+1)(n)
= val(Ap_1(0°+D 0,0M)) < n 4 2dhr,(Am_1(0"TD)0,00M))

1. For some constant ¢ depending on m,k, | Ay,_1(0*+D),0,00")) |< n 4 c. Thus Fitx.,(n) < n+
2Dhg, (n + ).

2. By the Lemma 8.10 there exists an ng such that for any n > ny,
dhry(Am-1(0"1),0,00M)) < G e,

with
0 = T(Am_1 (0D 0,000))) = d(Q2+F . (m — 1) + QFF . (n+ 1) +n).

We show the following Claim which yields Yn > ng[F 145, (n) < Grndngmol:

Claim 8.2 n + 2G, o, < G,dMimo j

Proof of the Claim 8.2. We have, by n + 1 <, w and Ndngmo > 2

n#tan -2 <p d(Q?E . (m— 1) + Q% . w) = dngmo. Also, in general, we have Gra + Gnf3 < Gr(a#5).

From these we see the Claim. a

Case2 ¢ # 0: We have
Fw1+"-m+(l+q)(n) = val(fq(()(”))) S n-+ 2th1+q(fq(0(n)))'
1. For a constant ¢ depending on m, k,q, | £,(00") |[<n +ec.
2. As in the Case 1, there exists an ng such that for any n > ng,
dhr,,,(f,(00)) < Gray with an = 7f,(0) = d(Q**F - m+ Q- g+ n).

We have n#a, -2 <, dQ** m+Q ¢+w) = dNgmg. Thus for any n > ng Fw1+k,m+(1+q)(n) < Grdfimg-
(m}
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Theorem 8.2 For eachk,m with 0 <k <w,0 < m < w,
T™ = IS, + TIRM™[WHE 1) = IT; + CP (W - m) = IS; + Fuan, |
and
Tot(T,gm)) =
PR(Fw1+k,m) = ER({Fw1+k.m+q g < w}) =
PR(Dh(<ipo, Fi3”)) = ER({Dh(<ipo, F{3") 14 < w}) =
PR(G(d(Q°t* - (m — 1) + QFF . w))) = ER({Gn(d(Q*** - m + Q- q)) : ¢ <w})
Also these classes of functions are majorized by any one of the functions F 14k 4, and Gn(d(Q** -m+Q-w)).
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