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Normal forms for derivations in Arai’s AIE
HEKFERFENAR E—E (Kazuma Ikeda)

Abstract
In this paper, we shall consider normal forms for derivations in Al , where Al is the system

introduced by Arai in [3] to prove the consistency of Feferman’s ID; (cf.[5]). We shall give two
normal form theorems for derivations in AI;. One (Theorem 1) implies the w-consistency of Al .

The other (Theorem 2) implies the consistency of Al .

0 Introduction

In this paper, we shall consider normal forms for derivations in AI,, where Al is the system
introduced by Arai in [3] to prove the consistency of Feferman’s ID¢ (cf.[5]).

Normal forms for derivations in LK have been studied by several authors (for example, Gentzen
[6], Mints [9], Arai and Mints [4]). Gentzen’s cut elimination theorem (cf.[6],[10]) is one of the most
famous normal form theorems for derivations in LK. In [9], Mints gave an extended form of Gentzen’s
theorem. Moreover, extended forms of Mints’ theorem were given by Arai and Mints (cf.[4]).

And also, normal forms for derivations in arithmetic formalized in the sequent style have been
studied by several authors (for instance, Hinata [7], the author [8]). Hinata’s theorem (cf.[7]) is
considered as an analogue of Gentzen’s theorem and implies the consistency of arithmetic. In [8], the
author gave an extended form of Hinata’s theorem, which is also considered as an analogue of Mints’
theorem and implies the w-consistency of arithmetic.

In this paper, we shall give some normal form theorems for derivations in Al;. To prove these
theorems, Takeuti’s system of ordinal diagrams O(¢ + 1,2) (cf.[10]) will be used. O(£ + 1,2) is the
structure consisting of the set of objects called ordinal diagrams and the well-orderings <; (i € I) over
the ordinal diagrams, where I is the well-ordering set (§ + 1) U {oco0}, whose ordering is that of £ + 1,
with the largest element oo.

In [1] and [3], Arai showes that the consistency of Al can be proved by induction along <, up to
the ordinal diagram (¢,1,0) and can not be proved by induction along <q up to o (a <g (§,1,0)).

So, we want to give a normal form theorem for derivations in Al such that as a corollary of the
theorem it is shown that the consistency of Al can be proved by induction along < up to the ordinal
diagram (&,1,0). In the other words, we want to give a normal form theorem for derivations in Al ,
which satisfies the following conditions:

o It implies the consistency of AL .

¢ It can be proved by induction along <g up to (¢, 1,0).

Theorem 2 given in Section 2 is just such a theorem. Then it is also considered as an analogue of
Hinata’s theorem. In Section 2, we shall give another normal form theorem (Theorem 1) for derivations
in AI;. It implies the w-consistency of Al; and is proved by induction along <g up to the ordinal
diagram (¢,1,1). It is also considered as an analogue of author’s theorem.
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1 The system Al

The system considered here is obtained from Arai’s original AIL; (cf.[2],[3]) by some modifications.
In this section we explain the system Al in detail.

Definition 1.1 The language £ is the first order language whose nonlogical symbols consist of the
following symbols:

1. Individual constant: 0;
2. Function constants: ’ (successor) and f for each primitive recursive function f;
3. Predicate constant: =.

The language £ + {Yp,Y1,¢0,¢1} is the language obtained from £ by adding a unary predicate
variable Yy and a binary predicate variable Y7 and individual constants ¢y and c;.

Let < be a primitive recursive well-ordering on w, with the least element 0 and the largest element
€. And let g be a characteristic function of <. Then s < t denotes the formula g(s,t) = 0.

Let t be a closed term in £. Then v(¢) is used to denote the value of ¢ under the standard
interpretation.

Definition 1.2 A formula in £ + {Y5,Y],¢o,c1} is said to be an arithmetical form if it includes no
free individual variables.

Definition 1.3 The language £’ is the language obtained from £ by adding unary predicate variables
X; (i € w) and adding binary predicate constants Q‘B and ternary predicate constants Q? for each

arithmetical form ®B in £+ {Y5,Y1,¢,¢;1}. We write Q?uts for Q?uts. A formula in £’ is said to be
inessential if it is of the form Q%ts and includes at least one free individual variable.

Definition 1.4 Al is a system formalized in the language £’ and consists of the following initial
sequents and inference rules:

1. Initial sequents
- (a) Logical initial sequents:
D — D, where D is an arbitrary atomic formula.

(b) Mathematical initial sequents:

The sequents which consist of atomic formulas in £ and are true under the standard inter-
pretation.

2. Inference rules

(a) Inference rules of LK without inference rules for D.

(b) Inference rules for D:

D:left D:right

r-4A,A BT —-A AT-A 4 T-oAB
ADBI'- A r-AADB '-AADB




(©)

(d)

(f)
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Term-replacement:

I(s) — A(s)
I'(¢) — A(t)
s and ¢ are closed terms such that v(s) = v(t)

This inference rule is considered as a structural rule.
Equality rule: ‘
F-Ajt=s T>AF@t) F(s), = A
I'-A
t and s are arbitrary terms

t = s,F(t) and F(s) are called the auziliary formulas and also F(t) and F(s) are called
the equality formulas. This inference is said to be inessential if t = s includes at least one
free individual variable and F(t) is not identical with F(s).

Induction rule:

I'— AA(0) A(a),T — A A(a’) A@R),T — A
'r-A
a does not occur in the lower sequent and ¢ is an arbitrary term

A(0), A(a), A(d’) and A(t) are called the auziliary formulas and also A(a) is called the
induction formula. a and t are said to be the eigenvariable and the induction term. This
inference is said to be constant normal if its induction formula contains at least one oc-
currence of its eigenvariable and its induction term contains at least one free individual
variable.

Inference rules for Q%:
QB left

T-At<t BV,Q%8 ts),I-A

QBts,T - A
X does not occur in the lower sequent and t, s are arbitrary terms

Q% :right

ToAt<E T—A%BX03¢ts)

T - A,QBts
V is an arbitrary unary abstract and t,s are arbitrary terms

In Q%:left, t < ¢ and B(V, Q%,t, s) are called the auziliary formulas and Q%ts is called
the principal formula. In Q%:right, t < ¢ and B(X, Q%,t, s) are called the auziliary
formulas, ths is called the principal formula and X is called the eigenvariable of this
inference.
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(g) Inference rules for Q;B:

QB left QB.right
t<u,l — A QBts,T' — A ToAt<u T'— A QBts
B e OB B
Q2. ts, T —= A Qzts, T = A - A,QZts
s,t and u are arbitrary terms s,t and u are arbitrary terms

t < v and Q%ts are called the auziliary formulas and Q:E;Lts is called the principal formula.

2 Normal form theorems and their applications

In this section we explain our normal form theorems and their applications. First of all, we give
definitions necessary to state our theorems.

Definition 2.1 Let T' be a sequence A;,---, A, of formulas. Let (i1,42,---,%) be a sequence of
natural numbers such that 1 < 4; <43 < -+ <4t < n. Then, the sequence 4;,,---, A;, is called a
part of I'. T is used to denote a part of I'. Let A — II be a sequent. Then A* — II* is called a part
of A - 1II.

Definition 2.2 Let m be a derivation with the end sequent S in Al . And let S* be a part of S and
C a formula in w. Then C is said to be (S*)-implicit if a descendant (cf.[10]) of C satisfies one of the
following conditions:

1. It is a cut formula.

2. It is an auxiliary formula of an equality or an induction.

o

. Itisin S*.
4. It is an atomic formula.

Otherwise C is said to be (S*)-ezplicit. And also C is said to be implicit if a descendant of C satisfies
one of the above conditions 1,2. Otherwise C is said to be explicit.

Let 7 be an inference in 7. Then [ is cailed (S*)-implicit or (S*)-ezplicit according as its principal
formula is (S*)-implicit or (S*)-explicit. And also I is called implicit or ezplicit according as its
principal formula is implicit or explicit. '

Definition 2.3 A free individual variable in a derivation is said to be redundant if it occurs in an
upper sequent of an inference I and does not occur in the lower sequent of I and is not used as the
eigenvariabie of 1,

Definition 2.4 Let T be a subtheory of Al and let 7 be a derivation in AI;y. Then a logical inference
I'in 7 is said o be reducible with respect to T if one of the auxiliary formulas of 7 is derivable (refutable)
in T provided that it belongs to the antecedent (succedent) of the sequent in which it occurs.

Definition 2.5 Let 7 be a derivation with the end sequent S in Al¢. Then 7 is said to be normal if
it satisfies the following conditions:



1. It includes no cuts, whose cut formulas are not inessential formulas.
2. It includes no redundant variables.

3. It includes no inductions except constant normal ones.

4. Tt includes no equalities except inessential ones.

Let S* be a part of S. Then 7 is said to be (S*)-strongly normal if it is normal and satisfies the
following condition:

*5. It includes no (S*)-explicit inferences which are reducible with respect to Al .

Especially, we say that « is strongly normal if it is (—)-strongly normal.
Then we have the following theorems.

Theorem 1 We can transform any derivation in Al into a strongly normal one with the same end
sequent.

Theorem 2 We can transform any derivation in AI‘E' into a normal one with the same end sequent.

In Section 4, Theorem 1 will be proved by induction along <o up to (¢,1,1) and Theorem 2 will
be proved by induction along <g up to (¢,1,0), where (£,1,1) and (§,1,0) are ordinal diagrams and
<o is a well-ordering over the ordinal diagrams in Takeuti’s system of ordinal diagrams O({ + 1,2)
(cf.[10]).

Theorem 1 implies the following corollary. Thus, by induction along < up to (§,1,1) we can show
that Al is w-consistent.

Corollary 1 Al is w-consistent.

Proof. Let A(a) be an arbitrary formula which includes no free individual variable without @ and
— A(n) is derivable in AT for all natural number n. Then it suffices to show that VzA(z) — is not
derivable in AI; . Now, we suppose that VzA(z) — is derivable in AI,;". Then there exists a strongly
normal derivation 7 of VzA(z) —. Assume that = includes at least one non-structural inference.
Note that the end-place of 7 includes no free individual variables and hence it includes no cuts. If an
inference is an induction or an equality or an inference for Q% or an inference for Q;B, then it does
not belong to the boundary of n. Thus every boundary inference is a V:left whose auxiliary formula
is of the form A(t) where ¢t is a closed term. But it is impossible, because 7 is strongly normal and
— A(t) is derivable in AI; by our assumption. Thus 7 does not include non-structural inferences.
But it is clear that there does not exist such a derivation. So Al is w-consistent. I

Theorem 2 implies the following corollary. Thus, by induction along <o up to (¢,1,0) we can show
that AL is consistent.

Corollary 2 AI{ is consistent.

Proof. Similar to corollary 1. » 1

42
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3 Preliminaries

In order to prove our theorems, we shall consider the system Al obtained from AI by adding
the following inference rule, called substitution rule,

T(X) = A(X)
T(V) = A(V),

where I'(V) — A(V) is the sequent obtained from I'(X) — A(X) by substituting a unary abstract V
for X. Then X is called the eigenvariable of this inference and V is called the substituted abstract of
this inference.

Definition 3.1 The grade of a formula A, denoted by g(A), is defined as follows:
1. g(A) =0, if A is an atomic formula which is not of the form Q‘;Buts.
2. g(Q?uts) =1, where s,t and u are arbitrary terms.
3. g(BAC)=g(BVC)=g(BDC)=maz{g(B),g9(C)} +1.
4. g(=B) = g(VzB) = g(3zB) = g(B) + 1.

Definition 3.2 The grade of an inference I, denoted by g(I), is defined as follows:

the grade of a cut formula of I, - if I'is a cut,

maz{g(A)|A is an auxiliary formula of I}, if I is non-structural,
g(I) = '
0, otherwise.

Definition 3.3 Let 7 be a derivation in AI; and S a sequent in m. For any natural number p, the
height based on p of S in 7, denoted by h,(S; =) or simply h,(S), is defined as follows:

1. hy(S) = p, if S is the end sequent of 7.

2. Let S be one of the upper sequents of an inference I in 7 and S’ the lower sequent of I. Assume
that h,(S’) is defined. Then

h(S) = o, if I is a substitution,
7 maz{h,(S"),9(I)}, otherwise.

Definition 3.4 The degree of a semi-formula A, denoted by dg(A), is defined as follows:

1. dg(t = s) = dg(Xt) = 0, where s and ¢ are arbitrary semi-terms and X is an arbitrary unary
predicate variable.

' dg(Q%ts) _ { v(t) o1, if Q%ts is closed and v(t) < &,

£, otherwise.

d (QSB ts) = v(u), if Q?uts is closed and v(u) < &,
Ie=utd) = £, otherwise.



4. dg(-B) = dg(B).

5. dg(BAC) =dg(BV C) =dg(B D C) = maz<{dg(B),dg(C)}, where maz is used to denote
the maximum with respect to <.

6. dg(VzB) = dg(3zB) = dg(B).

Let m be a derivation in Al;. Then the degree of a formula F in =, denoted by d(F;) or simply
d(F), is defined as follows:

dg(F), if F isimplicit in ,
0, otherwise.

d(F) = {

Definition 3.5 Let 7 be a derivation with the end sequent § in Al; and let S* be a part of S.
Let d be a mapping from the set of substitutions in 7 to the set of ordinals less than £ For each
substitution J in =, d(J) is used to denote the value of the mapping d at J and is read “degree of J.”
Then the triple (7;d; S*) is called a derivation with degree if it satisfies the following conditions for
each substitution J in 7 and each formula B in the upper sequent of J:

1. The upper sequent of J belongs to the end-place of .
2. If B is (S*)-explicit, then B includes no eigenvariables of J.

3. d(B) < d(J) holds.

Since we shall use Takeuti’s system of ordinal diagrams O(£ + 1, 2) to prove our theorems, we shall
give some related definitions and propositions.

Definition 3.6 Let i be an ordinal less than £&. Then we shall define the order <; on ordinal diagrams.
Let o and 3 be ordinal diagrams. Then

aL;feoa<;f foralli<j<E.
o £, B is used to denote the statement “o <; 8 or a = §.”

Notation Let a be an ordinal diagram and let ¢ be an ordinal less than or equal to £ and n a natural
number. Then an ordinal diagram {(n, 0, ¢) is defined as follows:

¢(0,0,a) := a, {(n+1,0,a) := ((,0,¢(n,0,a)).
Proposition 1 Let o, 8 and v be ordinal diagrams and leti < ¢ < ¢ and n € w. Then,
o <o aff.

2. a<;(¢,0,a) forj <.

3. (4,0,0) <41 (¢,0,8).

4- a0 < (€,0,7) = ol <i (¢,0,7).

5. Ifa < B, then (¢,0,a) <; (¢,0,8).

6. (¢,0,a)l(¢, 0, 8) <o (¢,0,clB).

~
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7. if & < (¢, 1,0), then {(n,0,a) < (¢, 1,0)

Proposition 2 Let j < £ and let v and § be ordinal diagrams for which there exists two finite se-
quences of ordinal diagrams 6 = &g, ...,ém and ¥ =g, ...,Ym which satisfies the Jfollowing conditions:

1. Bach v; is of the form (k,a,vit1in) for some j <k < ¢ 0<a<1 andn.
2. Each 6; is of the form (k,a,6;111n) for some 5 L 1 if v is (k,a, i1 ln).
3. bm K5 Ym.-

Then § < .

Definition 3.7 Let 7 be a derivation with the end sequent S in Al . Let S* be a part of S and let d
be a mapping from the set of substitutions in 7 to the set of ordinals less than £. Let p be a natural
nuxeber. To each sequent S in 7 and each inference I in 7, we assign ordinal diagrams O,(S;m;d; §*)
and O,(I;m;d; §*), or simply O,(S) and 0O,(I), respectively, as follows:

1. If S is an initial sequent, then
0,(5) = 0.

2. Let 5; (1 <4 < n) be the upper sequents of J. Assume that O,(S;) are defined for each
1<i<q. T

(2.1) If I is a weak inference or a term-replacement, then
0,(1) = 0,(8).
(2.2) If T is a cut, then
O,(I) = 0p(81)40,(S2).
(2.3) If I is an (8*}-explicit logical inference, then

[ O,(S1)H(¢,1,0), I has one upper sequent,

O,(I) = O, (S1)10,(52)8(¢,1,0), I has two upper sequents.

(2.4) If I is an (5*)-implicit logical inference or a Q%:right or an inference for Q§7 then

0,(51)4o, I has one upper sequent,

0,(I) = { O0,(51)10,(52), I has two upper sequents.

(25)Ifiisa Q%;ieft, then
Op(I) = 0,(S1)10,(52)4(¢, 0,0).
{(2.6) I { is an equa;lity, then |
Op(I) = O,(51)§0,(52)40,(S3).
(2.7 ¥ I is an induction, then
Op(1) = Op(SUH(E,0, 0y(52))H05(55).

(2.8) If { is a substitusion, then



3. Let S be the lower sequent of I.
(38.1) If I is a substitution, then

0,(8) = (d(1),0,0,(1)).

(3.2) If I is not a substitution, then
0,(8) = &(hy(81) — R, (85),0,0,(1)).

Finally, we define the ordinal diagram O,(m;d; S*) by (£,0,0,(5)).

Proposition 3 Let {r;d; S*) be a derivation with degree and S’ a sequent in w. And let p and o be
natural numbers. If o < p, then

05(8")Zo€(ho(S') = ho(5'),0,0,(5")).

4 Proofs of our theorems

In this section, we shall prove the following lemma by induction along <o up to (¢,1,1).

Lemma 1 Let (7;d; 5*) be a derivation with degree. Then we can transform m into a (S*)-strongly
normal derivation in Al; with the same end sequent.

This lemma, implies Theorem 1 as follows.

Proof of Theorem 1. Let 7 be a derivation in AI;. Note that « includes no substitutions. So,
(m; @; —) is a derivation with degree. Thus, by Lemma 1, we can transform 7 to a strongly normal
derivation. I

Theorem 2 can be proved by the method similar to one used in the following proof of Lemma 1.
Then note that we use induction along <g up to (¢,1,0).

The rest of this section is devoted to proving Lemma 1.

Proof of Lemma 1. We shall prove this lemma, by induction on Oy(7;d; $*). We suppose that § is
of the form I' — A and $* is of the form I'™* — A*. We can suppose that 7 includes no redundant
variables, because dg(F(t)) < dg(F(a)) for any semi-formula F and any semi-term £. And also we
can suppose that if there exists a weakening I in the end-place of 7w then every inference below I is a
weakening or an exchange, because if 7 does not satisfy the above condition then we can transform
(m;d; §*) to a derivation with degree (n';d’; $*) such that 7’ satisfies the above condition and every
substitution in 7’ has same degree as the corresponding one in 7 and Oy(7;d; S*) €,00(7";d’; $*) by
the usual method.

We shall divide our proof into some cases. When we shall consider a case, we assume that the
proceeding case(s) do not hold.

In this proof, the letter “S” in the expression “A 5, 11" is used to denote the sequent “A — II”
itself. And also we shall omit the superscript $B in Q% or Q? if there is no danger of confusion.

(1) The case where 7 includes at least one logical initial sequent S in the end-place.

46
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(1.1) The case where a descendant of a formula in S is a cut formula.
Assume that = is of the form:

D3D
7r15
A3TD D'3pr

ASn, D"

where D' (D") in S; is a descendant of D in the antecedent (succedent) of S.

Note that D" is (§*)-implicit. Because, if D" is atomic, it is clear that D" is (8*)-implicit. So,
we assume that D" contains at least one logical symbol. Since D is atomic, D” is obtained from D
by at least one substitution. Since (r;d; $*) is a derivation with degree, D" in 7 is ($*)-implicit.

Let ho(S1;7) = p and ho(S;7) = o and let A* — A*, D’ be the sequent obtained from S; by
deleting the (S*)-explicit formulas. Then we reduce 7 to the derivation 7': :

T
A3 D
term-replacements

A3, D"

Here, note that D" is also (S*)-implicit in #'. Let d’ be the mapping from the set of substitutions
in 7’ to the ordinals less than £ such that, for each substitution J' in 7', d'(J') = d(J), where
J is the corresponding one in 7. The letter “d’” is also used to denote the restriction of d’ to
the set of substitutions in m;. Then (n';d’; $*) is a derivation with degree. Next we shall prove
Oo(S;m';d'; §*) <o Oo(S;m;d; §*). Note that ho(Sy;7') = o. Since
Oo(S1;7';d’;8*) = 0,(S1;my;d';A* — II*, D)
<y &(p—0,0,0,(S1;m;d;A* - 1II*, D"))
= E(p_a’(),OO(Sl;"r;d;g*))’

we have

Oo(S;';d;8*) = Op(Sy;n';d'; 8)
Lo &(p—0,0,00(S1;m;d; 5%))
<o &(p— 0,0,00(S1;m;d; $*)§O0o(Sa;7; d; §*))
= Oo(S;m;d;5*).

Thus, Og(7';d'; §*) <o Oo(7;d; 3*) by proposition 2. Hence we can transform 7’ to a (S*)-strongly
normal derivation with the same end sequent, by induction hypothesis.

(1.2) The other case.

Since the proceeding case does not hold, there exists a formula A (B) which is a descendant of the
antecedent (succedent) formula of S and occurs in §. -
If A is atomic, then B is also atomic and hence it is clear that we can obtain a desired derivation.



So, we assume that A contains at least one logical symbol. Then both A and B are in $*, because
both A and B are obtained from the formulas in S by at least one substitution. Thus it is clear that
we can obtain a desired derivation.

(2) The case where 7 includes no boundary inferences.
Then 7 includes no logical initial sequents. Thus we can obtain a desired derivation, since the
mathematical initial sequents are closed under cut rule.

(3) The case where 7 includes at least one ($*)-explicit inference which is reducible with respect to
AL .
Let I be such an inference. Since the other cases are treated similarly, we shall consider the case
where I is a A :left. :
Assume that 7 is of the form:
™1
A AT

AAB,AST

Let ho(S1;7) = p and ho(S;7) = o and let A* — II* be the sequent obtained from S by deleting the
(§*)-explicit formulas. By our assumption, — A is derivable in Al . So, let & be a derivation of — A.
Note that # contains no substitutions. Then we reduce 7 to the derivation =':

£ m:
54 anSn
CA-TI
AAB,AST

Let d’' be the mapping from the set of substitutions in #' to the ordinals less than £ such that, for
each substitution J' of in ', d'(J'") = d(J), where J is the corresponding one in 7. The letter “d"
is also used to denote the restriction of d’ to the set of substitutions in 7;. Since m; and # include
no substitutions, (7';d’; S*) is a derivation with degree. Then we shall prove Oy(S;7';d'; 5*) <o
Oo(S;m;d; S*). At first, we have

Oo(Sy;m';d';8*) = 0,(S1;m;d; A A —1IT%)
p
Ly O0,(Sy;m;d ;A - IIY)
= O0¢(S1;7;d; S*).

Next we shall note that every logical inference in # is (8*)-implicit in 7’. Thus, Oo(S;7';d'; $*) <o
(£,1,0). So

Oo(S;';d'; §*) = €(p—0,0,00(8;7";d'; S*)O0o(S1;7';d'; §*))
<o £&(p—0,0,(£,1,0)000(S1; m; d; 5*))
= 0o(8;m;d;S*).

So, Og(n';d'; §*) <o Op(m;d; S*) by proposition 2. Hence we can transform 7’ to a (S*)-strongly
normal derivation with the same end sequent, by induction hypothesis.
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(4) The case where 7 includes at least one equality which beiongs to the boundary of .
This case is treated as usual.

(56) The case where 7 includes at least one inducticn which belongs to the boundary of .
Similar to the case (4).

(6) The case where 7 includes at ieast one explicit logical inference which belongs to the boundary of
.
This case is ireated as usual.

(7) The case where 7 includes at least one explicit inference for Q% or Q";B, which belongs to the
boundary of .
Similar to the case (8).

(8) The case where all the inferences which belorg to the boundary of 7 are implicit inferences.
Then there is at least one suitable cut. Let I be a suitable cut. We shall consider the cases where
the cut formula of I is of the form Qts or QLts.

(8.1) The case where the cut formuia of I is of the form Qts.
Assume that 7 is of the forra:

ks 13 .

. . By St . ' Sy
Ay = Tyt <& Ay > I, B(X, Quuy, t1,01) Ag B Tty <& BV, Q<eg.t2,50), Ag = 11y

Sy Sy o
Ay = I, @ty Qtasz, Ag = Mg

S3 ) ’ S,
Az 23 s, Qts Qts,Ag 2310,

A3. Ay % LIER 17)

s
A=H In

T A

Let j = d(B(X, (<t,,s)) and let S be j-resolvent of Ss, i.e. the upper sequent of the uppermnosh
substitution I, under S5 whose degree is not greater than j, if such exists; otherwise, the end sequent
of m. Assume that ho(S9:;7) = pa and hy{Sz;7) = pp. And also assume that the sequent Ay -
113,12 < € is the sequent obtained from Sy by deleting the (5*)-explicit formulas in 7.

(8.1.1) The case where Qts is not closed.
We reduce 7 to the following derivations 7m; and mo:

T 2
As 310, Qts Qts, Ay 33 11,
As, Ay 58 Qts, T, TI, As, A, Qts B3 115,10,
T — Qts, A T,Qts — A

Let d; be the mapping from the set of substitutions in ; to the ordinals less than £ such that, for
each substitution J' in m;, di(J') = d(J), where J is the corresponding one in 7. Then {my;dy: " —



Qts, A*) and (ma;d2; T*,Qts — A*) are derivations with degree. We shall prove Og(Ss; m1;dy; ™ —
Qts, A*) g Oo(Ss;m;d; S*).

Oo(Ss;m1;d1;T* — Qts,A*) = Op(Ss;m;dy; T — Qts, A*)
= Oo(Ss;m;d; S*)
<o Oo(Ss;m;d; $*)WOo(Sa; 73 d; 5*)
= Oo(Ss;m;d; S*)

So, we can transform 7 into a derivation 7} whose end sequent is I' — Qts, A and which is (I'* —
Qts, A*)-strongly normal by induction hypothesis. Similarly, we have Og(Ss; 72;d2; T*, Qts — A*) <o
0y(Ss;m;d; S*). Hence, we can transform m, into a derivation 75 whose end sequent is I', Qts — A
and which is (T'*, Qts — A*)-strongly normal. We shall define 7’ as follows:
U T
T'—-Qts,A I,Qts > A
- AQts Qts,I' - A
LI'—AA
I'—-A

Then 7' is ($*)-strongly normal, because the free individual variables in ¢ or s occur in T or A.
(8.1.2) The case where Qts is closed.

(8.1.2.1) The case where ¢ < ¢ is true under the standard interpretation.
We reduce 7 to the derivation '

Ay — nl»m(va-(il,tl)sl)

Ay = B(X, Queyrt1,51), 111, Q151

Az = B(X,Qxi,t,5),113,Qts  Qts, Ay — Iy
A3’A4 hd %(Xr Q-(h t, 3)» H3’n4

A = B(X, Q<e,t, 8), II

. San

A 1B(X,Quts) | B(V, Quryot2,52), A2 = Ty
0

A1, %(V, Q*g,t,#) %(Vv Q-{tsty 3)1A2 - n2
A A; S,

sl
Qt2sz, Ag, A 31,11,

Az — I3, Qts Qts,Ag,A — 11,114
Az, Ag, A = 11,113,114

A A= I,I
A

S
=

Iy

r—A

50
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Let d’' be the mapping from the set of substitutions in 7' to the ordinals less than £ such that, for each
substitution J' in 7' except Jy, d'(J') = d(J), where J is the corresponding one in 7 and d(Jp) = j.
We shall note the following facts:

L d(B(X,Qx«:t,8)) = j < j &1 =d(Qts) = d(Qt151) = d(Qt2s2).
2. For each formula A in A or II, d(A) <X j by the definition of Iy.

By the above facts, we can show that (r';d’; S*) is a derivation with degree. Next we shall prove
Oo(Ip;m'; d'; §*) <o Oo(Ip;7;d; S*). Since

Oo(S2;m;d; 8*) = &(par — p2,0, Oo(Sat; w3 d; 5*)§00(Sar; m; d; S*)H(£, 0, 0))
and-

Oo(Sg;'5d'; §*) = &(pat — p2,0, (4,0, Oo(Jo; 7'; d'; 5*))400(S2r; 7' d'; 5*)),
we have Og(Sh;n';d'; S*) <41 Oo(S2;m;d; 5*). By proposition 2, we have Oq(Ip;7';d'; §*) L1
Oo(Iy;m; d; 3*). We shall note that Og(Jo;n';d'; §*) is the only one j-section (cf.[10]) which occurs in
Oo(Ip;7';d'; $*) and does not occur in Og(Io; 7;d; S*) and every k-section (k < j) in Op(Ip; n';d'; S*)
occurs in Og(Ip;m;d;5*). So, in order to show that Og(lp;n';d’; S*) <o Oo(Io;m;d;S*), it suf-
fices to show that Og(Jo;n';d'; 5*) <j Oo(Io;m; d; 5*). But it is clear, because Og(Jo;7';d'; $*) <o
Oo(Io;m;d; S*). Hence we have Og(Ip; '; d'; §*) <o Op(Ip; 7;d; §*). Thus, we have Oy(n';d'; 5*) <o
Oy (m;d; $*) by proposition 2. Hence we can transform 7’ to a (S*)-strongly normal derivation with
the same end sequent, by induction hypothesis.

(8.1.2.2) The case where t < £ is false under the standard interpretation.
We reduce 7 to the derivation 7':

Tl ©

Ay Bty <€ t<E5
Ay =1l

Qts, A2 i% H2

\

Let d’ be the mapping from the set of substitutions in #’ to the ordinals less than £ such that, for
each substitution J’ in ', d'(J') = d(J), where J is the corresponding one in 7. Then (n';d'; $*)
is a derivation with degree. The letter “d'” is also used to denote the restriction of d' to the set
of substitutions in 5. We shall show that Og(Sq;7';d'; §*) <o Oy(Sa;;d; 5*). Then, note that
ho(Sai; ') = p2.
Oo(Sa;m';d';8*) = O,y (Sarymar;d's Ay — 105,10 < €)
Ly E(par = P2,0,0,,, (Sars w5 Ay — 113,83 < €))
= &(pa — p2,0,00(S2;7;d; 5¥)).
Thus,
Oo(Sy;m';d';8*) = Op(Sar;';d'; S*)H0
<o &pa — p2,0,00(S2; w3 d; 5*))40
<o &(pu = p2,0,00(Sas; m; d; §*)Oo(S2r; w5 d; 5*)4(£, 0,0))
= Oo(Sa;m;d; S*).



So, Og(n';d'; $*) <o Op(m;d; 8*) by proposition 2. Hence we can transform 7’ to a (S*)-strongly
normal derivation with the same end sequent, by induction hypothesis.

(8.2) The case where the cut formulas of I are of the form Q,ts.
Assume that 7 is of the form:

A Mt <wm A B I, Qtis1  Qtasy, Ay — Il
S , 52
Ay B30, Quu tis: Quyt2s2, Ay 310,

A 3 II3, Q<uts Q<uts, Ay 5 11, I
As, Ay 33 T, 10,

5
AS

T>A ,
where S denotes the uppermost sequent below I whose height based on 0 is less than that of the upper

sequents of I. Assume that ho(S3;7) = p and ho(S;7) = 0. Then note that ¢ < p by our choice of
Iy. .

(8.2.1) The case where Q-.ts is not closed.
We reduce 7 to the derivation =':

S1e :
A = 11, Qty sy Qtgsnr Ay — Ty

Sy
A =-Qt151,1I, Quuyt1s1 Q<uyt2s2, A2, Qtasy — Il

Az — Qts, T3, Quts Quuts,Ag = MMy Az — I3, Quts Q<uts, Ay, Qts — Ty

s’ "

Az, Aq 3 Qts, T3, T4 Az, Ag, Qts 3 Mg, T,
T — I
A= Qts, I A,Qts = II
A= 1,0ts , Ots,A > 1T

MA S ILI

ASn

Let d’ be the mapping from the set of substitutions in 7' to the ordinals less than £ such that, for
each substitution J' in 7', d'(J') = d(J), where J is the corresponding one in 7. We shall note the
following facts:

L. d(Qts) 2 £ = d(Q<uts).
2. There exist no substitutions between S§ and §’.

3. There exist no substitutions between S{ and S”.
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By the above facts, it is clear that (n';d’;S*) is a derivation with degree. Next we shall prove
Oo(S;7';d'; §*) <o Oo(S;m;d;S*). Since we have Og(Sy;7';d’; 8*) <o Oo(S1;m;d;S*), we have
Oo(I';';d'; §*) <o Oo(I;7;d; S*). Similarly, we have Og(I";n';d'; §*) <o Oo(I;7;d; $*). Note that
ho(S';7") = ho(S";7') = 0. Thus, C
Oo(S;';d;8*) = &(p—0,0,00(I';w';d'; S*)He(p — 0,0, 00(I';n'; d'; §*))
<o &(p—0,0,00(I;m;d; S*)) (because o < p)
= 0y(S;m;d;5*).

So, Og(n';d’; 8*) <o Oo(m;d; S*) by proposition 2. Hence we can transform 7’ to a (S’;)-strongly
normal derivation with the same end sequent, by induction hypothesis.

(8.2.2) The case where Q<yts is closed.

(8.2.2.1) The case where ¢ < u is true under the standard interpretation.
Similar to the case (8.2.1).

(8.2.2.2) The case where ¢ < u is false under the standard interpretation.
We reduce 7 to the derivation 7'

A o Tt <

S
Ay Bty <ug, 00, Q<o t151

Az =t < u, I3, Quts Q<uts, Ay —» T
Az, Ay =t < u,II3,T04

N S
Ast<ul !

A-Ilt<u t<u—

Let d’ be the mapping from the set of substitutions in 7' to the ordinals less than ¢ such that,

for each substitution J' in #', d'(J') = d(J), where J is the corresponding one in 7. Note that

d(t < u) = 0. Then it is clear that (n';d’; S*) is a derivation with degree. Next, we shall prove '
Oo(8;';d'; §*) <o Oo(S;m;d;8*). Since we have Og(S1;7';d’; 8*) <o Oo(S1;m;d;S*), we have

Oo(I';n';d'; 8*) <o Oo(I;m;d; S*). Thus,

00(S;7';d';8*) = &(p—0,0,00(I';7';d'; $*))H0
<o &(p—0,0,00(I;7;d; S*)) (because o < p)
= 0(S;m;d;S*).

Thus, Og(7';d'; §*) <o Oo(w;d; §*) by proposition 2. Hence we can transform 7' to a (S*)-strongly
normal derivation with the same end sequent, by induction hypothesis.

This completes a proof of Lemma. 1
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