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TrigonometricRunge-Kutta-Nystrom Method for
Solving Periodic Initial Value Problems
MBI (AR BB E £ 5 —) !

1 Introduction

A number of numerical methods for the solution of periodic initial value problems have
been developed (see e.g. [1], [5], [7], and [8]). Only few of them, however, take advantage
of special properties of the solution that may be known in advance. If the frequency of the
solution, or a reasonable estimate for it, is known in advance, then it will be advantageous
to take it as a priori knowledge for the solution of the problem.

The purpose of this paper is to construct the 4-stage implicit Runge-Kutta-Nystrom
method which takes the frequency of the solution as a priori knowledge. The Runge-Kutta-
Nystrom method proposed here, whose coeflicients are the functions of the frequency and
the stepsize, gives the exact solutions of the initial value problems, if the solutions are
periodic and their frequencies are known in advance. On the other hand, if the solutions
are not periodic, then the method is shown to be of (algebraic) order 4.

2 Runge-Kutta-Nystrom Method and Trigonometric Order

Let us consider the second-order initial value problem of the type

y' = f(t,y), ylt)=¢ y(to) =n. (1)

For solving equation (1), instead of applying conventional Runge-Kutta or linear multi-
step methods to the equivalent 1st-order system, which has the dimension twice that of
equation (1), the direct application of Runge-Kutta-Nystrom methods to equation (1) is
more efficient, particularly when the equation is stiff and therefore implicit methods are
necessary to solve it.

The Runge-Kutta-Nystrom method takes the form

S
Yn+l = Yn + h'y;; + h2 Z bjf(tn + th, Y,})7 (2)
i=1
8
y:wl =y, + hz b f(tn + c;ih, YB)’
Jj=1
8
Y; =yn+cihy, + B apf(tn + e, Vi), j=1,2,...,s
k=1 )

As in the case of Runge-Kutta methods, this can be represented in a Butcher array as
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Fig.1. Butcher array of Runge-Kutta-Nystrém method (2).

The order of the Runge-Kutta-Nystrom method is defined to be p = min{p;, p,} for the
integers p; and ps satisfying '

' y(tﬁ+1) — Y41 = O(APT), | Y (tas1) — Ypyr = O(R2H), (3)

where y, 11 and y;,_ ; are the numerical solutions given by the method under the conditions
that y, = y(¢t,) and y,, = ¥'(¢,). The order condition for the Runge-Kutta-Nystrom
method has been thoroughly studied by Hairer, Ngrsett and Wanner[2].

Although we would, in general, expect that the higher the order of the method the
greater the accuracy, it is not necessarily sufficient to use higher order formulae, if the
solution of the problem is oscillatory. For such problems, it is particularly appropriate
to discuss the accuracies using the notion of the trigonometric order, which was first
introduced by Gautschi[l] for linear multistep methods.

According to Gautschi[1] we describe briefly the trigonometric order of linear multistep
methods. Consider the linear multistep method

k k
2oy =h) Bifj, @
j=0 =0

for solving the first order equation y' = f(¢,y). If the difference operator
' k
Lly(t);h] := > _{ayy(t + jh) — hB;y' (¢ + jh)} (5)
§=0 |

associated with the multistep method annihilates trigonometric polyhomials up to degree
T, l.e.,
L[cos(qwt); h] = L[sin(qwt); h] =0, q=1,...,r,

Licos((r +‘1)wt); h] #0, Lisin((r + 1)wt); h] # 0,

then the linear multistep method is said to be of trigonometric r. For the Runge-Kutta-
Nystrom method, the trigonometric order is defined in an obvious manner analogous to
that for the linear multistep method.

Definition 1. Runge-Kutta-Nystrom method (2) is said to be of trigonometric order
1 relative to the frequency w, if all the relations

) _
y(t +c;h) = y(t) + c;hy’' () + B* Y ajy” (t + cxh), j=1,...,8+1,
: k=1 (6)

Y(E+h) =y @) +hD bky"(t+ cch)
k=1
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are satisfied by the functions y(t) = cos(mwt) and sin(mwt) (m = 1,..., u), where we set
ast1k = bg (k= 1,...,8) and ¢cs41 = 1. In addition, if the method is of trigonometric
order> 1, we will say that the Runge-Kutta-Nystrom method is trigonometric.

For the coefficients of trigonometric Runge-Kutta-Nystrom methods we have the fol-
lowing lemma:

Lemma 2. Let us assume that the coefficients aj;’s of trigonometric Runge-Kutta-
Nystrom methods, which are functions of v = wh, are determined to be analytic at v =0
for given c;’s. Then the coefficients a;i’s satisfy the relation

Zajk_ SG+O0(R?), j=1,2,...,s. (7)

Proof. Since ajj, is assumed to be analytic at ¥ = 0, it has the power series expansion of
the form
Qjr = agk) ( )1/ + a(2) 24

Using the expansion, we have

1 o0 8
————E)Eﬁ— 3> a(k)um cos(cyv), (8)
m=0 k=1
since the relation
S
y(t + cjh) = y(t) + c;hy/ (t) + B* Y ajuy” (t + cxh), j=1,...,s. 9)
k=1

holds when y(t) = cos(wt). By equating the coefficients of the same power of v on both
sides of (8), we have for j =1,2,...,s

0 (2m+1) _ —
Z © _ 2cj, Z m 0, m=0,1,...,
which implies (7). | |

Here we will call the order defined by (3) algebraic order to distinguish it from the
trigonometric order. For the bound on the trigonometric order y, we have immediately

p<|s/2], (10)

since each of conditions (6) denotes two equations. The bound given by (10) is the
one derived by imposing no restrictions on the algebraic order. However, Runge-Kutta-
Nystrom methods of algebraic order> 1 are generally recommended for integrating the
equation with reasonable accuracy, when the solution is non-periodic. Here we consider
the trigonometric Runge-Kutta-Nystrom method of algebraic order 2. The condition for
the Runge-Kutta-Nystrom method to have algebraic order 2 is given by [2]

Yh=1 Yh=12 She-ua |
j=1 Jj=1 j=1 '
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For the trigonometric Runge-Kutta-Nystrom method satisfying (11) we have the following
theorem:

Theorem 3. Suppose that an s-stage trigonometric Runge-Kutta-Nystrom method sat-
isfies condition (11), which merely ensures that the algebraic order of the method is at
least 2, and that the coefficients aji’s are analytic at v = 0, then the algebraic order of
the method is raised up to 4.

Proof. It suffices to prove that the assertion of the theorem is true for any problems
whose solutions y(t) are the elements of span{1,t,t?, cos(wt), sin(wt)}, since polynomials
of any degree can be approximated by the elements with errors of O(#°) for small ¢; the
monomials #3 and #* can be expressed by

2 = (6/w?)t— (6/w®)sin(wt) + O(#°),
tt = —24/w* + (12/w?) + (24/w*) cos(wt) + O(¢%).

Let us consider the locally exact solution of (1), i.e., the solution satisfying y, = y(t,)
and y, = y/(t,). For the case that y(t) = ¢, we have

S
Y, = yu+chy, + R Z air f (tn + ckh, Y)
: k=1

= y(t, +cih) + O(hY), (12)

since (7) holds. In addition, for the cases that y(t) = cos(wt) and sin(wt), we have

S
Y; = yp+cihy, +h8Y aiwf(tn + cih, Yi)
k=1

= y(tn + c;h), (13)

since the method is trigonometric. This relation is of course true for y(t) =1 and ¢. Thus
for the functions y(t) € span{1,t,t?, cos(wt), sin(wt)}, we have

=1

Ynil = Yo+ hyl, + h? Z@f(tn +¢h, Y;)

8
= o+ hy + 12D by (t + cih) + O(R°)
=1 )
= y(ta +h) + O(R®), | ' (14)
and

Unpr = Yo+ B bif(ta+chY))

=1
= o, + B> by (ta + i) + O(R)
=1 . .
= Yt +h)+0(R), (15)

where we have assumed that f(¢,y) satisfies the Lipschitz condition with respect to y.
Thus the assertion of the theorem holds. |
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Note that although the trigonometric Runge-Kutta-Nystrom method satisfying the
condition of Theorem 3 is shown to be of algebraic order 4, the method does not give
the exact results for the problems whose solutions are algebraic polynomials of degree 3
or 4; compare the fact that conventional Runge-Kutta or Runge-Kutta-Nystrom meth-
ods of algebraic order 4 integrate such problems exactly. Using the fact that any sinu-
soidal functions, i.e., cos(At) and sin(At), can also be approximated by the elements of
span{1,t,t2, cos(wt),sin(wt)} with errors of O(t°), we have the following corollary:.

Corollary 4. The algebraic order of the trigonometric Runge-Kutta-Nystrom method
18 4 also for periodic problems with unknown frequencies, if the method satisfies the con-
dition of Theorem 3.

The error analysis in case of unknown frequency is appeared in detail in [4]. Here-
after we will consider the s-stage trigonometric Runge-Kutta-Nystrom method satisfying
condition (11). For such method, the bound for the trigonometric order is given by

<1252, | (16)

since two equations for b; are included in (11). This shows that it is necessary s > 4 to
construct a Runge-Kutta-Nystrom method of trigonometric order 1. In this paper we will
develop an implicit 4-stage Runge-Kutta-Nystrom method of trigonometric order 1.

3 Runge-Kutta-Nystrom Method of Trigonometric Order 1

3.1 Implicit 4-stage Runge-Kutta-Nystrom Method

If we write down condition (6) for s = 4 and p = 1, then we have

( 4
cos(civ) — 1+ 12 ajjcos(civ) =0, i=1,...,4,
. j=1 .

» 4
sin(c;v) — gveos(ev) + 12 Y aysin(cy) =0,  i=1,...,4,

i=1
4
cosv — 1412 b;cos(cv) =0,
4 | =, (17)
sinv —veosv + 12y b;sin(c;v) =0,
s
\ i
sinv —v Y _ bjcos(cjv) =0,

j=1

1
cosv —1+v)_ bjsin(cv) =0,
L - i=1

where v = wh. The coefficients b;’s are uniquely determined by conditions (11) and (17),
if ¢;’s are different from each other, since there exist four equations for four unknowns.
For ¢,’s it will be natural to take the equally spaced abscissae such that

C1 =0, Co = 1/3, C3 22/3, Cy = 1, (18)
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because our main interest here is not in deriving higher algebraic order methods.

In our case, this choice of ¢;’s leads to that a;; =0 (j = 1,...,4), and therefore we
can reduce the total cost of evaluating stages, since the 1st stage becomes explicit. For
other a;; (i > 1), on the other hand, there exist only two equations for four unknowns,
so that we set a;; = 0 except for a;; and a;; this choice of a;;’s enables us to evaluate the
second, third and fourth stages in parallel on parallel processors after the evaluation of

the first stage.
For Bj’s, there exist three equations for four unknowns, so that we take by as a free

parameter, say by = 0.
The coefficients derived in this way, which are analytic at v = 0, are shown in [4].

3.2 Numerical Experiments

The following examples show the power of the trigonometric Runge-Kutta-Nystrom method
for periodic or approximately periodic problems.

Example 1. Let us consider the equation
y"(t) = —y(t) + € cost, | (19)

y(0)=1, ¥ (0)=0,

whose solution is given by
' y(t) = cost + 0.5t sint. (20)

We integrate this equation from ¢ =0 to 10 by the trigonometric Runge-Kutta-Nystrom
method with w = 1 and a = 0, by using the double precision IEEE arithmetic. The errors
at ¢t = 10 for various values of ¢ are shown in Table 1.

Table 1. Errors at ¢t = 10 of the trigonometric Runge-Kutta-Nystrom method
with w =1 and o = 0. :

€ h = 0.200 h =0.100 h = 0.050

107% | -4.108e-10 -2.378e-11 -1.317e-12
107% | -4.108e-09 -2.379e-10 -1.315e-11
1072 | -4.108e-08 -2.379e-09 ~-1.314e-10
1072 | -4.108e-07 -2.379e-08 -1.314e-09
1071 | -4.108e-06 -2.379e-07 -1.314e-08

The first term on the right-hand side of (20) can be represented exactly by the trigono-
metric Runge-Kutta-Nystrom method for any stepsize h > 0, but the second term, which
is proportional to €, can never be represented exactly. Therefore, the errors of the method
are proportional to €, as shown in Table 1.

Example 2. Let us consider the well-known two-body problem (see [3] or [6]):

Y =—u/rt g =/

(21)
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‘ ‘ 1+e
y1(0)=1—6, y’1(0)=03 ’!/2(0)=0, yé(O)z 1—6’

where e is an eccentricity. The exact solution of the problem is given by

y2(t) = V1 — e?sinu, | (22)

y1(t) = cosu —e,
where u is the solution of Kepler’s équation
u=1%+esinu.

When e =0

y1(t) = cost, yo(t) =sint,
so that the method with w = 1 is expected to be particularly accurate for the problems
with small e. Here we integrate equation (21) from ¢ = 0 to 20 for e = 0, 0.01, 0.1, and
0.5, by using the trigonometric Runge-Kutta-Nystrom method with w = 1. We evaluate
the maximum errors

o 2% (41,0 = y1(rh)| + 120 — 12(nh)]),

where Y1,n and Yo, are the numerical approximations to y;(nh) and y(nh), respectively.
The results are compared with those of the 2-stage Gauss Runge-Kutta method (see Table
2, 3).

Table 2. Maximum errors of the trigonometric Runge-Kutta-Nystrém method
withw =1 and a =0.

h =0.200

h=0.100 h =0.050
€=0.00|1.209e-14 4.638e-14 2.169e-13
e =0.01|9.668e-05 6.210e-06 3.919e-07
e=0.10 | 7.646e-04 6.030e-05 4.150e-06
e =0.50 | 3.003e-01 6.445e-03 1.486e-04

Table 3. Maximum errors of the 2-stage Gauss Runge-Kutta method.

h=0.200 h=0.100 h =0.050
€=0.00 | 5.839¢-04 3.658e-05 2.290e-06
e=0.01 | 5.939e-04 3.623e-05 2.266e-06
e=0.10 | 8.345¢-04 5.238¢-05 3.278e-06
| e=0.50 | 2.121e-02 1.493e-03 9.551e-05

As the tables show, the trigonometric Runge-Kutta-Nystrom method always yields
the exact results for the problem with e = 0.00; the values corresponding to e = 0.00 in
Table 2 must be the accumulations of roundoff errors. In addition, as has been expected,
for the problem with e = 0.01, the results by the trigonometric Runge-Kutta-Nystrom
method are more accurate than those by the 2-stage Gauss Runge-Kutta.

Example 3. (Coupled pendulum([2]) Let us consider the coupled pendulum of Fig. 2.
The kinetic and potential energies of the system are

T — mil2gi?  maligs®
2 2 o r2(sit iy — sin o)’
V re(sinp; — S
'V =—mylicosp1 — mgly cos g + cr Y1 1N Qo .

2
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Using the well-known Lagrange theory, we have the equations of motion of the system

sing; cr?

P = — 5 (sin g1 — sin @s) cos ; + f(t),
l1 mlll
(23)
. sin @ cr? . .
P2 = — = 5 (sin g — sin ;) cos ps.
lo maly :

In our experiment we set
Lh=kb=1 m=1 my=0.99, c=2, r=0.1

For the parameters above we might expect that the solution of the system is approximately
periodic with frequency w = 1, and so that the method with w = 1 is more accurate. We
integrate (23) from ¢ = 0 to 1007 by the trigonometric Runge-Kutta-Nystrom method
under the condition that

01(0) =0, #1(0)=0, ©2(0)=0, ¢(0)=0, f(t)=36(),

and calculate numerically the Hamiltonian function H(= T'+V'), which is ideally constant.
For various w’s, the maximum deviations max, |H, — Hy|, where H, and Hy are the values
of H at t = nh and ¢ = 0, respectively, are shown in Table 4.

Table 4. Maximum deviations of Hamiltonian function.

w 0.0 0.2 0.5 0.9 1.0 1.1 2.0 5.0 10.0
D x10” [ 481 462 364 98.9 8.74 91.1 1440 13000 77300

D = max, |H, — Hy|

015 —
r r
/ .
(Pl 2
L l
ml m2 sy 510 ﬂl)o 1éo 2;)0 2éo 3&0 t
Fig. 2. Coupled pendulum. Fig. 3. ¢1(t) and @,(t) on t € [0, 1007].

From this table we can see that the deviation at w = 1 is extremely small, so that
we can conclude that the method with w = 1 is most accurate.

4 Fixed Coeflicient Implementation

If the trigonometric Runge-Kutta-Nystrém method is implemented as a variable stepsize
mode, then we must re-evaluate the coefficients once the stepsize has been changed. This
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leads to a considerable amount of work, if the stepsize is changed frequently. In order to
avoid this re-evaluation, we must evaluate the coefficients at some © and fix them, even
if the stepsize has been changed; we will refer to this implementation as “fixed coefficient
mode.” In this case, however, the algebraic order of the method is only 2. Here we will
consider in detail the fixed coefficient mode. ' ‘

Let us assume that the coefficients of the trigonometric Runge-Kutta-Nystrom method
are evaluated by using some fixed 7, say i,,. Here we denote by Tn(ﬁoz_) the local truncation
error at ¢t = t,4; in this mode, i.e.,

Ta(90%) := (y(tn+1) — Un+1, ¥ (bnt1) — Unin) "
where y, = y(t,) and ¢, = 1/(t,) are assumed. If we expand T, (%%?) into the power series
in h such as
To(%%) = 17 (95) + 17 () + 17 G + -+, (24)
then the coefficients tg")(ﬁg) (¢ =0,1,...) must satisfy the conditions

tM(02) = M (02) =t (@) =0, forall 2 >0

and '
t§7(%5) = 7 (98) = O(85), 7 —0,
since, as is shown in Theorem 3, the method is effectively of algebraic order 4, if the
method is implemented as “variable coefficient mode.” The above result shows that
although the algebraic order of the method in the fixed coefficient mode is, in general, 2,
it becomes 4 only when the coefficients are evaluated at 5 = 0. Therefore, @ = 0 is the
best choice for the cases that the exact frequencies are unknown or the solutions are not
periodic; if we take & = 0 then # is always 0 for any stepsize h so that the re-evaluation
of the coefficients is unnecessary, even in the case of variable coefficient mode.

The method corresponding to 7 = 0 has the Butcher array given by

0 0
1/3| 1/27 1/54
2/3 | 4/27 2/27
1 1/3 1/6
-a+1/8 3a+1/4 -3a+1/8 «
1/8 3/8 3/8  1/8

Fig.2. Butcher array of the trigonometric Runge-Kutta-Nystrom method with @ = 0.
This method is shown to be of algebraic order 4 also by the order condition derived from
SN-trees [2].

Example 4. Let us consider again the two-body problem (21). Here we solve the

problem with e = 0 for the following five cases:

Table 5. Errors of the trigonometric Runge-Kutta-Nystrém method for the two-body
problem (21) with e = 0, where E = maxo<nr<20(|[¥1,n — ¥1(nh)| + |Y2,n — y2(nh)|).
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log, h log, £ _

: v=0 1v=0125 0v=025|o=h ©=2h
-2.00 | -7.90 -8.31 -45.8 |[-45.8 -6.27
-3.00 | -12.3 -45.9 -10.7 || -45.9 -10.7
-4.00 | -16.5 -14.9 -12.6 || -44.5 -14.9
-5.00 | -20.6 -16.7 -14.7 || -43.4 -19.1
-6.00 | -24.7 -18.7 -16.7 | -44.4 -23.1
-7.00 | -28.8 -20.8 -18.7 | -44.8 -27.2
-8.00 | -32.8 -22.8 -20.8 | -41.8 -31.2
-9.00 | -36.8 -24.8 -22.8 || -41.5 -35.2

We can easily find from the table that the errors in the fixed coefficient mode behave like
O(h*) only for the case ¥ = 0.
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