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1. POLYTOPES AND MEAN VALUE PROPERTY

The following theorem due to C.F. Gauss is fundamental in potential theory.

Theorem. (Gauss, 1840) Let Q2 be a domain in R™. Any function f € C*(Q) is
harmonic if and only if f belongs to C(f) and satisfies the mean value property:

1
(MVP) @) = =5 /V f(z +ry) du(y),

for any z € 2 and 0 < r < r,, where V is the unit ball (sphere) in R® with center
at the origin and u is the volume (surface) element on V.

It is a natural problem to consider what happens if V' is not the unit ball (sphere)
but another figure in R™. Let Hy () be the set of all functions f € C(2) satisfying
the mean value property (MVP) with respect to V. Then Hy () is a linear space
containing the constant functions. Our problem is to characterize the function
space Hy (2). In this talk we consider the case where V is a polytope in R™.

Let P be a polytope in R™, P(k) the k-skeleton of P for k = 0,1,...,n. We give
a precise definition of polytope.

Definition. A convez polytope P is a finite intersection of closed half-spaces in R™
such that P is bounded and contains an interior point:

P=H'nHf n...nH}.
A polytope P is a finite union of convex polytopes in R™:

P=PUPU---UP,.

So a polytope is a solid, but not necessarily convex nor connected. In order to
get a concrete image we give an example.
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Example. (Regular star-polygons) The regular star-polygon P = {N/M} for
(M,N) =1 and its skeletons P(k) are given as follows.

2rtJ"')

= exp

.P= _2_ P E(1) p(o)

In case M = 1, {N} is a regular convex N-gon.
In 1962 A. Friedman and W. Littman proposed the following problem.
Problem. (Friedman-Littman, 1962) Is Hp(k)(Q)' finite-dimensional ?

In fact they assumed that P is convex and k = n — 1,n. This problem has
been open since they posed the question (except for only a few specific polytopes).
Recently I was able to settle it affirmatively for any polytope P and any k =
0,1,...,n

Main Theorem. Let P be any (not necessarily convex nor connected) solid po]y-
tope in R®, G C O(n) the symmetry group of P. Then for any k=0,1,.
Hp(x) () enjoys the following properties:

(1) Hp)(R) is a finite-dimensional linear space of polynomia]s,

(2) a basis of Hp()(£2) can be taken from homogeneous polynomials,

(3) Hp(x)(€) admits a structure of C[0]-module, and

(4) if G acts on R™ irreducibly then Hp(x) () is a finite-dimensional Imear space
of harmonic polynomials. :

Remark. It can be shown that the restriction map Hp(x)(R™) — Hp(k)(£2) is iso-
morphic; hence Hp(x)(£2) is independent of . This allows us to write H pr) () =
Hpk)- The theorem implies that Hp(x) is completely different from the classical
space Hy () with V = B™ or S™~1; the latter is always infinite-dimensional and
the restriction map Hy (1) = Hy(Q2) for Q; D Q5 is not (always) isomorphic.

Following the remark we use the simplified notation Hpx) = Hpky(2)- The
second assertion of the main theorem implies that there exists a direct sum decom-

position:
finite

Hppy = ) Hew(m

m>0

where Hp(x)(m) is the linear space of all homogeneous polynomials of degree m
satisfying the P(k)-mean value property. Several problems naturally arise. For
example the following problems are interesting from a combinatorial point of view.

Q—---‘ "'",.
/ ~ “
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Problem.

(1) Determine dim Hp(x) and construct a basis of Hp(x).
(2) Determine dim M p(x)(m) and construct a basis of H P(k)(m).
(3) Determine the structure of Hp(x) as a C[8]-module.

In order to demonstrate what is happening we consider the case where P is a
regular star-polygon {IN/M} with center at the origin.

Example. Let P be a regular star-polygon {N/M} with center at the origin.
dim Hp(k) =2N (k = O, 1,2).

Let (z,y) be an orthonormal coordinate system of R? such that P is symmetric
with respect to the z-axis. We set z = = + \/—1y. Then,

C (m =0),
CzrepCz™ 1<m<N-1),

Hpgy(m) = CIm (iBN ) Em—znll\’;, )
{0} (m>N+1).

As a C[0]-module H p(y) is generated by the single element Im(z").

2. CHARACTERIZATION IN TERMS OF PARTIAL DIFFERENTIAL EQUATIONS

The classical mean value property (with respect to B or S™~!) is characterized
by the Laplace equation Af = 0. The P(k)-mean value property can also be
characterized in terms of partial differential equations, though, not by a single
equation but by a system of infinitely many equations.

In order to describe the system we introduce some notation. Let {P,-j},-je 1; be
the set of j-dimensional faces of P, H;; the j-dimensional affine subspace of R™
containing F;;, m;; : R® — H;; the orthogonal projection from R™ down to the
subspace H;;. Let p;, € R™ be the vectors (or points) in R™ defined by

Di; = 7ri,~(0) € Hij‘
We remark that P;, = H;, = {pi,} for any iy € Ij and that H;, = R™ and p;, =0
for any i, € In. For i; € I; and ;41 € Ij41 we write i; < 4541 if P;; is a face of
P;, ... Fori; < i1 let n;.;. ., be the outer unit normal vector of OF;,,, in H;,,,

at the face P;;. The vector Pi; — Pi;y, is parallel to n;;;,,,, so that we can define
the incidence number [i; : 1;11] € R by the relation

Pi; = DPi;y, = [ij : ij+1]nijij+1’
Let I(k) be the index set defined by

I(k) = {i = (d0,41,...,1k) ; ij € I}, ip < i1 < --- < ir}.
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For i = (9,11, .- ,) € I(k) we set

o={ | (k=1

[7:0 : 11][21 : 22] e [ik—l . ‘lk] (k = 1,2,. . ,n).

Let hsﬁ) (¢) be the complete symmetric polynomial of degree m in j-variables:

WD, &)= S e,

my+--tmjij=m

where the summation is taken over all j-tuples (my, ..., m;) of nonnegative integers
satisfying the indicated condition. Finally we set (&,m) = &m + -+ + &uny for two

vectors£= (517"',671)’77 = (771"" 77""») E (Cn'

The following theorem gives a characterization of the P (k)-mean value property
in terms of a system of partial differential equations.

Theorem 1. Any f € Hp)(Q) is smooth in  and satisfies the system of partial
differential equations:

(%) WO =0 (m=123...),
where 7) (¢) is the homogeneous polynomial of degree m defined by

Tv(rf:) (6) = Z [’l,]hgf.*.l) ((pio,€>’ <pi1a 5)) e (pika €>)a
ieI(k)
Conversely any distribution solution of () is real-analytic and belongs to H P(x)(§2)-

Here a crucial observation is that the system () is holonomic. The holonomicity
follows from the geometry and combinatorics of the polytope P.

Theorem 2. The system (x) is holonomic.

These two theorems play an essential role in establishing our main theorem.
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3. POLYTOPES WITH SYMMETRY

Our problem is of particular interest if P admits symmetry. Let G C O(n) be
the symmetry group of P. Then we have a lower bound of the dimension of H P(k)
in terms of G.

Theorem 3. dimHpy > |G|.

For any regular convex polytope P in R™ with center at the origin, we are able
to determine the function space H P(k) explicitly. The symmetry group G C O(n)
of P is an irreducible finite reflection group. All irreducible finite reflection groups
are classified in terms of connected Coxeter graphs. Hence we have the following
diagram.

Diagram.

{regular convex polytopes}

!

{irreducible finite reflection groups}

(symmetry group)

(one-to-one)

He Qe

{conhected Coxeter graphs}

An irreduciblé finite reflection group G is the symmetry group of a regular convex
polytope P if and only if the Coxeter graph I of G has no node. Therefore all
admissible graphs are precisely those of types A, B, F, H and I.

R o—o%*o o
H3 C}SO“ O

S
Hag O———-O0- O——O0
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Graphs of types D and E do not correspond to any regular convex polytope.

AL

0

o)
0—0 0—o0

Q

O

O

E, 0—0O-

-O——0—0—=0

A regular convex pblytope P and its reciprocal P* correspond to the same Cox-

eter graph T, but no other regular convex polytopes correspond to I'. Moreover

P = P* if and only if I' = IV, where I" is the reversed graph of I'.

5

r  o—o—o0—0

i 2 3 4
5

r o—o—O0—o0

1 2 3 4

Accordingly we have the classification of regular convex polytopes:

Classification of regular convex polytopes. (n = dim P)

(1) A, (regular simplexes’),

(2) B, (cross polytopes and measure polytopes?),
(3) Hj (icosahedron and dodecahedron),

(4) Hy (600-cells and 120-cells), '

(5) Fy (24-cells), and

(6) Iy(m) (regular m-gon).

Theorem 4. Let P be any regular convex polytope in R™ with center at the origin.

Let G C O(n) be the symmetry group of G, A(z) the fundamental alternating

1tetrahedron for n = 3
2octahedron and cube for n =3
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polyﬁomial of G, i.e., the product of the linear forms whose zeros define a reflecting
hyperplane of G. Then Hp) is independent of k = 0,1,...,n, and

dime(k) = |G|,
'Hp(k) = C[@]A(:l:).

Invariant theory for finite reflection groups, as well as systems of invariant differ-
ential equations, plays an essential role in establishing this theorem. In the course
of the proof, we were able to introduce a distinguished basis of G-invariant poly-
nomials (canonically attached to the invariant differential equations) for each finite
reflection group G.

4. PROBLEM

We say that a polytope P admits ample symmetry if the symmetry group G C
O(n) of P acts on R™ irreducibly. Recall that if P is a polytope with ample symme-
try then Hp() is a finite-dimensional linear subspace of the harmonic polynomials.
The following problem seems to be very interesting.

Problem. (Exhaustion of harmonic polynomials by P-harmonic polynomials)
Is there any infinite sequence Py, Py, Ps,..., Pp,,... of polytopes in R™ with ample
symmetry such that

P,, — B™ as m — oo,
le(k) C 'Hpg(k) - HPa(k) c.--C Hpm(k) C---, and

oo
U Hp,, () = {harmonic polynomials in n-variables}

m=1
for any/some k =0,1,...,n ?

In the case of two-dimensions we know that the answer is yes. Indeed we can
take Pp, to be a regular convex m-gon (m > 3). At least to the speaker, however,
this problem becomes quite difficult if the dimension n is greater than two. The
difficulty lies in the fact that there are only finitely many regular polytopes in R™
for each n > 3, or more precisely that there are only finitely many finite subgroups
of O(n) for each n > 3. Thus in order to tackle this problem we should pay our
attention not only to the symmetry of polytopes but also to the combinatorics or
geometry of them.
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