
$r_{\mathrm{b}\mathrm{i}\mathrm{m}}\mathrm{g}_{\mathrm{o}\mathrm{n}\mathrm{o}}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}$-Kutta-Nystr\"om Method for
Solving Periodic lnitial Value Problems

小澤–文 (東北大学情報処理教育センター) 1

1 Introduction

A number of numerical methods for the solution of periodic initial value problems have
been developed (see e.g. [1], [5], [7], and [8]). Only few of them, however, take advantage
of special properties of the solution that may be known in advance. If the frequency of the
solution, or a reasonable estimate for it, is known in advance, then it will be advantageous
to take it as a priori knowledge for the solution of the problem.

The purpose of this paper is to construct the 4-stage implicit Runge-Kutta-Nystr\"om
method which takes the frequency of the solution as a priori knowledge. The Runge-Kutta-
Nystr\"om method proposed here, whose coefficients are the functions of the frequency and
the stepsize, gives the exact solutions of the initial value problems, if the solutions are
periodic and their frequencies are known in advance. On the other hand, if the solutions
are not periodic, then the method is shown to be of (algebraic) order 4.

2 $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}-\mathrm{K}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{a}$-Nystr\"Om Method and Trigonometric Order

Let us consider the second-order initial value problem of the type

$y^{\prime/}=f(t, y)$ , $y(t_{0})=\zeta$ , $y’(t_{0})=\eta$ . (1)

For solving equation (1), instead of applying conventional Runge-Kutta or linear multi-
step methods to the equivalent lst-order system, which has the dimension twice that of
equation (1), the direct application of $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}-\mathrm{K}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{a}-\mathrm{N}\mathrm{y}\mathrm{s}\mathrm{t}\Gamma\ddot{\mathrm{O}}\mathrm{m}$ methods to equation (1) is
more efficient, particularly when the equation is stiff and therefore implicit methods are
necessary to solve it.

The Runge-Kutta-Nystr\"om method takes the form
お

$y_{n+1}=y_{n}+hy’n+h2 \sum\overline{b}_{j}f(t_{n}+c_{j}j=1h, \mathrm{Y}_{j})$
, (2)

$y_{n+1}’=y’n \sum_{1}+hb_{j}f(j=t_{n}+Cjh, \mathrm{Y}j)$
,

$\mathrm{Y}_{j}=y_{n}+c_{j}hy_{n}+h^{2}\sum_{k=1}\prime f(ajktn+C_{k}h, \mathrm{Y}_{k})$, $j=1,2,$ $\ldots,$
$s$ .

As in the case of Runge-Kutta methods, this can be represented in a Butcher array as.
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Fig.1. Butcher array of Runge-Kutta-Nystr\"om method (2).

The order of the Runge-Kutta-Nystr\"om method is defined to be $p= \min\{p_{1},p_{2}\}$ for the
integers $p_{1}$ and $p_{2}$ satisfying

$y(t_{n+1})-yn+1=O(h^{p_{1}+1})$ , $y’(t_{n+1})-y_{n+}\prime 1=O(h^{p_{2}+1})$ , (3)

where $y_{n+1}$ and $y_{n+1}’$ are the numerical solutions given by the method under the conditions
that $y_{n}=y(t_{n})$ and $y_{n}’=y’(t_{n})$ . The order condition for the Runge-Kutta-Nystr\"om
method has been thoroughly studied by Hairer, $\mathrm{N}\emptyset \mathrm{r}\mathrm{S}\mathrm{e}\mathrm{t}\mathrm{t}$ and $\mathrm{W}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}[2]$ .

Although we would, in general, expect that the higher the order of the method the
greater the accuracy, it is not necessarily sufficient to use higher order formulae, if the
solution of the $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\dot{\mathrm{l}}\mathrm{e}\mathrm{m}$ is oscillatory. For such problems, it is particularly appropriate
to discuss the accuracies using the notion of the trigonometric order, which was first
introduced by $\mathrm{G}\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{S}\mathrm{C}\mathrm{h}\mathrm{i}[1]$ for linear multistep methods.

According to Gautschi [1] we describe briefly the trigonometric order of linear multistep
methods. Consider the linear multistep method

$\sum_{j=0}^{k}\alpha_{j}y_{j}=h\sum_{j=0}^{k}\beta jfj$ , (4)

for solving the first order equation $y’=f(t, y)$ . If the difference operator

$L[y(t);h]:= \sum_{j=0}^{k}\{\alpha jy(t+jh)-h\beta jy’(t+jh)\}$ (5)

associated with the multistep method annihilates trigonometric polynomials up to degree
$r$ , i.e.,

$L[\cos(q\omega t);h]=L[\sin(q\omega t);h]=0$ , $q=1,$ $\ldots,$
$r$ ,

$L[\cos((r+1)\omega t);h]\neq 0$ , $L[\sin((r+1)\omega t);h]\neq 0$ ,

then the linear multistep method is said to be of trigonometric $r$ . For the Runge-Kutta-
Nystr\"om method, the trigonometric order is defined in an obvious manner analogous to
that for the linear multistep method.

Definition 1. Runge-Kutta-Nystr\"om method (2) is said to be of trigonometric order
$\mu$ relative to the frequency $\omega$ , if all the relations

$\{$

$y( \mathrm{t}+c_{j}h)=y(t)+c_{j}hy’(t)+h^{2}\sum_{k=1}a_{jky(t}s/’+c_{k}h)$ , $j=1,$ $\ldots,$ $s+1$ ,

$y’(t+h)=y’(t)+h \sum_{k=1}bky(\prime\prime ts+c_{k}h)$

(6)
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are satisfied by the functions $y(t)=\cos(7Ywt)$ and $\sin(m\omega t)(m=1, \ldots, \mu)$ , where we set
$a_{s+1,k}=\overline{b}_{k}(k=1, \ldots, s)$ and $c_{s+1}=1$ . In addition, if the method is of trigonometric
order$\geq 1$ , we will say that the Runge-Kutta-Nystr\"om method is trigonometric.

For the coefficients of trigonometric Runge-Kutta-Nystr\"om methods we have the fol-
lowing lemma:

Lemma 2. Let us assume that the coefficients $a_{jk}’ s$ of trigonometric Runge-Kutta-
Nystr\"om methods, which are functions of $\nu=\omega h$ , are determined to be analytic at $\nu=0$

for given $c_{j}’ s$. Then the coefficients $a_{jk}’ s$ satisfy the relation

$\sum_{k=1}^{s}ajk=\frac{1}{2}c+O(j)2h^{2}$ , $j=1,2,$ $\ldots,$
$s$ . (7)

Proof. Since $a_{jk}$ is assumed to be analytic at $\nu=0$ , it has the power series expansion of
the $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\backslash$

$a_{jkjjk}k=a_{j}^{(0)}+a^{(}1k)_{\nu+}(2a\nu^{2}+)\ldots$ .
Using the expansion, we have

$\frac{1-\cos(_{C_{j}\nu})}{\nu^{2}}=\sum_{m=0k1}^{\infty}\sum_{=}^{s}a^{()}\nu\cos(jkck\nu)mm$ , (8)

since the relation

$y(t+c_{j}h)=y(t)+c_{j}hy’(t)+h^{2} \sum_{k=1}a_{jky’(t}s’+c_{k}h)$ , $j=1,$ $\ldots,$
$s$ . (9)

holds when $y(t)=\cos(\omega t)$ . By equating the coefficients of the same power of $\nu$ on both
$\mathrm{s}\mathrm{i}\mathrm{d}$.es of (8), we have for $j=1,2,$ $\ldots,$$s-$

$\sum_{k=1}^{s}a_{jk}^{(0)}=\frac{1}{2}c_{j}^{2}$ , $\sum_{k=1}^{s}a_{j})(2m+1=k\mathrm{o}$, $m=0,1,$ $\ldots$ ,

which implies (7). 1

Here we will call the order defined by (3) algebraic order to distinguish it from the
trigonometric order. For the bound on the trigonometric order $\mu$ , we have immediately

$\mu\leq\lfloor s/2\rfloor$ , (10)

since each of conditions (6) denotes two equations. The bound given by (10) is the
one derived by imposing no restrictions on the algebraic order. However, Runge-Kutta-
Nystr\"om methods of algebraic order$>1$ are generally recommended for integrating the
equation with reasonable accuracy, when the solution is non-periodic. Here we consider
the trigonometric Runge-Kutta-Nystr\"om method of algebraic order 2. The condition for
the $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}- \mathrm{K}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{a}-\mathrm{N}\mathrm{y}\mathrm{s}\mathrm{t}_{\Gamma\ddot{\mathrm{O}}\mathrm{m}}$ method to have algebraic order 2 is given by [2]

$\sum_{j=1}^{s}b_{j}=1$ , $\sum_{j=1}\overline{b}_{j}l=1/2$ , $\sum_{j=1}^{s}bjCj=1/2$ . (11)
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For the trigonometric Runge-Kutta-Nystr\"om method satiswing (11) we have the following
theorem:

Theorem 3. Suppose that an $s$ -stage trigonometric Runge-Kutta-Nystr\"om method sat-
isfies condition (11), which merely ensures that the algebraic order of the method is at
least 2, and that the coefficients $a_{jk}’ s$ are analytic at $\nu=0$ , then the algebraic order of
the method is raised up to 4.
Proof. It suffices to prove that the assertion of the theorem is true for any problems
whose solutions $y(t)$ are the elements of $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{1, t, t2, \cos(\omega t), \sin(\omega t)\}$, since polynomials
of any degree can be approximated by the elements with errors of $O(\mathrm{t}^{5})$ for small $t$ ; the
monomials $t^{3}$ and $t^{4}$ can be expressed by

$t^{3}$
$=$ $(6/\omega^{2})t-(6/\omega^{3})\sin(\omega t)+O(\mathrm{t}^{5})$ ,

$t^{4}$
$=$ $-24/\omega^{4}+(12/\omega^{2})t^{2}+(24/\omega^{4})\cos(\omega t)+O(t^{6})$.

Let us consider the locally exact solution of (1), i.e., the solution satisfying $y_{n}=y(t_{n})$

and $y_{n}’=y’(t_{n})$ . For the case that $y(t)=t^{2}$ , we have

$\mathrm{Y}_{i}$ $=$ $y_{n}+c_{i}hy_{n}/+h^{2} \sum_{k=1}^{\text{お}}a_{ik}f(t_{n}+c_{k}h, \mathrm{Y}_{k})$

$=$ $y(t_{n}+c_{i}h)+O(h^{4})$ , (12)

since (7) holds. In addition, for the cases that $y(t)=\cos(\omega t)$ and $\sin(\omega t)$ , we have

$\mathrm{Y}_{i}$ $=$ $y_{n}+C_{i}hy’n+h^{2}k \sum_{=1}aikf(tn+c_{k}h, \mathrm{Y}_{k})\text{お}$

$=$ $y(t_{n}+c_{i}h)$ , (13)

since the method is trigonometric. This relation is of course true for $y(t)=1$ and $t$ . Thus
for the functions $y(t)\in \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{1, t, t^{2}, \cos(\omega t), \sin(\omega t)\}$ , we have

$y_{n+1}$ $=$ $y_{n}+hy_{n}’+h^{2} \sum_{i=1}^{l}\overline{b}if(tn+c_{i}h, \mathrm{Y}_{i})$

$=$ $y_{n}+hy_{n}’+h^{2} \sum_{1i=}^{s}\overline{b}_{i}y(/\prime t_{n}+c_{i}h)+O(h^{6})$

$=$ $y(t_{n}+h)+O(h6)$ , (14)

and

$y_{n+1}’$

.

$=$ $y_{n}’+h \sum_{1i=}^{l}b_{i}f(t_{n}+cih, \mathrm{Y}_{i})$

$=$ $y_{n}’+h \sum_{i=1}b_{i}y(’/t\iota n+\mathrm{q}h)+O(h^{5})$

$=$ $y’(tn+h)+o(h5)$ , (15)

where we have assumed that $f(t, y)$ satisfies the Lipschitz condition with respect to $y$ .
Thus the assertion of the theorem holds. 1
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Note that although the trigonometric Runge-Kutta-Nystr\"om method satisfying the
condition of Theorem 3 is shown to be of algebraic order 4, the method does not give
the exact results for the problems whose solutions are algebraic polynomials of degree 3
or 4; compare the fact that conventional Runge-Kutta or Runge-Kutta-Nystr\"om meth-
ods of algebraic order 4 integrate such problems exactly. Using the fact that any sinu-
soidal functions, i.e., $\cos(\lambda t)$ and $\sin(\lambda t)$ , can also be approximated by the elements of
$\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{1, t, t2, \cos(\omega t), \sin(\omega t)\}$ with errors of $O(t^{5})$ , we have the following corollary:

Corollary 4. The algebraic order of the trigonometric Runge-Kutta-Nystr\"om method
is 4 also for periodic problems with unknown frequencies, if the method satisfies the con-
dition of Theorem 3.

The error analysis in case of unknown frequenC..y is appeared in detail in [4]. Here-
after we will consider the $s$-stage trigonometric Runge-Kutta-Nystr\"om method satisfying
condition (11). For such method, the bound for the trigonometric order is given by

$\mu\leq \mathrm{L}\frac{s-2}{2}\rfloor$ , (16)

since two equations for $b_{j}$ are included in (11). This shows that it is necessary $s\geq 4$ to
construct a Runge-Kutta-Nystr\"om method of trigonometric order 1. In this paper we will
develop an implicit 4-stage $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}-\mathrm{K}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{a}- \mathrm{N}\mathrm{y}_{\mathrm{S}\mathrm{t}}\mathrm{r}\ddot{\mathrm{o}}\mathrm{m}$ method of trigonometric order 1.

3 $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}-\mathrm{K}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{a}$-Nystr\"om Method of Trigonometric Order 1

3.1 Implicit 4-stage $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}-\mathrm{K}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{a}-\mathrm{N}\mathrm{y}_{\mathrm{S}\mathrm{t}_{\Gamma\ddot{\mathrm{O}}}\mathrm{m}}$ Method

If we write down condition (6) for $s=4$ and $\mu=1$ , then we have

$| \mathrm{c}.\mathrm{o}\sin(C_{i}\mathrm{c}_{\mathrm{i}\mathrm{n}\nu}\sin\nu-\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{o}\mathrm{s}\nu-\mathrm{s}(_{C\nu)-1+\nu^{2}\sum a_{ij}\cos(}\nu i-\nu-1^{-})\nu\nu\sum_{\nu 1}^{+}j=\mathrm{c}\mathrm{o}+4\alpha\nu_{2}1\nu\nu j=\sum^{b_{j}}\mathrm{c}\mathrm{o}_{4}\mathrm{s}(\mathrm{q}\nu j\sum_{=}^{=0}4+\nu^{2}\sum_{)\cos(c_{j}\nu=}^{4}\overline{b}_{j}\sin=11bj\overline{j}b_{j}=14j=\mathrm{c}\mathrm{o}\mathrm{i}\mathrm{n}()+\nu^{2},\sum^{)}1\mathrm{s}(Cj\nu)c_{j}\nu)\mathrm{o}j=0C_{j}(c_{j}\nu=14=,\mathrm{o}\nu a_{i}j,\mathrm{s})0=\mathrm{i}\mathrm{o}\mathrm{n}’(,c_{j}\nu),$

$i=1,\ldots,$

$4i=1,\ldots 4\mathrm{J}’$

,

(17)

where $\nu=\omega h$ . The coefficients $b_{j}’ \mathrm{s}$ are uniquely determined by conditions (11) and (17),
if $c_{j}’ \mathrm{s}$ are different from each other, since there exist four equations for four unknowns.
For $c_{j}’ \mathrm{s}$ it will be natural to take the equally spaced abscissae such that

$c_{1}=0,$ $c_{2}=1/3,$ $c_{3}=2/3,$ $c_{4}=1$ , (18)
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because our main interest here is not in deriving higher algebraic order methods.
In our case, this choice of $c_{j}’ \mathrm{s}$ leads to that $a_{1j}=0(j=1, \ldots, 4)$ , and therefore we

can reduce the total cost of evaluating stages, since the 1st stage becomes explicit. For
other $a_{ij}(i>1)$ , on the other hand, there exist only two equations for four unknowns,
so that we set $a_{ij}=0$ except for $a_{i1}$ and $a_{ii}$ ; this choice of $a_{ij}’ \mathrm{s}$ enables us to evaluate the
second, third and fourth sta.ges in parallel on parallel processors after the evaluation of
the first stage.

For $\overline{b}_{j^{\mathrm{S}}}’$ , there exist three equations for four unknowns, so that we take $\overline{b}_{4}$ as a free
parameter, say $\overline{b}_{4}=\alpha$ .

The coefficients derived in this way, which are analytic at $\nu=0$ , are shown in [4].

3.2 Numerical Experiments

The following examples show the power of the trigonometric Runge-Kutta-Nystr\"om method
for periodic or approximately periodic problems.

Example 1. Let us consider the equation

$y^{\prime/}(t)=-y(t)+\epsilon\cos t$ , (19)

$y(0)=1$ , $y’(0)=0$,

whose solution is given by
$y(t)=\cos t+0.5\epsilon t\sin$ t. (20)

We integrate this equation from $t=0$ to 10 by the trigonometric Runge-Kutta-Nystr\"om
method with $\omega=1$ and $\alpha=0$ , by using the double precision IEEE arithmetic. The errors
at $t=10$ for various values of $\epsilon$ are shown in Table 1.

Table 1. Errors at $t=10$ of the trigonometric Runge-Kutta-Nystr\"om method
with $\omega=1$ and $\alpha=0$ .

The first term on the right-hand side of (20) can be represented exactly by the trigono-
metric $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}-\mathrm{K}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{a}$ -Nystr\"om method for any stepsize $h>0$ , but the seco.nd term, which
is proportional to $\epsilon$ , can never be represented exactly. Therefore, the errors of the method
are proportional to $\epsilon$ , as shown in Table 1.

Example 2. Let us consider the well-known two-body problem (see [3] or [6]):

$y_{1}^{\prime/}=-y1/r^{3}$ , $y_{2}^{\prime/}=-y2/r^{3}$ ,
(21)

$r=\sqrt{y_{1}^{2}+y_{2}^{2}}$,
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$y_{1}(0)=1-e,$ $y_{1}’(0)=0,$ $y_{2}(0)=0,$ $y_{2}’(0)=\sqrt{\frac{1+e}{1-e}}$,

where $e$ is an eccentricity. The exact solution of the problem is given by

$y_{1}(t)=\cos u-e$ , $y_{2}(t)=\sqrt{1-e^{2}}\sin u$ , (22)

where $u$ is the solution of Kepler’s equation

$u=t+e\sin u$ .

When $e=0$

$y_{1}(t)=\cos t$ , $y_{2}(t)=\sin t$ ,

so that the method with $\omega=1$ is expected to be particularly accurate for the problems
with small $e$ . Here we integrate equation (21) from $t=0$ to 20 for $e=0,0.01,0.1$ , and
0.5, by using the trigonometric Runge-Kutta-Nystr\"om method with $\omega=1$ . We evaluate
the maximum errors

$0 \leq nh\leq 20\max(|y1,n-y_{1}(nh)|+|y_{2,n}-y_{2}(nh)|)$ ,

where $y_{1,n}$ and $y_{2,n}$ are the numerical approximations to $y_{1}(nh)$ and $y_{2}(nh)$ , respectively.
The results are compared with those of the 2-stage Gauss Runge-Kutta method (see Table
2, 3).

Table 2. Maximum errors of the trigonometric Runge-Kutta-Nystr\"om method
with $\omega=1$ and $\alpha=0$ .

Table 3. Maximum errors of the 2-stage Gauss Runge-Kutta method.

As the tables show, the trigonometric Runge-Kutta-Nystr\"om method always yields
the exact results for the problem with $e=0.\mathrm{O}\mathrm{O}$ ; the values corresponding to $e=0.\mathrm{O}\mathrm{O}$ in
Table 2 must be the accumulations of roundoff errors. In addition, as has been expected,
for the problem with $e=0.01$ , the results by the trigonometric Runge-Kutta-Nystr\"om
method are more accurate than those by the 2-stage Gauss Runge-Kutta.

Example 3. (Coupled $\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{m}[2]$ ) Let us consider the coupled pendulum of Fig. 2.
The kinetic and potential energies of the system are

$T= \frac{m_{1}l_{1}^{2}\dot{\varphi}1^{2}}{2}+\frac{m_{2}l_{2}^{2}\dot{\varphi}_{2^{2}}}{2}$ ,

$V=-m_{1}l_{1} \cos\varphi_{1}-m2l_{2}\cos\varphi 2+\frac{cr^{2}(\sin\varphi_{1}-\sin\varphi 2)^{2}}{2}$ .
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Using the well-known Lagrange theory, we have the equations of motion of the system

$\{$

$\ddot{\varphi}_{1}=-\frac{\sin\varphi_{1}}{l_{1}}-\frac{cr^{2}}{m_{1}l_{1}^{2}}(\sin\varphi 1-\sin\varphi_{2})\cos\varphi 1+f(t)$,

$\ddot{\varphi}_{2}=-\frac{\sin\varphi_{2}}{l_{2}}-\frac{cr^{2}}{m_{2}l_{2}^{2}}(\sin\varphi_{2}-\sin\varphi_{1})\cos\varphi_{2}$ .

(23)

In our experiment we set

$l_{1}=l_{2}=1,$ $m_{1}=1,$ $m_{2}=0.99,$ $c=2,$ $r=0.1$ .

For the parameters above we might expect that the solution of the system is approximately
periodic with frequency $\omega=1$ , and so that the method with $\omega=1$ is more accurate. We
integrate (23) from $t=0$ to $100\pi$ by the trigonometric Runge-.Kutta-Nystr\"om method
under the condition that

$\varphi_{1}(0)=0$ , $\dot{\varphi}_{1}(0)=0$ , $\varphi_{2}(0)=0$ , $\dot{\varphi}_{2}(0)=0$ , $f(t)=\delta(t)$ ,

and calculate numerically the Hamiltonian function $H(=T+V)$ , which is ideally constant.
For various $\omega’ \mathrm{s}$ , the maximum deviations $\max_{n}|H_{n}-H_{0}|$ , where $H_{n}$ and $H_{0}$ are the values
of $H$ at $t=nh$ and $t=0$ , respectively, are shown in Table 4.

$D= \max_{n}|H_{n}-R_{0}|$

Fig. 2. Coupled pendulum. Fig. 3. $\varphi_{1}(t)$ and $\varphi_{2}(t)$ on $t\in[0,100\pi]$ .

From this table we can see that the deviation at $\omega=1$ is extremely small, so that
we can conclude that the method with $\omega..=1$ is most accurate.

4 Fixed Coefficient Implementation

If the trigonometric Runge-Kutta-Nystr\"om method is implemented as a variable stepsize
mode, then we must $\mathrm{r}\mathrm{e}$-evaluate the coefficients once the stepsize has been changed. This
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leads to a considerable amount of work, if the stepsize is changed frequently. In order to
avoid this $\mathrm{r}\mathrm{e}$-evaluation, we must evaluate the coefficients at some $\hat{\nu}$ and fix them, even
if the stepsize has been changed; we will refer to this $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\dot{\mathrm{m}}$entation as “fixed coefficient
mode.” In this case, however, the algebraic order of the method is only 2. Here we will
consider in detail the fixed coefficient mode.

Let us assume that the coefficients of the trigonometric Runge-Kutta-Nystr\"om method
are evaluated by using some fixed $\hat{\nu}$ , say $\hat{\nu}_{0}$ . Here we denote by $T_{n}(\hat{\nu}^{2}0)$ the local truncation
error at $t=t_{n+1}$ in thi.s mode, i.e.,

$T_{n}(\hat{\nu}_{0}2):=(y(\mathrm{t}_{n}+1)-y_{n+}1, y’(t_{n+}1)-yn+1)\prime \mathrm{T}$ ,

where $y_{n}=y(t_{n})$ and $y_{n}’=y’(t_{n})$ are assumed. If we expand $T_{n}(\hat{\nu}^{2}0)$ into the power series
in $h$ such as

$T_{n}(\hat{\nu}_{0^{2}})=t0^{n}(()\hat{\nu}^{2})0+t_{1}((n))h+t_{2}(n\hat{\nu}_{0}^{2}()\hat{\nu}_{0}^{2})h^{2}+\cdots$ , (24)

then the coefficients $t_{i}^{(n)}(\hat{\nu}_{0})2(i=0,1, \ldots)$ must satisfy the conditions

$t_{0}^{(n)2}(\hat{\nu})0=t_{1}^{(n)}(\hat{\nu}_{0})2=t_{2}^{(n)}(\hat{\nu}_{0})2=0$ , for all $\hat{\nu}_{0}^{2}\geq 0$

and
$t_{3}^{(n)}(\hat{\nu})0=t4(2(n)\hat{\nu}20)=o(\hat{\nu}^{2})0$

’
$\hat{\nu}_{0}^{2}arrow 0$ ,

since, as is shown in Theorem 3, the method is effectively of algebraic order 4, if the
method is implemented as “variable coefficient mode.” The above result shows that
although the algebraic order of the method in the fixed coefficient mode is, in general, 2,
it becomes 4 only when the coefficients are evaluated at $\hat{\nu}_{0}=0$ . Therefore, $\hat{\omega}=0$ is the
best choice for the cases that the exact frequencies are unknown or the solutions are not
periodic; if we take $\hat{\omega}=0$ then $\hat{\nu}$ is always $0$ for any stepsize $h$ so that the re-evaluation
of the coefficients is unnecessary, even in the case of variable coefficient mode.

The method corresponding to $\hat{\nu}=0$ has the Butcher array given by

Fig.2. Butcher arra..y of the trigonometric Runge-Kutta-Nystr\"om method with $\hat{\omega}=0$ .

This method is shown to be of algebraic order 4 also by the order condition derived from
$\mathrm{S}\mathrm{N}$-trees [2].

Example 4. Let us consider again the two-body problem (21). Here we solve the
problem with $e=0$ for the following five cases:

Table 5. Errors of the trigonometric $\mathrm{R}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{e}-\mathrm{K}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{a}-\mathrm{N}\mathrm{y}\mathrm{s}\mathrm{t}_{\Gamma\ddot{\mathrm{O}}\mathrm{m}}$ method for the two-body
problem (21) with $e=0$ , where $E= \max_{0\leq nh}\leq 20(|y1,n-y_{1}(nh)|+|y_{2,n}-y_{2}(nh)|)$ .
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We can easily find from the table that the errors in the fixed coefficient mode behave like
$O(h^{4})$ only for the case $\hat{\nu}=0$ .
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