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Thermal equilibrium states which satisfy the principle of equal a priori probability are

investigated in the framework of quantum mechanics.

1. Introduction

There is a crucial gap between quantum mechanics and experimental results, which is

known as the problem for the quantum theory of measurements. That is to say, quantum

mechanical states are described by pure states, whereas experimental ones are done by

mixed states. In order to interpret the experimental results rigorously, we have to derive

the disappearance of the interference terms in quantum mechanical states. The same
problem exists between quantum mechanical states and thermal equilibrium states. For

instance, the former is described by pure states as

$p \psi=\sum_{n}|c_{n}|^{2}|n><n|+\sum n\sum_{\neq m}c_{n}c_{m}|*n><m|$ (1)

for the state $|\psi>=\Sigma_{n}c_{n}|n>\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ the complete set $|n>\mathrm{f}\mathrm{u}1\mathrm{f}\mathrm{i}11_{\mathrm{S}}$ the equations $H_{0}|n>=$

$E_{n}|n>$ and $<n|m>=\delta_{n,m}$ , whereas the latter is done by mixed states such that

$\rho_{stat}=\sum_{n}e^{-}|\beta En><n|/nZ$ (2)

for canonical ensembles in statistical mechanics, where $\beta=(kT)^{-1}(k=\mathrm{B}_{0}1\mathrm{t}_{\mathrm{Z}\mathrm{m}\mathrm{a}}\mathrm{n}\mathrm{n}’ \mathrm{s}$ con-

stant) and $Z= \mathrm{T}\mathrm{r}(\sum_{n}e^{-}\beta E_{n}|n><n|)$ (the partition function of the canonical ensemble).

The main difference between them is represented by the following two problems:

(1) In order to drive the disappearance of the interference terms some kinds of decoher-

ence mechanisms must exist in the thermal equilibrium states. (Decoherence problem)

(2) $\mathrm{T}\mathrm{h}\mathrm{e}$ relations (canonical-ensemble relations) $|c_{n}|^{2}\propto e^{-\beta E_{n}}$ , for $\forall_{n}$ must be fulfilled
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in $p_{stat}$ for the canonical ensembles. (Canonical-ensemble problem)

The first problem is quite similar to that for describing the experimental results in the

quantum theory of measurements, while the second one is a purely thermodynamical

problem. The apparent difference between the two states is represented by the existence

of heat baths in thermal equilibriums. How to write down the heat baths in the framework

of quantum mechanics has not yet clearly been known in general cases. The quantum

description of the heat baths will be the first step to describe thermal equilibriums in

quantum mechanics. In statistical mechanics total systems including the heat baths and

the objective matters (the objects) are always written down in terms of microcanonical

ensembles which describe thermally isolated systems. We shall start from the quantum

description of such thermally isolated systems. The basic assumption for the thermally

isolated systems is the principle of equal a priori probability.

For the states given in (1) the principle are expressed by the relations $|c_{n}|^{2}=|c_{m}|^{2}$ ,

for $E_{n}=E_{m}$ . It is obvious that general quantum mechanical states do not fulfill the

relations and also the states fulfilling the relations generally span only a special subspace

of the whole physical space $\mathcal{H}$ spanned by the complete set of $H_{0}$ . (Hereafter we call the

subspace the thermal subspace of $H_{0}$ and write it as $\mathcal{H}_{th\mathrm{e}rmal}.$ ) The projection of $\mathcal{H}$ to

$\mathcal{H}_{th\mathrm{e}rm}\alpha l$ will be one of the important problems in the quantum-mechanical description of

the thermal equilibriums as same as the decoherence problem. It is noted that the principle

is fulfilled by the states having energies within the certain experimental uncertainty $\delta E$ ,

that is, the relations $|c_{n}|^{2}=|c_{m}|^{2}$ must be fulfilled among the states having the energies

$E_{m}$ within $E_{n}-\delta E<E_{m}<E_{n}+\delta E(E_{n}>>\delta E)$ . This means that interaction

$H_{I}$ , of which contributions to the energy of the system are small enough to be ignored

in comparison with those of the original Hamiltonian $H_{0}$ such that $<m|H_{I}|m><$

$\delta E$ , may be included in the total Hamiltonian $H=H_{0}+H_{I}$ . It will be possible that

the physical space of the total Hamiltonian $H$ coincides with the thermal subspace of

$H_{0},$ $\mathcal{H}_{th\mathrm{e}rm}al$ . In this description the interaction $H_{I}$ will be taken to be negligible in
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thermodynamical limits. That is to say, in the limit all the contributions arising from $H_{I}$

are involved in the energy uncertainty $\delta E$ and then the thermal subspace of $H_{0}$ seems to

be realized. When we write the limit by $H_{I}arrow 0$ , we should not forget about the fact that

some physical quantities induced from the introduction of $H_{I}$ become un-measurable in

the limit. Thus we have to introduce some kinds of average operations with respect to

such un-measurable quantities. It is important that such average will be represented by

the partial trace operation (the internal trace $\mathrm{T}\mathrm{r}_{I}$) with respect to such un-measurable

quantities, which $\mathrm{p}\mathrm{l}\mathrm{a}\grave{\mathrm{y}}\mathrm{s}$ an essential role to realize the decoherence in the quantum theory

of measurements. Now we can expect that the introduction of the thermal interaction
$H_{I}$ has the possibility for solving the two problems, the decoherence problem and the

canonical-ensemble problems, simultaneously in the limit $H_{I}arrow 0$ . Actually the author

presented a simple model to realize the above scenario for a $N$-harmonic oscillator (N-

particle) system described by the original Hamiltonian $H_{0}=\epsilon\Sigma_{i=1}^{N\mathrm{t}_{a_{i}}}ai$ . In this paper I

shall discuss the general scheme for the model realizing thermal equilibriums not only for

bosonic oscillators but for fermionic ones as well.

2. Quamtum description of thermal equilibriums for $N$-oscillator system

with one energy scale

Here we shall study quantum mechanics for thermal equilibriums for a simple oscillator

system with one energy scale. [1-4]

2-1. Model: The model is described by the system composed of $N$ oscillators (or $N$

particle) which are described by the Hamiltonian $H_{0}$ as

$H_{0}= \epsilon\sum_{j=1}^{N}a_{jj}a\dagger$ , (3)

where $a_{j}^{1}$ and $a_{j}$ are, respectively, the creation and annihilation operators and follow

the commutation relations $[a_{i}, a_{j}^{\uparrow}]=\delta_{ij}$ . The phases $\theta_{j}$ are introduced to the oscillators

by using the operators $a_{j}(\theta)=a_{j}e^{-i\theta_{j}}$ and $a_{j}^{\uparrow}(\theta)=a_{j}e^{\dot{l}}\dagger\theta_{j}$ in stead of $a_{j}^{\uparrow}$ and $a_{j}$ . The
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Hamiltonian $H_{0}$ and the commutation relations do not change in such a replacement.

The eigenstates of $H_{0}$ with the eigenvalues $E_{M}=\epsilon M(M=0,1,2, \ldots)$ are given as

$|M;[n_{i}],$ $[\theta j]>\equiv|M;n_{1},$ $n_{2},$ $\cdots,$ $nN;\theta 1,$ $\theta 2,$
$\cdots,$

$\theta N>=i\prod_{=1}^{N}|ni,$
$\theta j>\delta_{\Sigma_{i}\cdot M}N=10n|$

”

(4)

where $|n_{i},$ $\theta_{j}>=|n_{j}>e^{in_{j}\theta_{j}}$ fulfills the equations $a_{j}^{\uparrow_{(\theta)}1}n_{j},$ $\theta j>=\sqrt{n_{j}+1}|n_{j}+1,$ $\theta_{j}>$

, $a_{j}(\theta)|n_{j}>=\sqrt{n_{j}}|n_{jj}-1,$$\theta>\mathrm{a}\mathrm{n}\mathrm{d}a_{j}^{\mathrm{t}_{()a_{j}(\theta)}}\theta|n_{j},$ $\theta j>=n_{j}|n_{j},$ $\theta_{j}>$ . The states satisfying

the principle of equal a priori probability for the eigenstates of $H_{0}$ are given as

$|M,$ $N,$
$[ \theta]>=\sum_{np[i\mathrm{J}}|M;[n_{i}],$

$[\theta_{j}]>/\sqrt{W(M,N)}$, (5)

where the sum should be taken over all the different combinations of $[n_{i}]=(n_{1}, n_{2}, \ldots, n_{N})$

and the number of the combinations $W(M, N)$ is given by $W(M, N)= \frac{(M+N-1\}!}{M!(N-1)!}$ .

2-2. Relative-phases interaction: We introduce the new operators;

$\alpha_{j}(\theta)\equiv(\sqrt{\hat{N}_{j}+1})^{-1}a_{j}(\theta)$ for $\dot{i}=1,$
$\ldots,$

$N$ , (6)

where $\hat{N}_{j}=a_{j}^{\dagger}a_{j}$ is the excitation-number operator for the $j\mathrm{t}\mathrm{h}$ oscillator. We see that

$\alpha_{j}^{\uparrow}(\theta)|nj,$ $\theta_{j}>=|n_{j}+1,$ $\theta_{j}>$ , for $\forall_{n_{j}}$ and $\alpha_{j}(\theta)|n_{j},$ $\theta_{j}>=|n_{j}-1,$ $\theta_{j}>$ , for $\forall_{n_{j}}\geq 1$ except

$\alpha_{j}(\theta)|0>_{j}=0$ . The relative-phase interaction with the energy scale $\epsilon_{g}$ is written as

$H_{I}r((1)[ \theta])=\epsilon\frac{\hat{N}}{N}\sum_{j}(\frac{1}{N}\sum_{k}\alpha j\mathrm{t}gke+|\alpha 0i\theta_{jk}>jj<0|)$ , (7)

where $\alpha_{j}^{\uparrow}=\alpha_{j(}^{\uparrow \mathrm{o})},$ $\alpha_{k}=\alpha_{k}(0),\hat{N}=\Sigma_{j=1}^{N}\hat{N}_{j}$ (the total excitation-number operator) and

the relative phases $\theta_{jk}=\theta_{j}-\theta_{k}$ . We obtain the relation

$H|M,$ $N,$ $[\theta]>=(\epsilon+\epsilon_{g})M|M,$ $N,$ $[\theta]>$ (8)

for $H=H_{0}+H_{I}^{(1)}r([\theta])$ . We see that the physical space of the total Hamiltonian $H$ is

spanned by the set of the states $|M,$ $N,$ $[\theta]>\mathrm{f}\mathrm{o}\mathrm{r}M=0,1,2,$
$\ldots\ldots$ , which is nothing but

the thermal subspace of $H_{0}$ . Thermal limit will be described by the limit $\epsilon_{g}arrow 0$ , where

the eigenvalues of $H$ can approximate to those of $H_{0}$ .
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2-3. Decoherence: In order to derive microcanonical ensembles the decoherence with

respect to the eigenstates of $H_{0}$ must be derived. It can be realized by the average with

respect to the phases, which are un-measurable in the thermal limit $\epsilon_{g}arrow 0$ , such that

$\rho_{\mathrm{e}ff}$ $=$ $\prod_{j=1}^{N}\int_{0}2\pi\frac{d\theta_{j}}{2_{T}}|M,$ $N.[\theta]><M,$ $N,$ $[\theta]|$

$=$ $\frac{1}{W(M,N)}\sum_{p[n.]}.|M:[n_{i}]><M;[n_{\dot{\mathrm{t}}}]|$ . (9)

2-4. A useful expression on the thermal subspace $\mathcal{H}_{therm}a\iota$ : Let us introduce a pair of

useful operators $(\beta,\overline{\beta})$ , which are defined by $\beta\equiv\sum_{j=1j}^{N}\alpha(\theta),/N$ and $\overline{\beta}\equiv\sum_{j=1j}^{N}\overline{\alpha}(\theta)$ with
$\overline{\alpha}_{j}(\theta)\equiv a_{j}^{\mathrm{t}}e^{i\theta_{j}}\sqrt{\hat{N}_{j}+1}$ . We easily see that on the thermal subspace $\mathcal{H}_{th\mathrm{e}rmal}\beta|M,$ $N,$ $[\theta]>=$

$\sqrt{\frac{M}{M+N-1}}|M-1,$ $N,$ $[\theta]>,\overline{\beta}|M,$ $N,$ $[\theta]>=\sqrt{(M+1)(M+N)}|M+1,$ $N,$ $[\theta]>$ and also
$[\beta,\overline{\beta}]=1$ and $\overline{\beta}\beta|M,$ $N,$ $[\theta]>=M|M,$ $N,$ $[\theta]>$ . We shall see that they are very useful

in the following discussions. For example we can rewrite $H_{I}^{(1)r}([\theta])$ in the following very

simple form on $\mathcal{H}_{thermal;}$

$H_{I}^{(1)r}([\theta])=\epsilon_{\mathit{9}}\overline{\beta}\beta$ .

2-5. Derivation of canonical ensembles and temperature: We divide the total system

into two groups, $b_{j}\equiv a_{j}(j=1,2, \ldots, N_{b})$ (b–group) and $d_{j-N_{b}}\equiv a_{j}$ for $j\geq N_{b}+1$ (d-

group). The eigenstates of the total Hamiltonian $|M,$ $N,$ $[\theta]>\mathrm{c}\mathrm{a}\mathrm{n}$ be written in terms of

the product of the eigenstates of the groups as

$|M,$ $N,$ $[ \theta][\emptyset]>=\sum M_{b}=0MMd0\sum_{=}^{M}\delta Mb+hId,hf\frac{\sqrt{W(M_{b},N_{b})}}{\sqrt{W}}|Mb,$ $Nb,$ $[\theta]>_{b}\otimes\sqrt{W(M_{d},N_{d})}|M_{d},$ $N_{d},$ $[\emptyset]>_{d}$ ,

(10)

where $|M_{b},$ $N_{b},$ $[\theta]>_{b}$and $|M_{d},$ $N_{d},$ $[\phi]>_{d}$ are, respectively, the eigenstate on the thermal

subspace of the b–group and that of the $d$-group. Hereafter we shall treat the $b$-group as

the heat bath and the $d$-group as the object. Then the b–group is taken to be much larger

than the $d$-group, i.e. $N_{b}>>N_{d}$ and $M_{b}>>M_{d}$ .
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The effective density matrix for the object can be derived by performing the internal

$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(\mathrm{T}\mathrm{r}_{I})$ for the heat-bath variables such that

$\rho_{ef!}=\sum_{b}^{M}M=0\sum_{M_{d}=0}\delta M_{b}+M_{d},M\frac{W(M_{b},N_{b})}{W(M,N)}\sum Mp[mj]|M1;[m_{j}]>dd<M_{1}$; $[m_{j}]|$ . (11)

In the above equation the integration over the phases $[\phi]$ is also taken, because the inter-

action of the object with the heat bath is small enough to ignore, i.e. $\epsilon_{g}<<\epsilon$.

The canonical ensemble is realized at the maximum of the probability $P_{M}(M_{b})=$

$\frac{W(M_{b},N_{b})W\mathrm{t}M-M_{b},N-N_{b})}{W(M,N)}$ for finding the state $|M_{b},$ $N_{b},$ $[\theta]$ $>_{b}$ $\otimes|M_{d},$ $N_{d},$ $[\phi]$ $>_{d}$ in

$|M,$ $N,$ $[\theta][\phi]>$ . At the maximum we have the relation

$\frac{1}{W(M_{b},N_{b})}\frac{\partial W(M_{b},N_{b})}{\partial M_{b}}=\frac{1}{W(\Lambda I_{d},N-Nb)}\frac{\partial W(M_{d},N-Nb)}{\partial M_{d}}|_{M_{d}=M-M}b$. (12)

Thus the temperature is introduced as the common physical quantity between the two

systems. We can estimate the change of the coefficients with respect to the change of the

energy of the object, that is, $\triangle E^{ob}=\epsilon\triangle M_{d}$ with $\triangle M_{d}\sim M_{d}<<M,$ $M_{b}$ , as

$\frac{W(M_{b}-\triangle MdN_{b})}{W(M_{b},N_{b})},\sim(\frac{M_{b}}{M_{b}+N_{b}})^{\Delta}M_{d}=e-\frac{1}{\epsilon}\Delta E^{\circ}b\ln(1+Nb/M_{b})$ . (13)

We can determine the temperature by using the quantities of the heat bath as

$kT=\epsilon(\ln(1+N_{b}/M_{b}))^{-1}$ . (14)

We obtain the density matrix for canonical ensembles in the limit $M\sim M_{b},$ $N\sim N_{b}arrow\infty$

$p_{\mathrm{e}}fj \simeq\sum_{d=0}^{\infty}eM-\beta E\circ M_{d\sum_{[]}}bpm_{i}|Md;[mi]>dd<M_{d};[m_{i}]|/Z_{N_{d}}$ . (15)

3. Thermal equilibriums for systems with different energy scales

At first let us study the thermal equilibrium between two subsystems carrying different

energy scales. The free Hamiltonian $H_{0}$ and the interaction $H_{I}^{(1)r}([\theta])$ are written as

$H_{0}= \epsilon_{1}\sum_{j_{1}=1}aj_{1}aN1\dagger j_{1}+\epsilon_{2}\sum_{j_{2}=1}^{N_{2}}a_{j}^{\dagger}2a_{j_{2}}$ , $H_{I}^{(1)}r([\theta])=H_{I}^{(1)r}([\theta];1)+H_{I}^{(2)r}([\theta];2)$ , (16)
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where $\epsilon_{1}\neq\epsilon_{2}$ and $H_{I}^{(1)r}([\theta];k)$ is the interaction for the $k\mathrm{t}\mathrm{h}$ subsystem $(k=1,2)$ given in

the section 2. Since the total system is treated as an isolated system and then the total

energy must be conserved, there must be a relation between the energy scales such that

$l_{1}(\epsilon_{1}+\epsilon_{1g})=l_{2}(\epsilon_{2}+\epsilon_{2g})$ , for $l_{1},$ $l_{2}=\mathrm{p}_{\mathrm{o}\mathrm{S}\mathrm{i}\mathrm{t}}\mathrm{i}\mathrm{v}\mathrm{e}$ integers. (17)

3-1. Interaction between two subsystems with the relation $\epsilon_{2}=2\epsilon_{1}$ : As the simplest

example we start from the case for $\epsilon_{1}=\epsilon_{2}/2$ and we shall use the notations $\epsilon_{1g}\equiv$

$g_{1}\epsilon_{1}$ and $\epsilon_{2g}\equiv g_{1}\epsilon_{2^{\backslash }}$ so as to satisfy the above relation. The thermal interaction will

include two different types of the interactions, that is, one is the thermal interaction
$H_{I}^{(1)r}([\theta])$ interpreting the equilibrium for each subsystem with one energy scale and the

other the interaction $H_{I}^{(2)}$ deriving the equilibrium between the two subsystems with

the different energy scales. Taking account of the effects of $H_{I}^{(1)r}$ , we may start from

the states which are on the direct product of the thermal subspaces, $\mathcal{H}_{thal}^{1}erm\otimes \mathcal{H}_{th\mathrm{e}rm}^{2}al$

and then the states may generally be written by the superposition of the eigenstates

of $H_{0}+H_{I}^{(1)}r([\theta])$ such that $|M;N_{1},$ $[\theta^{1}];N_{2},$ $[\theta^{2}]>=\Sigma_{m=0^{C_{m}}}^{M}|2m,$ $N_{1},$ $[\theta^{1}]>\otimes|M-$

$m,$ $N_{2},$ $[\theta^{2}]>$ , where $|2m,$ $N_{1},$ $[\theta^{1}]>$ and $|M-m,$ $N_{2},$ $[\theta^{2}]>$ are, respectively, the thermal

equilibrium states for the two subsystems characterized by $\epsilon_{1}$ and $\epsilon_{2}$ . Hereafter we shall

discuss on the direct product space and use the operators defined there. In general

the states do not satisfy the principle of equal a priori probability. Only the states on

$H_{I}^{\backslash ^{z}})$ must preserve the thermal equilibriums in the two subsystems. This means that
$H_{I}^{(2)}$ should be described by the operators defined on $\mathcal{H}_{thl}^{1}erma\otimes \mathcal{H}_{thal}^{2}erm$ . The most

convenient way is to use the operators $\beta$ and $\overline{\beta}$ defined on $\mathcal{H}_{th\mathrm{e}rmal}$ .

Following the same procedure developed in the section 2, we introduce the new phase

$\varphi_{1}$ to the eigenstates of $\mathcal{H}_{thl}^{1}erma$ and $\varphi_{2}$ to those of $\mathcal{H}_{thal}^{2}erm$ . In place of $\beta_{j}$ and $\overline{\beta}_{j}$ on
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$\mathcal{H}_{thal}^{j}erm$ we use the operators containing the new phase $\varphi_{j}$

$\beta_{j}(\varphi)=\beta_{j}e^{-}i\varphi_{\mathrm{J}}\cdot$ , $\overline{\beta}_{j}(\varphi)=\overline{\beta}_{j}ei\varphi j(j=1,2)$ . (18)

We see that this replacement induces the total phase $M\varphi_{j}[1,5]$ to the eigenstate of the

$j\mathrm{t}\mathrm{h}$ subsystem with $\epsilon_{j}$ . Here we replace $\overline{\beta}_{j}(\varphi)$ by $\hat{\beta}_{j}(\varphi)$ which is defined by

$\hat{\beta}_{j}(\varphi)\equiv\frac{1}{\hat{M}_{j}}\overline{\beta}_{j}(\varphi)$ for $j=1,2$ , (19)

where $\hat{M}_{j}=\overline{\beta}_{j}(\varphi)\beta_{j}(\varphi)$ with $\hat{M}_{j}|M,$ $N_{j},$ $[\theta]_{j,\varphi_{j}}>=M|M,$ $N_{j},$ $[\theta]_{j,\varphi_{j}}>$ for the states,

$|M,$ $N_{j},$ $[\theta]_{j,\varphi j}>=|M,$ $N_{j},$ $[\theta]_{j}>e^{iM\varphi_{J}}$ , having the total phase $M\varphi j$ . We obtain

and then we have $\hat{\beta}_{j}(\varphi)\beta_{j}(\varphi)|M>_{j}=$ $|M>_{j}$ , where the abbreviations, $|M>_{j}\equiv$

$|M,$ $N_{j},$ $[\theta]_{j’\varphi_{j}}>$ , for the eigenstates of $H_{0}^{j}+H_{I}^{(j)r}([\theta];j)$ are used. It must be stressed

that finding the operators $\beta_{j}(\varphi)$ and $\hat{\beta}_{j}(\varphi)$ satisfying the above relations is essential to

construct thermal interactions in the following discussions. We introduce the operators

$B_{\varphi} \equiv\frac{1}{2}[(\beta 1(\varphi))^{2}+\beta 2(\varphi)]$ , $\overline{B}_{\varphi}\equiv[\frac{\hat{M}_{1}}{2}(\hat{\beta}1(\varphi))^{2}+\hat{M}_{2}\hat{\beta}_{2}(\varphi)]$ . (21)

The thermal interaction can be written in terms of the relative phase $\overline{\varphi}=2\varphi_{1}-\varphi_{2}$ as

$H_{I}^{(2)}(\varphi)=g_{2}\epsilon(2\overline{B}_{\varphi\varphi}B)$, (22)

where $\epsilon\equiv\epsilon_{1}$ . We easily obtain $H_{I}^{(2)}(\varphi)|M;2M,$ $[\varphi]>=2g_{2}M\epsilon|M;2M,$ $[\varphi]>\mathrm{f}\mathrm{o}\mathrm{r}$ the states

on $\mathcal{H}_{thrmal}^{1,2}e$ with the energy $E=2M\epsilon=M\epsilon_{2}$ , that is,

$|M;2M,$ $[ \varphi]>=\sum_{=m0}^{M}\frac{\sqrt{W(2m,N_{1})}|2m>_{1}\otimes\sqrt{W(M-m,N2)}|M-m>_{2}}{\sqrt{W_{2}(M,2)}}$ , (23)

where $W_{2}(M;2)= \sum_{m=0^{W(}}^{M}2m,$ $N1\mathrm{I}^{W}(M-m, N2)$ . In the general case including the

states with $E=(2M+1)\epsilon,$ $|M;2M+1,$ $[ \varphi]>=\Sigma_{m=0}^{M}\frac{\sqrt{W(2m+1_{1}N1)}|2m+1>_{1}\otimes\sqrt{W(M-m,N2)}|M-m>2}{\sqrt{W_{2}(M;2)}},$ ,
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we have to reformulate $H_{I}^{(2)}$ as

$H_{I}^{(2)r}( \varphi)=H_{I}(2)(\varphi)+g_{2}\epsilon\sum_{l=0}l1|l>11<l|$. (24)

The correction is due to the properties $(\beta_{1}(\varphi))^{2}|0>_{1}=(\beta_{1}(\varphi))^{2}|1>_{1}=0$ . We have

the relation $H|M;M’,$ $[\varphi]>=(1+g_{1}+g_{2})\epsilon M’|M;M’,$ $[\varphi]>$ for the total Hamiltonian
$H=H_{0}+H_{I}^{(1)r}([\theta])+H_{I}^{(2)r}(\varphi)$ , where $M’=2M$ and $2M+1$ . Thus we see that the

thermal subspace $\mathcal{H}_{thl}^{1,2}e\gamma ma$ is the physical space of the total Hamiltonian $H$ .

3-2. General cases: For the details of the general cases, see ref.4.

3-3. Temperature between the two subsystems: Following the same procedure carried

out in 2-5, we derive $T_{1}=T_{2}$ . And then we get the relation between the two systems

$(1+N_{1}/M_{1})^{l_{1}}=(1+N_{2}/M_{2})^{l_{2}}$ . (25)

This relation is reasonable, because it implies that the mean excitation number$(M_{j}/N_{j})$

for the lower energy scale is larger than that for the higher one.

3- 4. Thermal equilibriums for the systems with more than three energy scale: We

can explicitly write the thermal interactions for 3- and 4-point vertices. (In detail, see

ref. 4.) And we have the relation among the different systems

$(1+N_{1}/M_{1})^{l_{1}}=(1+N_{2}/M_{2})^{l_{2}}=(1+N_{3}/M_{3})^{l_{3}}=\cdots$ . (26)

4. Fermionic systems

4-1. Fermionic system with one energy scale $\epsilon$ : It is easily carried out by introducing

anti-commuting oscillators $c_{j}$ with $j=1,2,$ $\ldots,$
$N$ , that is, $[c_{j}(\theta), C^{\uparrow}j(\theta)]+=1[c_{j}(\theta), Cj(\theta)]_{+}=$

$0$ , where $[a, b]_{+}\equiv ab+ba,$ $c_{j}(\theta)=c_{j}e^{-i\theta_{\mathrm{J}}}$ and $c_{j(}^{\uparrow\theta)}=c_{j}^{\uparrow}e^{i\theta_{g}}$ . For the simplicity the usual

bosonic-commutation relations between the oscillators beloning to the different site will

be imposed in the following discissions such that $[c_{j}, c_{k}]\uparrow=0$ and so on. The original
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Hamiltonian can be given by $H_{0}= \epsilon\sum_{j=1}^{N\mathrm{t}}C_{j^{C_{j}}}$ , of which eigenstates with the phases for

the eigenvalue $\epsilon M(M=0,1,2, \ldots)$ are described in terms of direct products of number

states $(|n_{j}; f>)|M;[n_{j}];[ \theta];f>=\prod_{j=1}^{N}|n_{j}$ ; $f>e^{in_{J}\cdot\theta_{j}}\delta_{\sum jn,M}j$ . Here, of course, $n_{j}=0$ or

1 is only permissible. By introducing the totally symmetric operators

$C_{\theta}= \frac{1}{\sqrt{N-\hat{N}}}\sum_{j=1}^{N}c_{j(}\theta)$ , $C_{\theta}^{\uparrow_{=}} \sum_{j=1}^{N}c_{j}\theta \mathrm{t}_{(})\frac{1}{\sqrt{N-\hat{N}}}$ , (27)

where $\hat{N}=\Sigma_{j=1}^{N}CjC\uparrow j$ , we can write the thermal interaction..for one energy scale $\epsilon$ as

$H_{I}((1\rangle[\theta];f)=g1\epsilon c_{\theta}\uparrow C\theta\cdot$ (28)

The eigenstates of $H_{I}^{(1)}([\theta];f)$ are given by $|M,$ $N;f>= \frac{1}{\sqrt{W(M,N;f\rangle}}\sum p[n_{j}]|M;[n_{j}];[\theta];f>$ ,

where the number of the different permutations of $[n_{j}]=(n_{1}, n_{2}, \ldots, n_{N})$ is evaluated as

follows; $W(M, N;f)= \frac{N!}{M!(N-M)!}$ . We can easily show the following equation;

$H_{I}^{(1)}([\theta];f)|M,$ $N;f>=g_{1}\epsilon M|M,$ $N;f>$ , (29)

where the relations

$C_{\theta}|M,$ $N;f>=\sqrt{M}|M-1,$ $N;f>$ , $C_{\theta}^{\uparrow}|M,$ $N;f>=\sqrt{M+1}|M+1,$ $N;f>$ (30)

are used. Thus we see that the thermal subspace $\mathcal{H}_{therma\iota}$ of the original Hamiltonian $H_{0}$

is the physical space of the total Hamiltonian $H=H_{0}+H_{I}^{(1)}([\theta];f)$ . Note here that the

operators $C_{\theta}$ and $c_{\theta}^{\mathrm{t}}$ , respectively, play the roles of the annihilation and creation operators

on the thermal subpace $\mathcal{H}_{th\mathrm{e}rmal}$ and obey the commutation relation $[C_{\theta}, C_{\theta}^{\dagger}]$ $=1$ on

$\mathcal{H}_{thermal}$ .

Let us here introduce the operators on $\mathcal{H}_{thermal}$

$\gamma(\theta\rangle=\frac{1}{N-\hat{N}}\sum_{j=1}^{N}c_{j}(\theta), \hat{\gamma}(\theta)=\sum_{j=1}c_{j}(\mathrm{t}\theta N)\frac{1}{\hat{N}+1}$ (31)

which will be shown to be very useful in the discussions of thermal equilibriums for

systems with different energy scales. The operators play the same roles of $\beta(\theta)$ and $\beta(\theta)$

for bosonic systems, respectively.
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The derivation of the decoherence and the canonicl ensemble can be carried out by

following the same procedures used for the bosonic case. The difference appears in the
following expression of the temperature for the fermionic system;

$kT_{f}=\epsilon(\ln(N/M-1))^{-1}$ . (32)

4-2. Fermionc systems with more than two energy scales: Thermal interactions among
the systems can be written down as same as those for the bosonic cases given in \S 3. As

$\mathrm{c}$

was noted, the operators $\gamma$ and $\hat{\gamma}$ are very useful in the $\mathrm{p}\mathrm{r}o$ cess. And we get the relation

$(N_{1}/M_{1}-1)^{\iota_{1}}=(N_{2}/M_{2^{-}}1)l_{2}=(N_{3}/M_{3^{-}}1)l_{3}=\cdots$. (33)

4-3. Thermal equilibriums for fermion-boson mixed systems: The most interesting
case is the interaction described by 3-point vertex, which will be a base for making field
theory. Following the procedures presented in \S 3, we can get the relation among the

mean-excitation numbers of the three subsystems

$(N_{1}/M_{1^{-}}1)l_{1}=(N_{b}/Mb+1)^{l_{b}}=(N_{2}/M_{2^{-}}1)l_{2}$ . (34)

5. Remarks

We have seen that thermal equilibriums can be described in the framework of quantum

mechanics. The most important point of this model is the existence of the thermal
interactions. We have to detect the effects of the inetractions in precise measurements.
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