<table>
<thead>
<tr>
<th>Title</th>
<th>A Remark on Finiteness and Duality of D-Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>UCHIDA, MOTOO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1997), 983: 150-155</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60934</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Remark on Finiteness and Duality of D-Modules

MOTOO UCHIDA

Osaka University, Graduate School of Science, Department of Mathematics

（内田素夫（大阪大学大学院理学研究科））

30 September 1996

The purpose of this paper is to prove a theorem on finite dimensionality of the cohomology groups of analytic differential complexes on compact real manifolds. This generalizes the classical finiteness theorem for elliptic differential complexes.

In this paper, a manifold is always assumed to be paracompact. For sheaves and functors, we follow the notations of [KS]. For a sheaf \(\mathcal{F} \) on a topological manifold \(X \), \(\Gamma(\mathcal{F}) \) denotes the set of global sections of \(\mathcal{F} \), and \(\Gamma_{c}(\mathcal{F}) \) of global sections with compact support. \(R\Gamma \) and \(R\Gamma_{c} \) denote their right derived functors.

1. Main Result

Let \(X \) be a complex manifold, \(n = \dim_{\mathbb{C}} X \). Let \(\mathcal{O} \) denote the sheaf of holomorphic functions on \(X \), \(\Omega^{n} \) the sheaf of holomorphic \(n \)-forms on \(X \), and \(D \) the sheaf of rings of differential operators on \(X \) (of finite order).

Let \(T^{*}X \) denote the cotangent bundle of \(X \).

For a coherent right \(D \)-module \(\mathcal{M} \) on \(X \), \(\text{Ch}(\mathcal{M}) \) denotes its characteristic variety; \(\text{Ch}(\mathcal{M}) \) is a \(\mathbb{C}^{\times} \)-invariant closed analytic subset of \(T^{*}X \) and \(\dim(\text{Ch}(\mathcal{M})) \geq n \) (see [SKK]). Let \(\text{Mod}(\mathcal{D}^{o}) \) be the abelian category of right \(D \)-modules, \(\mathbf{D}^{b}(\mathcal{D}^{o}) \) its derived category with bounded cohomology. Let \(\mathbf{D}^{b}_{g,\text{coh}}(\mathcal{D}^{o}) \) be the full triangulated subcategory of \(\mathbf{D}^{b}(\mathcal{D}^{o}) \) consisting of bounded complexes with good coherent cohomology groups. [We say that a \(D \)-module \(\mathcal{M} \) is good coherent if, for any relatively compact open subset \(U \) of \(X \), there exists a finite filtration \(G \) of \(\mathcal{M}|_{U} \) by \(D \)-modules such that...
For an object \mathcal{M}^{\bullet} of $\mathcal{D}^{b,\text{coh}}(\mathcal{D}^{o})$, $\text{Ch}(\mathcal{M}^{\bullet})$ denotes the union of $\text{Ch}(H^{k}\mathcal{M}^{\bullet})$, $k \in \mathbb{Z}$.

Let $\mathcal{D}^{b}(X)$ denote the derived category with bounded cohomology of the abelian category of \mathcal{C}_{X}-modules, $\mathcal{D}^{b}_{\mathcal{R}-c}(X)$ the full triangulated subcategory of $\mathcal{D}^{b}(X)$ consisting of \mathcal{R}-constructible objects [KS, Sect.8.4]. For an object F of $\mathcal{D}^{b}(X)$, $\text{SS}(F)$ denotes the micro-support of F [KS, Sect.5.1]. If F is \mathcal{R}-constructible, $\text{SS}(F)$ is then an \mathbb{R}_{+}-invariant closed subanalytic subset of $T^{*}X$. (But we do not need this fact in this paper.)

For an object $(\mathcal{M}^{\bullet}, F)$ of $\mathcal{D}^{b,\text{coh}}(\mathcal{D}^{o}) \times \mathcal{D}^{b}_{\mathcal{R}-c}(X)$, $\mathcal{M}^{\bullet} \otimes F$ denotes the tensor product over \mathcal{C} and is an object of $\mathcal{D}^{b}(\mathcal{D}^{o})$.

Theorem 1. Let $(\mathcal{M}^{\bullet}, F)$ be an object of $\mathcal{D}^{b,\text{coh}}(\mathcal{D}^{o}) \times \mathcal{D}^{b}_{\mathcal{R}-c}(X)$. Assume that, for any irreducible component V of $\text{Ch}(\mathcal{M}^{\bullet})$, $V \cap \text{SS}(F)$ is contained in the zero section $T^{*}_{X}X$ if $\dim V \neq n$. Suppose $\text{Supp}(\mathcal{M}^{\bullet}) \cap \text{Supp}(F)$ is compact. Then every cohomology group of $\text{R}\Gamma(\mathcal{M}^{\bullet} \otimes F \otimes_{\mathcal{D}} \mathcal{O})$ and $\text{RHom}_{\mathcal{D}}(X; \mathcal{M}^{\bullet} \otimes F, \Omega^{n})$ is finite dimensional and

\[(1.0) \quad \text{RHom}_{\mathcal{D}}(X; \mathcal{M}^{\bullet} \otimes F, \Omega^{n})[n] \longrightarrow \text{Hom}_{\mathcal{C}}(\text{R}\Gamma(\mathcal{M}^{\bullet} \otimes F \otimes_{\mathcal{D}} \mathcal{O}), \mathcal{C})\]

is an isomorphism in $\mathcal{D}^{b}(\mathcal{C})$. Hence, for any $k \in \mathbb{Z}$,

\[\text{Tor}_{k}^{\mathcal{D}}(\mathcal{M}^{\bullet} \otimes F, \mathcal{O}) \quad \text{and} \quad \text{Ext}_{\mathcal{D}}^{k+n}(X; \mathcal{M}^{\bullet} \otimes F, \Omega^{n})\]

are vector spaces of finite dimension and dual to each other.

Remark. We say that $(\mathcal{M}^{\bullet}, F)$ is an elliptic pair if $\text{Ch}(\mathcal{M}^{\bullet}) \cap \text{SS}(F) \subset T^{*}_{X}X$ [SS]. In that case, Theorem 1 is proved in [SS]. On the other hand, if \mathcal{M}^{\bullet} is holonomic, $(\mathcal{M}^{\bullet}, F)$ satisfies the hypothesis of Theorem 1 for any object F of $\mathcal{D}^{b}_{\mathcal{R}-c}(X)$.

Let M be a real analytic manifold of dimension n, X a complex neighborhood of M. Let $T^{*}_{M}X$ denote the conormal bundle of M. \mathcal{A}_{M} denotes the sheaf of real analytic functions on M, and \mathcal{B}_{M} of hyperfunctions; \mathcal{A}_{M} and \mathcal{B}_{M} are $\mathcal{D}|_{M}$-modules. Let

\[\mathcal{B}_{M}^{(n)} = \mathcal{B}_{M} \otimes_{\mathcal{A}} (\Omega^{n} \otimes \text{or}_{M/X}),\]

where $\text{or}_{M/X}$ is the relative orientation sheaf of M in X; $\mathcal{B}_{M}^{(n)}$ is a right $\mathcal{D}|_{M}$-module.

As an immediate corollary of Theorem 1, we have the following finiteness and duality theorem of analytic differential complexes on compact real manifolds.
Corollary 2. Let M be a compact real analytic manifold of dimension n. Let \mathcal{M}^\bullet be an object of $\mathcal{D}_{g, h}^b(\text{COD})$. Assume that, for any irreducible component V of $\text{Ch}(\mathcal{M}^\bullet)$, $V \cap T^*_M X$ is contained in the zero section if $\dim V \neq n$. Then, for any $k \in \mathbb{Z}$, $\text{Tor}_k^D(\mathcal{M}^\bullet, A_M)$ and $\text{Ext}_D^k(M; \mathcal{M}^\bullet, B_M^{(n)})$ are vector spaces of finite dimension and dual to each other.

Let $E^k, 0 \leq k \leq k_0$, be holomorphic vector bundles over X and let

$$0 \longrightarrow \mathcal{M}^0 \xrightarrow{L_0} \mathcal{M}^1 \xrightarrow{L_1} \cdots \xrightarrow{} \mathcal{M}^{k_0} \longrightarrow 0,$$

be a differential complex of vector bundles, where L_k is a differential operator mapping $\Gamma(\mathcal{O}(E^k))$ to $\Gamma(\mathcal{O}(E^{k+1}))$. [For a holomorphic vector bundle E, $\mathcal{O}(E)$ denotes the sheaf of holomorphic sections of E.]

Let $\mathcal{M}^k = \mathcal{O}(E^k) \otimes_{\mathcal{O}} \mathcal{D}$ and

$$\mathcal{M}^\bullet = \left[\begin{array}{cccc} 0 & \mathcal{M}^0 & \mathcal{M}^1 & \mathcal{M}^{k_0} \\ L_0 & L_1 & \cdots & \end{array} \right],$$

where L_k acts on \mathcal{M}^k by left multiplication; \mathcal{M}^\bullet is then an object of $\mathcal{D}_{g, \text{coh}}^b(D^\circ)$. Then $\mathcal{R}\Gamma(\mathcal{M}^\bullet \otimes_D A_M)$ is represented by a differential complex

$$0 \longrightarrow \Gamma(M, E^0) \xrightarrow{L_0} \Gamma(M, E^1) \xrightarrow{L_1} \cdots \xrightarrow{} \Gamma(M, E^{k_0}) \longrightarrow 0$$

and $\text{Tor}_k^D(\mathcal{M}^\bullet, A_M)$ is its k-th cohomology group, where $\Gamma(M, E^k)$ denotes the space of analytic sections of E^k on M. For a vector bundle E, let us set $B^{(n)}(E) = \mathcal{O}(E) \otimes_{\mathcal{O}} B_M^{(n)}$. $\mathcal{R}\text{Hom}_D(M; \mathcal{M}^\bullet, B_M^{(n)})$ is represented by

$$0 \longleftarrow \Gamma(M, B^{(n)}(E^*_0)) \xleftarrow{L_0} \Gamma(M, B^{(n)}(E^*_1)) \xleftarrow{L_1} \cdots \xleftarrow{} \Gamma(M, B^{(n)}(E^*_{k_0})) \longleftarrow 0,$$

where E^*_k is the dual bundle of E^k and L_k acts on $B^{(n)}(E^*_k)$ by right multiplication; $\text{Ext}_D^{-k}(M; \mathcal{M}^\bullet, B_M^{(n)})$ is its k-th homology group. The pairing of $\text{Tor}_k^D(\mathcal{M}^\bullet, A_M)$ and $\text{Ext}_D^{-k}(M; \mathcal{M}^\bullet, B_M^{(n)})$ is induced from

$$\Gamma(M, E^k) \times \Gamma(M, B^{(n)}(E^*_k)) \rightarrow \mathbb{C}, \quad (u, v) \mapsto \int_M \langle u, v \rangle,$$

$\langle u, v \rangle$ being the pairing of E^k and E^*_k.

Remark. If (1.3) is an elliptic complex of vector bundles on M, for \mathcal{M}^\bullet given by (1.2), $\text{Ch}(\mathcal{M}^\bullet) \cap T^*_M X$ is contained in the zero section. The converse is not true in general.
2. Proof of Theorem 1

We can assume that \(H^k \mathcal{M}^\bullet = 0 \) for any \(k \neq 0 \); in what follows, \(\mathcal{M} \) denotes a coherent right \(\mathcal{D} \)-module on \(X \).

Let \(\mathcal{M}^* = \mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}, \mathcal{D}) \); then \(\mathcal{M}^* \) is a holonomic left \(\mathcal{D} \)-module, and we have an injective \(\mathcal{D} \) homomorphism \(\mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}^*, \mathcal{D}) \to \mathcal{M} \). Let \(\mathcal{M}^{**} = \mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}^*, \mathcal{D}) \), and \(\mathcal{N} = \mathcal{M}/\mathcal{M}^{**} \); then \(\mathcal{M}^{**} \) is a holonomic \(\mathcal{D} \)-module, and the sequence

\[
0 \to \mathcal{M}^{**} \to \mathcal{M} \to \mathcal{N} \to 0
\]

is exact. Since \(\mathcal{E}xt^{n-1}_{\mathcal{D}}(\mathcal{M}^{**}, \mathcal{D}) = 0 \) and \(\mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}, \mathcal{D}) \to \mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}^{**}, \mathcal{D}) \) is an isomorphism, we see that \(\mathcal{E}xt^n_{\mathcal{D}}(\mathcal{N}, \mathcal{D}) = 0 \). Hence, by [K2, 2.11], \(\text{Ch}(\mathcal{N}) \) has no irreducible components of codimension \(n \). Since \(\text{Ch}(\mathcal{N}) \subset \text{Ch}(\mathcal{M}) \), by the hypothesis of the theorem, \(\text{Ch}(\mathcal{N}) \cap \text{SS}(\mathcal{F}) \) is contained in the zero section; therefore \((\mathcal{N}, \mathcal{F}) \) is elliptic in the sense of [SS]. Moreover, by the definition of \(\mathcal{N} \), if \(\mathcal{M} \) is a good coherent \(\mathcal{D} \)-module, \(\mathcal{N} \) is also good coherent.

Since Theorem 1 is proved for elliptic pairs in [SS, Part 1], by exact sequence (2.0), we may assume from the beginning \(\mathcal{M} \) to be holonomic. If \(\mathcal{M} \) is holonomic, by Kashiwara's theorem [K1], \(\mathcal{M} \otimes_\mathcal{D} \mathcal{O} \) is \(\mathbb{C} \)-constructible. Hence \((\mathcal{M} \otimes_\mathcal{D} \mathcal{O}) \otimes \mathcal{F} \) is an \(\mathbb{R} \)-constructible sheaf on \(X \). Its support being compact by assumption, by [KS, Prop.8.4.8], \(H^k \mathcal{R}\Gamma((\mathcal{M} \otimes_\mathcal{D} \mathcal{O}) \otimes \mathcal{F}) \) is finite dimensional for all \(k \in \mathbb{Z} \). In the same way, the \(\mathbb{C} \)-constructibility of \(\mathcal{R}\Omega_{\mathcal{D}}(\mathcal{M}, \Omega^n) \) yields the finite dimensionality of \(H^k \mathcal{R}\Gamma(\mathcal{R}\Omega_{\mathcal{D}}(\mathcal{M} \otimes \mathcal{F}, \Omega^n)) \). This completes the proof of the finiteness part.

We now prove (1.0) to be an isomorphism for a holonomic \(\mathcal{D} \)-module \(\mathcal{M} \), assuming \(\text{Supp}(\mathcal{M}) \cap \text{Supp}(\mathcal{F}) \) is compact. Let \(D_h^b(\mathcal{O}) \) denote the full triangulated subcategory of \(D^b(\mathcal{O}) \) consisting of bounded complexes with holonomic cohomology groups. Letting \(\text{DR}(\mathcal{M}) = \mathcal{M} \otimes_\mathcal{D} \mathcal{O}[-n] \) for an object \(\mathcal{M} \) of \(D^b(\mathcal{O}) \), we have first:

Lemma 2.1. Let \(\mathcal{M} \) be an object of \(D^b_h(\mathcal{O}) \), \(F \) of \(D^b_{\mathcal{R}-\mathcal{c}}(X) \). Then there is an isomorphism

\[
(2.1) \quad \text{DR}(\mathcal{M}) \otimes \mathcal{F} \cong D' \mathcal{R}\Omega_{\mathcal{D}}(\mathcal{M} \otimes \mathcal{F}, \Omega^n),
\]

where \(D' = \mathcal{R}\Omega_{\mathcal{C}}(\bullet, \mathcal{C}_X) \).

The proof will be given later.
Since $\mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{D}(\mathcal{M} \otimes F, \Omega^n)$ is \mathcal{R}-constructible, from (2.1), we have

$$\mathcal{D}'(\mathcal{D}\mathcal{R}(\mathcal{M}) \otimes F) \cong \mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{D}(\mathcal{M} \otimes F, \Omega^n).$$

By the Verdier duality, we get

$$\mathcal{R}\Gamma (\mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{D}(\mathcal{M} \otimes F, \Omega^n))[n] \cong \mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{C}(\mathcal{R}\Gamma_c(\mathcal{D}\mathcal{R}(\mathcal{M}) \otimes F)), \mathcal{C})[-n]$$

$$= \mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{C}(\mathcal{R}\Gamma_c(\mathcal{M} \otimes \mathcal{O} \otimes F), \mathcal{C}).$$

This completes the proof of Theorem 1. QED

Proof of Lemma 2.1. If $F = \mathcal{C}_X$, this duality formula is contained in [KK] and [M2], and we have

$$\mathcal{D}\mathcal{R}(\mathcal{M}) \cong \mathcal{D}' \mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{D}(\mathcal{M}, \Omega^n).$$

Let $C = \mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{D}(\mathcal{M}, \Omega^n)$; then, by Kashiwara's theorem [K1], C is \mathcal{C}-constructible. Hence

$$\mathcal{D}'(\mathcal{D}'C \otimes F) \cong \mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{C}(F, C)$$

(see [KS, 3.4.6]), and, since $\mathcal{D}'C \otimes F$ is \mathcal{R}-constructible,

$$\mathcal{D}'C \otimes F \cong \mathcal{D}' \mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{C}(F, C).$$

By (2.2), we get

$$\mathcal{D}\mathcal{R}(\mathcal{M}) \otimes F \cong \mathcal{D}' \mathcal{R}\mathcal{H}\mathcal{o}\mathcal{m}_\mathcal{C}(F, C).$$

QED

References

