<table>
<thead>
<tr>
<th>Title</th>
<th>Semicontinuity of set valued mappings and duality formulas of integral functionals (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KOMURO, NAOTO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1997, 985: 22-34</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60984</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Semicontinuity of set valued mappings and duality formulas of integral functionals

NAOTO KOMURO

Mathematics Laboratory, Asahikawa Campus,
Hokkaido University of Education
Asahikawa 070

§1 DUALITY FORMULAS

Let X be a metric space, and let f be a real valued function defined on $X \times \mathbb{R}^d$. Suppose that for each $x \in X$, $f_x(p) = f(x, p)$ is convex and positively homogeneous in $p \in \mathbb{R}^d$. By K_x, we denote the subdifferential of f_x at 0;

$$K_x = \partial f_x(0)$$

$$= \{q \in \mathbb{R}^d \mid \langle q, p \rangle \leq f_x(p), \quad p \in \mathbb{R}^d\}$$

For every $x \in X$ the set K_x is convex in \mathbb{R}^d, and since $f_x(p)$ is finite for all $p \in \mathbb{R}^d$, K_x is compact. Let $\mu = (\mu_1, \cdots, \mu_n)$ be a \mathbb{R}^d-valued finite Borel regular measure on X. The finite Borel measure $f(x, \mu)$ on X is defined by

$$\int_A f(x, \mu) = \int_A f(x, \mu(x))d|\mu| \quad \text{for a Borel set } A \subset X$$

where $|\mu|$ is the total variation measure of μ and $\mu(x) = \frac{d\mu}{d|\mu|}(x)$ is the Radon Nikodym derivative of μ with respect to $|\mu|$. The measure $f(x, \mu)$ is independent of the choice of a norm in \mathbb{R}^d.

THEOREM 1. Suppose that f satisfies

1. f is lower semicontinuous (l.s.c.) on $X \times \mathbb{R}^d$,
2. for each $x \in X$, $f_x(p) = f(x, p)$ is convex, positively homogeneous in p,
3. $f(x, p) \leq c|p| \quad (x \in X, p \in \mathbb{R}^d)$ with some constant c.

Then for every bounded $|\mu|$-measurable function $\varphi \geq 0$ on X,

\[(F,1) \quad \int_X f(x, \mu)\varphi = \sup\{\int_X \langle \mu(x), v(x) \rangle > \varphi(x)d|\mu|(x) \mid v \in C(X, \mathbb{R}^d), v(x) \in K_x \text{ for all } x \in X \}.
\]

Next we consider the case when $f_x(\cdot)$ is only convex in $p \in \mathbb{R}^d$, and is not necessarily positively homogeneous. For defining the measure $f(x, \mu)$ in this case, we introduce the homogenization $F(x, p_0, p)$ of $f(x, p)$ defined by

\[
F(x, p_0, p) = \begin{cases}
 f_\infty(x, p) & p_0 = 0 \\
 f(x, \frac{p}{p_0})p_0 & p_0 > 0 \\
 \infty & p_0 < 0
\end{cases}
\]

where f_∞ is the recession function of f, i.e.,

\[
f_\infty(x, p) = \lim_{t \to 0} f(x, \frac{p}{t})t.
\]

If f satisfies $f(x, p) \leq c(1 + |p|) \quad (x \in X, p \in \mathbb{R}^d)$ with some constant c, F is well-defined real valued function on $X \times C$ with $C = [0, \infty) \times \mathbb{R}^d$ and $F = \infty$ on $X \times (\mathbb{R}^{d+1} \setminus C)$. Moreover, F is convex and positively homogeneous in $(p_0, p) \in \mathbb{R}^{d+1}$. (See [8, §8])

Let α be a nonnegative finite Borel regular measure on X. We fix this measure and now define the measure $f(x, \mu)$ by

\[
f(x, \mu) = F(x, \alpha, \mu),
\]

where F is the homogenization of f. Here (α, μ) is a $C = [0, \infty) \times \mathbb{R}^d$ valued Borel regular measure, and since F is positively homogeneous, $f(x, \mu)$ is a finite Borel regular measure.
It is easy to see that
\[
f(x, \mu) = F(x, \alpha, \mu) = F(x, 1, h(x)) + F(X, 0, \mu^s) = F(x, \alpha + f(x, \mu^s)) = f(x, h(x) \alpha) + f_{\infty}(x, \mu^s)\]

where \(h(x) \alpha\) is the absolutely continuous part of \(\mu\), and \(\mu^s\) is the singular part with respect to \(\alpha\).

Theorem 2. Suppose that \(f\) satisfies

1. for every \(x_0 \in X\) and \(\epsilon > 0\), there is \(\delta > 0\) such that \(d(x, x_0) < \delta\) implies
 \[f(x_0, p) - f(x, p) < \epsilon(1 + |p|),\]
2. for each \(x \in X\), \(f_x(p)\) is convex in \(p\),
3. \(f(x, p) \leq c(1 + |p|)\) \((x \in X, p \in \mathbb{R}^d)\) with some constant \(c\).

Then for every bounded \(|\mu|\)-measurable function \(\varphi \geq 0\) on \(X\),

\[
\int_X f(x, \mu) \varphi = \sup \{ \int_X <\mu(x), v(x)> \varphi(x) d\mu | (x) - \int_X \varphi(x)f^*(x, v(x)) d\alpha \mid v \in C(X, \mathbb{R}^d), f^*(x, v(x)) \in L^1(X, d\alpha) \}.
\]

Similar results can be seen in [2], [3], [6]. In the proof of Rockafellar [6], it is assumed that \(K_x\) has an interior point and the assumption on the regularity of \(f\) in \(x\) is slightly stronger than ours. In [2], it is assumed that \(f\) is continuous on \(X \times \mathbb{R}^d\). We have weakened these assumptions by some arguments of the continuous selection.

We consider the set valued mapping \(K\) which carries each \(x \in X\) to the compact convex set \(K_x \subset \mathbb{R}^d\). \(K\) is said to be lower semicontinuous (l.s.c.) if \(x_n \rightarrow x_0\) in \(X\) and \(q_0 \in K_{x_0}\) implies the existence of a sequence \(\{q_n\}\) such that \(q_n \in K_{x_n}\) and \(q_n \rightarrow q_0\). \(K_x\) is said to be upper semicontinuous (u.s.c.) if for any sequence \(\{x_n\}\) tends to \(x_0\) and \(\epsilon > 0\), \(K_{x_n} \subset K_{x_0} + \epsilon B\) holds for sufficiently large \(n\), where \(K_{x_0} + \epsilon B = \{q + q' \in \mathbb{R}^d \mid q \in K_{x_0}, |q'| \leq \epsilon\}\). Furthermore, when \(K_x\) is both l.s.c. and u.s.c., \(K\) is said to be continuous.

One can find some other definitions of this semicontinuity in [1], [5], and [6] for instance.
However, in our case, most of them are all equivalent because K_x is always compact. The importance of the lower semicontinuity is that this allows us to take continuous selection of K_x. For example, In [6], the lower semicontinuity of K_x and the continuous selection theorem ([5]) are applied to prove a type of duality formula. Also in [2], the conditions for the same formula are given in terms of the function $f(x, p)$. However, the relation between the conditions of these two theorems is unclear. In this note, we investigate the conditions of f under which K_x is lower semicontinuous. Moreover, we will consider the upper semicontinuity and derive some duality of these two notions.

§2 Semi continuity of K_x

Lemma 3. Let $f(x, p)$ be a function on $X \times \mathbb{R}^d$, and suppose that $f_x(p) = f(x, p)$ is convex and positively homogeneous in $p \in \mathbb{R}^d$. Put $K_x = \partial f_x(0)$, then the following conditions are equivalent.

$(l, 1)$ f is l.s.c. on $X \times \mathbb{R}^d$.

$(l, 2)$ For every $x_0 \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $d(x_0, x) < \delta$ implies

$$f(x_0, p) - f(x, p) < \epsilon |p|, \text{ for all } p \in \mathbb{R}^d.$$

$(l, 3)$ $K : x \rightarrow K_x$ is l.s.c. on X.

Remark: When f is l.s.c. only in x, these conditions do not hold though f is convex (and hence continuous) in p. This fact is the only thing that the symmetry of Lemma 3 and Proposition 6 fails. The space \mathbb{R}^d in this theorem can be replaced by any closed convex cone in \mathbb{R}^d, but not by any infinite dimensional space. Moreover, positively homogeneity of f is essential in this lemma even if K_x can be defined as the subdifferential of f.

Proof: $(l, 1) \Rightarrow (l, 2)$

It suffices to show that $\{f(\cdot, p) \mid |p| = 1\}$ is equi l.s.c.. If not, there exists $x_0 \in X$, $\epsilon > 0$, and sequences $\{x_n\} \subset X$ and $\{p_n\} \subset \mathbb{R}^d$, such that $x_n \rightarrow x_0$, $|p_n| = 1$, and $f(x_0, p_n) - f(x_n, p_n) \geq \epsilon$ for every n. Since $\{p \in \mathbb{R}^d \mid |p| = 1\}$ is compact, we can assume
that \(p_n \to p_0 \) for some \(|p_0|\). By the convexity of \(f \) in \(p \), it is continuous in particular.

Hence it follows by \((l,1)\) that

\[
f(x_0, p_n) - f(x_n, p_n) = f(x_0, p_n) - f(x_0, p_0) + f(x_0, p_0) - f(x_n, p_n) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,
\]

for sufficiently large \(n \) and this contradicts the assumption.

\((l,2) \Rightarrow (l,3)\)

Suppose that \(K \) is not l.s.c. at \(x_0 \in X \). Then there exist a sequence \(\{x_n\} \) with \(x_n \to x_0 \), \(q_0 \in \text{It}^{-}x_0 \) and \(\epsilon > 0 \) such that

\[
K_{x_n \cap \mathcal{E}B(q_0)} = \phi,
\]

for every \(n \), where \(\mathcal{E}B(q_0) = \{q \in \mathbb{R}^d \mid d(q, q_0) \leq \epsilon\} \). By the condition \((l,2)\), we have for sufficiently large \(n \),

\[
f(x_0, p) - f(x_n, p) < \epsilon \quad \text{for all } p \in \mathbb{R}^d \text{ with } |p| = 1.
\]

We fix such \(n \), and by the separation theorem and \((1)\), there exists \(p_0 \in \mathbb{R}^d \) with \(|p_0| = 1\), such that

\[
\sup_{q \in K_{x_n}} < q, p_0 > \leq \inf_{q \in \mathcal{E}B(q_0)} < q, p_0 >.
\]

Now we take the supporting point \(\bar{q} \) of \(\mathcal{E}B(q_0) \) with respect to \(p_0 \), that is, \(\bar{q} \in \mathcal{E}B(q_0) \) and \(\inf_{q \in \mathcal{E}B(q_0)} < q, p_0 > = < \bar{q}, p_0 > \). Then,

\[
\inf_{q \in \mathcal{E}B(q_0)} < q, p_0 > = < q_0, p_0 > - < q_0 - \bar{q}, p_0 > \\
= < q_0, p_0 > - \epsilon \\
\leq \sup_{q \in K_{x_0}} < q, p_0 > - \epsilon \\
= f(x_0, p_0) - \epsilon.
\]

By \((3)\), we obtain

\[
f(x_n, p_0) \leq f(x_0, p_0) - \epsilon.
\]
Since p in (2) is arbitrary, this is a contradiction.

$(l, 3) \Rightarrow (l, 1)$

Suppose that $x_n \rightarrow x_0$ in X and $p_n \rightarrow p_0$ in \mathbb{R}^d. For every $\epsilon > 0$, we take $q_0 \in K_{x_0}$ such that

$$<q_0, p_0> \geq \sup_{q \in K_{x_0}} <q, p_0> - \epsilon$$

$$= f(x_0, p_0) - \epsilon.$$

By $(l, 3)$, there exists a sequence $\{q_n\}$ such that each q_n belongs to K_{x_n} and $q_n \rightarrow q_0$. Since $<q_n, p_n> \leq \sup_{q \in K_{x_n}} <q, p_n> = f(x_n, p_n)$, we have

$$f(x_0, p_0) - f(x_n, p_n) \leq <q_0, p_0> + \epsilon - <q_n, p_n>$$

$$< 2 \epsilon$$

for sufficiently large n. This implies that f is l.s.c. on $X \times \mathbb{R}^d$.

Corollary 4. Suppose that f satisfies one of three conditions in Theorem 3. Then for every $x_0 \in X$ and $p_0 \in \mathbb{R}^d$, there exists a continuous function L on $X \times \mathbb{R}^d$ satisfying

1. for every $x \in X$, $L(x, p)$ is linear in $p \in \mathbb{R}^d$,
2. $L(x, p) \leq f(x, p)$ for all $x \in X$ and $p \in \mathbb{R}^d$,
3. $L(x_0, p_0) = f(x_0, p_0)$.

Proof: First we note that L is continuous on $X \times \mathbb{R}^d$ if it satisfies (1) and is continuous with respect to each variable. By the separation theorem or Hahn Banach theorem, there exists $q_0 \in \mathbb{R}^d$ such that $<q_0, p> \leq f(x_0, p)$ for all $p \in \mathbb{R}^d$, and $<q_0, p_0> = f(x_0, p_0)$. Take a set valued mapping K' defined by

$$K'_x = \begin{cases} K_x & x \neq x_0 \\ \{q_0\} & x = x_0. \end{cases}$$

Since $q_0 \in K_{x_0}$, it is easy to see that K' is l.s.c., and hence we can take a continuous selection $q(x)$ of K'_x. Thus the function L defined by $L(x, p) = <q(x), p>$, $x \in X, p \in \mathbb{R}^d$ is what we want.

By an analogy, one can also prove the following.
Corollary 5. Suppose that \(f \) satisfies one of the three conditions in Theorem 3. Let \(E \) be a closed subset of \(X \), and let \(L \) be a continuous function on \(E \times \mathbb{R}^d \) satisfying

1. for every \(x \in E \), \(L(x, p) \) is linear in \(p \in \mathbb{R}^d \),
2. \(L(x, p) \leq f(x, p) \) for all \(x \in E \) and \(p \in \mathbb{R}^d \).

Then \(L \) can be continuously extended to \(X \times \mathbb{R}^d \) such that (1) and (2) hold replacing \(E \) by \(X \).

Next we consider the upper semicontinuity of \(K_x \). We note that the following proposition and Lemma 3 have some symmetricity but it is not perfect.

Proposition 6. Under the hypotheses in Lemma 3, the following conditions are equivalent.

1. \(f(x, p) \) is u.s.c. in \(x \in X \).
2. \(f \) is u.s.c. on \(X \times \mathbb{R}^d \).
3. For every \(x_0 \in X \) and \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(d(x_0, x) < \delta \) implies
 \[
 f(x, p) - f(x_0, p) < \varepsilon |p|,
 \]
 for all \(p \in \mathbb{R}^d \).
4. \(K : x \mapsto K_x \) is u.s.c. on \(X \).

Remark: A set valued mapping \(K \) is said to be closed if for any sequence \(\{x_n\} \) with \(x_n \to x_0 \) and \(\{q_n\} \) with \(q_n \in K_{x_n} \), \(q_n \to q_0 \) for some \(q_0 \in \mathbb{R}^d \) implies \(q_0 \in K_{x_0} \). This is also a notion of upper semicontinuity of set valued mappings. Since \(K_x \) is compact in our case, the upper semicontinuity of \(K \) implies the closedness. However, the converse is not true in general. The equivalence of \((u, 0) \) and \((u, 1) \) is still valid when \(f \) is only convex and not positively homogeneous in \(p \).

Proof: \((u, 0) \Rightarrow (u, 1) \)

Suppose that \(x_n \to x_0 \) in \(X \) and \(p_n \to p_0 \) in \(\mathbb{R}^d \). Since \(f \) is continuous in \(p \), there exists \(\bar{p}_1, \cdots, \bar{p}_{d+1} \in \mathbb{R}^d \) such that

\[
f(x_0, \bar{p}_i) \leq f(x_0, p_0) + \frac{\varepsilon}{2} \quad (i = 1, \cdots, d + 1)
\]
and the convex hull $co\{\overline{p}_1, \cdots, \overline{p}_{d+1}\}$ forms a neighborhood of p_0. Moreover by the condition $(u, 0)$,

$$f(x_n, \overline{p}_i) \leq f(x_0, \overline{p}_i) + \frac{\varepsilon}{2} \quad (i = 1, \cdots, d+1)$$

holds for sufficiently large n. Since $p_n \in co\{\overline{p}_1, \cdots, \overline{p}_{d+1}\}$ for sufficiently large n, we obtain by the convexity of $f(x, \cdot)$ that

$$f(x_n, p_n) \leq \max_{1 \leq i \leq d+1} f(x_n, \overline{p}_i) \leq \max_{1 \leq i \leq d+1} f(x_0, \overline{p}_i) + \frac{\varepsilon}{2} \leq f(x_0, p_0) + \varepsilon.$$

This proves that $(u, 1)$ holds.

$(u, 1) \Rightarrow (u, 2)$

we can prove this by the same way as in $(l, 1) \Rightarrow (l, 2)$ in Lemma 3.

$(u, 2) \Rightarrow (u, 3)$

Take $x_0 \in X$ and $\varepsilon > 0$ arbitrarily, and Suppose that $x_n \to x_0$ in X. By $(u, 2)$,

$$f(x_n, p) - f(x_0, p) \leq \varepsilon |p| \quad (p \in \mathbb{R}^d),$$

for sufficiently large n. Then $q \in K_{x_n}$ implies that

$$f(x_0, p) - \langle q, p \rangle \geq f(x_0, p) - f(x_n, p) \geq -\varepsilon |p| \text{ for all } p \in \mathbb{R}^d.$$

By the separation theorem, there exists $q_0 \in \mathbb{R}^d$ such that

$$-\varepsilon |p| \leq \langle q_0, p \rangle \leq f(x_0, p) - \langle q, p \rangle \quad (p \in \mathbb{R}^d).$$

This inequality implies that $|q_0| \leq \varepsilon$, and $q + q_0 \in K_{x_0}$. Hence we have $q \in K_{x_0} + \varepsilon B$ and this proves $(u, 3)$.

$(u, 3) \Rightarrow (u, 1)$

For the reason stated in the remark of this theorem, we can assume that K is closed. Suppose that $(u, 1)$ does not hold, then there exist sequences $\{x_n\}$ with $x_n \to x_0$ for some x_0 in X, and $\{p_n\}$ with $p_n \to p_0$ for some p_0 in \mathbb{R}^d, and $\varepsilon > 0$ such that $f(x_n, p_n) >$
\[f(x_0, p_0) + \epsilon \] for every \(n \). Since \(f(x_n, p_n) = \sup_{q \in K_{x_n}} < q, p_n > \), we can choose a sequence \(\{q_n\} \subset \mathbb{R}^d \) such that \(q_n \in K_{x_n} \) and

\[
| f(x_n, p_n) - < q_n, p_n > | \to 0 \quad (n \to \infty).
\]

By the definition of upper semicontinuity, \(K_{x_n} \) is uniformly bounded. Therefore the sequence \(\{q_n\} \) is bounded, and we can take a convergent subsequence \(\{q_m\} \) of \(\{q_n\} \) with \(q_m \to q_0 \) for some \(q_0 \in \mathbb{R}^d \). Hence it follows that

\[
< q_0, p_0 > \geq f(x_0, p_0) + \epsilon.
\]

On the other hand, by the closedness of \(K \), \(q_0 \) has to be an element of \(K_{x_0} \), and this is a contradiction. \(\blacksquare \)

Combining Lemma 3 and Proposition 6, we also obtain the following theorem. To see the equivalence between \((c, 0)\) and \((c, 1)\), refer to Theorem 1.1 in [3].

Proposition 7. Under the hypotheses in Lemma 3, the following conditions are equivalent.

\((c, 0) \) For every \(p \in \mathbb{R}^d \), \(f(x, p) \) is continuous in \(x \in X \).
\((c, 1) \) \(f \) is continuous on \(X \times \mathbb{R}^d \).
\((c, 2) \) For every \(x_0 \in X \) and \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(d(x_0, x) < \delta \) implies

\[
| f(x, p) - f(x_0, p) | < \epsilon |p|, \quad \text{for all } p \in \mathbb{R}^d.
\]

\((c, 3) \) \(K : x \to K_x \) is continuous on \(X \).

\section*{3 Proof of the Duality Formula}

For a subset \(U \subset \mathbb{R}^d \), we denote the inverse image of a set valued mapping \(K \) by

\[K^{-1}(U) = \{ x \in X | K_x \cap U \neq \phi \}. \]
$\Gamma(x) = \{ p \in \mathbb{R}^d \mid <\mu(x), p> \geq f_x(\mu(x)) - \varepsilon \},$

$\Gamma_0(x) = \{ p \in K_x \mid <\mu(x), p> \geq f_x(\mu(x)) - \varepsilon \}.$

Since $f_x(\mu(x)) = \sup_{p \in K_x} <\mu(x), p>,$ $\Gamma(x)$ and $\Gamma_0(x)$ are nonempty closed convex sets in $\mathbb{R}^d,$ and $\Gamma(x) = \Gamma_0(x) \cap K_x.$ By the condition (1) and Lemma 3, K is l.s.c. as a set valued mapping, and also measurable in particular. Hence by [7, Theorm 1M], Γ is a $|\mu|$-measurable set valued mapping provided that so is $\Gamma_0.$ Let U be an open set in $\mathbb{R}^d.$ Since $\Gamma_0(x)$ is an affine half space, $\Gamma_0(x) \cap U \neq \emptyset$ if and only if $\Gamma_0(x) \cap D \neq \emptyset$ where D is an arbitrary countable dense subset of $U.$ Hence we have

$$\Gamma_0^{-1}(U) = \bigcup_{p \in D} A_p$$

where $A_p = \{ x \in X \mid <\mu(x), p> \geq f_x(\mu(x)) - \varepsilon \}.$ We note that $f_x(\mu(x))$ is $|\mu|$-measurable because of the lower semicontinuity of $f.$ Thus $\Gamma_0^{-1}(U)$ is $|\mu|$-measurable, and by the measurable selection theorem we can take a measurable function w on X such that $w(x) \in \Gamma(x).$ In other words

$$\int_X <\mu(x), w(x)> \varphi(x) d|\mu| \geq \int_X (f_x(\mu(x)) - \varepsilon)\varphi(x) d|\mu|$$

$$= \int_X f(x, \mu)\varphi - \varepsilon \int_X \varphi d|\mu| \quad (4)$$

Since $|\mu|$ is finite measure and φ is bounded, this yields the duality formula of weaker version.
We next construct a desired continuous function $v : X \rightarrow \mathbb{R}^d$ from w which has been obtained above. By Lusin's theorem, for arbitrary $\delta > 0$ there exists a closed set $Y \subset X$ such that $|\mu|(Y^c) < \delta$ and w is continuous on Y. We define a set valued mapping K' by

$$K'_x = \begin{cases} \{w(x)\} & x \in Y \\ K_x & x \notin Y \end{cases}$$

for $x \in X$. We see by [1, Corollary 9.1.3] (the closedness of K is missing in the condition of this corollary) that K' is also l.s.c. and have a continuous selection. In other words, there exists a continuous function $v : X \rightarrow \mathbb{R}^d$ such that $v(x) \in K_x$ on X and $v(x) = w(x)$ on Y. Hence we have

$$\int_X <\overline{\mu(x)}, w(x)> \varphi d|\mu| = \int_X <\overline{\mu(x)}, v(x)> \varphi d|\mu| + \int_{Y^c} <\overline{\mu(x)}, w(x)> \varphi d|\mu|$$

$$- \int_{Y^c} <\overline{\mu(x)}, v(x)> \varphi d|\mu|$$

$$\leq \int_X <\overline{\mu(x)}, w(x)> \varphi d|\mu| + \int_{Y^c} f(x, \overline{\mu(x)}) \varphi d|\mu|$$

$$+ \|v\| \int_{Y^c} \varphi d|\mu|.$$

Since $f(x, p) \leq c$ for $x \in X$ and $|p| = 1$, we thus obtain from (4) that

$$\int_X f(x, \mu) \varphi \leq \int_X <\overline{\mu(x)}, v(x)> \varphi d|\mu| + (c + \|v\||\varphi||\mu|(Y^c))$$

$$+ \varepsilon\|\varphi\||\mu|(X).$$

We note that $v(x) \in K_x$ implies $\|v\| = \sup_{x \in X} |v(x)| \leq c$, which is independent of δ and ε. Since ε and δ are arbitrary, this yields the desired formula (F,1).

The formula (F,1) is still valid in the case when the effective domain of $f_x(\cdot)$ is a closed convex cone $C \subset \mathbb{R}^d$. The proof can be done by a similar way except some standard arguments. Moreover, the formula (F,1) of this case is used for the proof of Theorem 2. Indeed, under the conditions in Theorem 2, the homogenization $F(x, p_0; p)$ satisfies the conditions in Theorem 1 by replacing \mathbb{R}^d by the cone $C = [0, \infty) \times \mathbb{R}^d$, and we can apply Theorem 1 for F. To end this note, we show this fact in the following proposition.
Proposition 8. If f satisfies (1),(2),(3) in Theorem 2, then the homogenization F satisfies (1),(2),(3) in Theorem 1 by replacing \mathbb{R}^d by $C = [0, \infty) \times \mathbb{R}^d$.

Proof: It is stated in §1 that F satisfies (2). Moreover,

$$F(x, 0, p) = \lim_{t \downarrow 0} f(x, \frac{p}{t})t$$
$$\leq \lim_{t \downarrow 0} c(1 + \frac{|p|}{t})t$$
$$= c|p|,$$

$$F(x, p_0, p) = f(x, \frac{p}{p_0})p_0$$
$$\leq c(1 + \frac{|p|}{p_0})p_0$$
$$= c(|p_0| + |p|) \quad (p_0 \neq 0),$$

and this proves (3). Hence it remains to prove (1). It is easy to see that F is l.s.c. in $(p_0, p) \in C = [0, \infty) \times \mathbb{R}^d$. Hence it follows from (1) in Theorem 2 that for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|(p_0, p) - (q_0, q)| < \delta, d(x_0, x) < \delta, q_0 \neq 0$ implies

$$F(x_0, p_0, p) - F(x, q_0, q) = F(x_0, p_0, p) - F(x_0, q_0, q) + F(x_0, q_0, q) - F(x, q_0, q)$$
$$< \varepsilon + (f(x_0, \frac{q}{q_0}) - f(x, \frac{q}{q_0}))q_0$$
$$< \varepsilon + \varepsilon(1 + \frac{|q|}{q_0})q_0$$
$$= \varepsilon + \varepsilon(|q_0| + |q|).$$

It is similar in the case of $q_0 = 0$. So F is l.s.c. on $X \times C$ and the proof is complete. ■

References

