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In this note, we shall consider about Buss and Tur\’an’s extensions of Haken’s
result about the length of resolution derivations of the pigeonhole principle.

To determine whether if there exists a propositional proof system with short proofs
of tautologies is one of the most fundamental problem in logic and computational
complexity theory. A system $S$ is called super iff there is a polynomial $p(x)$ such
that for every tautology $\phi,$ $S$ has a proof with length less than $p(|\phi|)$ , where $|\phi|$ is
the length of $\phi$ , and Cook and Reckhow showed in $1970’ \mathrm{s}$ that the existence of a
super system is equivalent to $\mathrm{N}\mathrm{P}=\mathrm{c}\mathrm{o}-\mathrm{N}\mathrm{p}$. However, it seems that we have not have
enough information about propositional proof systems nor a strategy which might
lead us to the solution of the problem directly. Nowadays, showing a given system is
not super and separating two systems with respect to the length of proofs are rather
important as a research problem.

There are four typical propositional proof systems, called resolution, bounded
depth Frege, Frege, and extended Frege, which are ordered from weaker one to
stronger one (cf. [3, 6, 8]). It is known that resolution and bounded depth Frege are
not super, and the pigeonhole principle plays a central role in their proof. Let $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{m}$

be a propositional formula which means that every function from $\{0,1, \ldots , m-1\}$

to $\{0,1, \ldots, n-1\}$ is not $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ . Then, $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{m}$ is a tautology whenever $n<m$ .
Consider $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{n+1}$ . Haken [5] proved that every resolution derivation of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{n+}1$

contains exponentially many clauses, and this shows that resolution is not super.
Ajtai [1] showed that bounded depth Frege does not have polynomial size proofs of
$\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{n+1}$ by using some connection between bounded depth Frege and a system of
bounded arithmetic and forcing arguments on models of arithmetic. Buss [2] proved
that Frege has a polynomial size proof of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{n+1}$ , and this fact shows the existence
of a gap between bounded depth Fkege and Frege with respect to the length of proofs.
It is unknown that whether if Frege is a super system.

Consider $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{2n}$ . By using a result about the provability of the pigeonhole princi-
ple in bounded arithmetic which has been shown in Paris, Wilkie and Woods [7], we
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can show that bounded depth Frege has proofs of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{2n}$ with the length $O(n^{\mathrm{l}\mathrm{o}n}\mathrm{g})$ .
Buss and Tur\’an [4] extended the proof of Haken [5] and showed that every resolution
derivation of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{2n}$ needs the length $O(e^{n})$ , hence it turns out that there is a gap
between resolution and bounded depth Frege with respect to the length of proofs.
However, it is still unknown that whether if every resolution derivation of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{n^{2}}$

contains exponentially many clauses.
Let $p(n, m)$ be a binary function. By extending Haken’s argument, Buss and

br\’an’s proved that we can show that every resolution derivation of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{m}$ contains

$\frac{1}{2}(\frac{2}{3})^{\frac{1}{2}p(n,m)}$ (1)

clauses if
$\frac{i(m-2k-i-1)}{\frac{2}{3}(k-i+1)(k-i+2)}<1$ (2)

for $0\leq i\leq p(n, m)$ . This shows that every resolution derivation of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{m}$ con-

tains exponentially many clauses if $m=O(n)$ since $\frac{1}{25}\frac{n^{2}}{m}$ satisfies this condition.

However, this term is useless for the case $m=O(n^{2})$ since $\frac{1}{25}\frac{n^{2}}{m}=O(1)$ when

$m=O(n^{2})$ . In the following, we shall consider how one can find the term
$\underline{1}\underline{n^{2}}$

,
25 $m$

and show that their result is optimal, in the sense that we cannot prove that every
resolution derivation of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{n^{2}}$ contains exponentially many clauses by modifying

the term $\frac{1}{25}\frac{n^{2}}{m}$ .
Let

$q(i)$ $:=2( \frac{n}{4}-i)^{2}-3i(m-\frac{n}{2}+i)$

$=-i^{2}+( \frac{n}{2}-3m)i+\frac{n^{2}}{8}$ .

Since $k=(n/4)$ ,

$\frac{i(m-2k-i-1)}{\frac{2}{3}(k-i+1)(k-i+2)}<\frac{3i(m-\frac{n}{2}+i)}{2(\frac{n}{4}-i)^{2}}$ ,

hence it is enough to show $q(i)>0$ in order to prove (2). Furthermore, $q(i)>0$
holds for $0\leq i\leq p(n, m)$ if

$q(p(n, m))>0$ (3)
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since $q(\mathrm{O})>0$ and the coefficient of $i^{2}$ in $q(i)$ is negative. Let $\xi(n, m)$ be the positive
solution of $q(i)=0$ :

$\xi(n, m)=\frac{1}{2}(-(3m-\frac{n}{2})+\sqrt{(3m-\frac{n}{2}\mathrm{I}2+\frac{n^{2}}{2}})$ .

Then (3) holds if and only if

$p(n, m)<\xi(n, m)$ . (4)

Consider the case $m=an$ . Then,

$\xi=\frac{1}{2}(-(3a-\frac{1}{2})+\sqrt{(3a-\frac{1}{2})^{2}+\frac{1}{2}})n$ .

Hence, (4) holds if $p(n, an)=bn$ for sufficiently small $b$ . $\mathrm{H}\mathrm{a}\mathrm{k}\mathrm{e}\mathrm{n}’ \mathrm{S}\frac{n}{25}$ can be obtained
in this way while we must use a slightly different estimation of (2) for the case
$m=n+1$ .

Consider the case $m=an^{2}$ . In this case,

$q(i)=-i^{2}+( \frac{n}{2}-3an^{2})i+\frac{n^{2}}{8}$

$=( \frac{1}{8}-3ai)n^{2}+\frac{i}{2}n-i^{2}$ ,

so $q(b)<0$ for any $b> \frac{1}{24a}$ for sufficiently large $n$ , hence $\lim_{narrow\infty}\xi(n, an)2\leq\frac{1}{24a}$ .
Therefore, any $p(n, m)$ with $p(n, m)=\omega(\log(n))$ does not satisfy (4), and this means
that we cannot show that every resolution proof of $\mathrm{P}\mathrm{H}\mathrm{P}_{n}^{m}$ contains exponentially
many clauses for the case $m=O(n^{2})$ in this way.

Now we shall consider the case $p(n, m)$ is a monomial

$p(n, m)=sn^{t}m^{u}$ ,

where $s>0$ and $t$ and $u$ are integers. Assume that $p(n, m)$ satisfy (4). By the
above consideration, $p$ ( $n$ , an) must be $O(n)$ and $p(n, an^{2})$ must be $O(1)$ . So we have
$t+u=1$ and $t+2u=0$. Therefore, $t=2$ and $u=-1$ , and one can also determine
$s$ by the condition (3).
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