<table>
<thead>
<tr>
<th>Title</th>
<th>Coinvariant Algebras of Some Finite Groups (Groups and Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SHINODA, Ken-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1997 (1997): 137-140</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61114</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Coinvariant Algebras of Some Finite Groups

Ken-ichi SHINODA

Recently Y. Ito and I. Nakamura [IN2], [N2] studied the Hilbert scheme of G-orbits $\text{Hilb}^g(C^2)$ for a finite group $G \subset SL(2, \mathbb{C})$ and showed a direct correspondence between the representation graph of G (McKay observation) and the singular fiber of the minimal resolution of C^2/G (Dynkin curve). In this article, we report some attempts to extend the results to finite subgroups of $SL(3, \mathbb{C})$, which is being studied jointly with Iku Nakamura (Hokkaido Univ.) and Yasushi Gomi (Sophia Univ.). For simplicity, we take the complex number field \mathbb{C} as a ground field and representations considered are complex representations.

1. Let G be a finite group, $\text{Irr}(G) = \{\chi_1, \ldots, \chi_s\}$ be the set of all irreducible characters of G, and $\text{Irr}(G) - \{1_G\}$. Given a character χ of G, we can form the representation graph $\Gamma(G) = \Gamma_{\chi}(G)$ as follows: the set of vertices is $\text{Irr}(G)$ and the directed edge of weight m_{ij} from χ_i to χ_j is determined by the relation

$$\chi \cdot \chi_i = \sum_{j=1}^{s} m_{ij} \chi_j, \quad i = 1, \ldots, s.$$

We use the convention that a pair of opposing directed edges of weight 1 is represented by a single edge and the weight m_{ij} is omitted if $m_{ij} = 1$.

Example 1. Let G be the quaternion group of order 8. Then $\text{Irr}(G)$ consists of 4 linear characters and the character χ of 2-dimensional representation. Then $\Gamma_{\chi}(G)$ is exactly the extended Dynkin diagram of type D_4 centered at χ.

Example 2. Let G be the alternating group of degree 5, A_5. Then $\text{Irr}(G) = \{1, \chi = 3_1, 3_2, 4, 5\}$, (where the characters are expressed by the degrees of the corresponding representations), and $\Gamma_{\chi}(G)$ becomes as follows:

![Diagram](attachment:image.png)

2. In [M] J. McKay stated the following which is now famous as McKay observation.

Proposition. Let G be a finite subgroup of $SL(2, \mathbb{C})$ and χ be the character of the inclusion representation. Then $\Gamma_{\chi}(G)$ is an extended Dynkin diagram of type A, D or E.
Conversely every such extended Dynkin diagram is obtained as a representation graph of a subgroup of $SL(2, \mathbb{C})$.

Thus McKay observation establishes a bijective correspondence between subgroups G of $SL(2, \mathbb{C})$ and the extended Dynkin diagram $\bar{\Gamma}_G$ of type A, D, and E.

3. There is another famous correspondence between subgroups G of $SL(2, \mathbb{C})$ and the Dynkin diagram Γ_G of type A, D and E. (The extended Dynkin diagram of Γ_G is $\bar{\Gamma}_G$.) Let $S = \mathbb{C}^2/G$ and $p : \tilde{S} \to S$ be the minimal resolution of singularity. Then the singular fiber, $p^{-1}(0)$, is a union of projective lines, Dynkin curve of type Γ_G, having intersection matrix $-C$, where C is the Cartan matrix of type Γ_G. In particular the graph obtained by Dynkin curve as follows is the Dynkin diagram Γ_G: the set of vertices is that of projective lines appearing in Dynkin curve and two lines are joined iff they meet. For details, please see a survey article of R. Steinberg[St] or P. Slodowy[Sl].

These two correspondences were famous, but relations between them had not been clear. Recently an explanation of these correspondences was given by Y. Ito and I. Nakamura[IN1], [IN2] and I. Nakamura[IN1], [N2], using Hilbert schemes.

4. Let $\text{Hilb}^n(\mathbb{C}^m)$ be the Hilbert scheme of \mathbb{C}^m parametrizing all the 0-dimensional subschemes of length n and let $\text{Symm}^n(\mathbb{C}^m)$ be the n-th symmetric product of \mathbb{C}^m, that is, the quotient of n-copies of \mathbb{C}^m by the natural action of the symmetric group of degree n. There is a canonical morphism π from $\text{Hilb}^n(\mathbb{C}^m)$ to $\text{Symm}^n(\mathbb{C}^m)$ associating to each 0-dimensional subscheme of \mathbb{C}^m its support. Let G be a finite subgroup of $SL(m, \mathbb{C})$. The group G acts on \mathbb{C}^m so that it acts naturally on both $\text{Hilb}^n(\mathbb{C}^m)$ and $\text{Symm}^n(\mathbb{C}^m)$. Since π is G-equivariant, π induces a morphism from the G-fixed point set $\text{Hilb}^n(\mathbb{C}^m)^G$ to the G-fixed point set $\text{Symm}^n(\mathbb{C}^m)^G$.

Now consider the special situation that n is the order of the group G and $m = 2$. Then $\text{Symm}^n(\mathbb{C}^2)^G$ is isomorphic to the quotient space \mathbb{C}^2/G and there is a unique irreducible component of $\text{Hilb}^n(\mathbb{C}^2)^G$ dominating $\text{Symm}^n(\mathbb{C}^2)^G$, which we denote by $\text{Hilb}^G(\mathbb{C}^2)$ and call it the Hilbert scheme of G-orbits, following the notation and the definition by I. Nakamura. Notice that we have a morphism $p : \text{Hilb}^G(\mathbb{C}^2) \to \mathbb{C}^2/G$ induced by π. The following theorem is proved in a unified way.

Theorem. [IN2]. $\text{Hilb}^G(\mathbb{C}^2)$ is nonsingular and $p : \text{Hilb}^G(\mathbb{C}^2) \to \mathbb{C}^2/G$ is a minimal resolution of singularity.

5. Let $R = \mathbb{C}[x, y]$ be the ring of regular functions on \mathbb{C}^2 and M be the maximal ideal corresponding to the origin, that is $M = (x, y)$. For a finite group $G \subset SL(2, \mathbb{C})$ of order n, let R_G be the invariant algebra of G and N be the ideal of R generated by invariant homogeneous polynomials of positive degree which generate R_G. The ring $R_G = R/N$ is called the coinvariant algebra of G.

We identify a G-invariant 0-dimensional subscheme with its defining ideal of R. For $I \in \text{Hilb}^G(\mathbb{C}^2)$ with support origin, put $V(I) = I/(MI + N)$. Then $V(I)$ is a G-module and we denote its character by $\chi_V(I)$. Let E be the exceptional set of p and $\text{Irr}(E)$ be
the set of irreducible components of E. For $\chi \in \text{Irr}(G)^d$, define

$$E(\chi) = \{ I \in E | (\chi, \chi_{V(I)})_G \neq 0 \}$$

where $(\cdot, \cdot)_G$ is the usual inner product on functions on G. Then by verifying every case the following theorem is obtained.

Theorem. [IN2],[N2].

$$E = \{ I \mid G\text{-invariant ideal of } R, N \subset I \subset M, R/I \simeq \mathbb{C}G \}$$

and the map $\chi \mapsto E(\chi)$ gives a bijective correspondence between $\text{Irr}(G)^d$ and $\text{Irr}(E)$.

6. Let G be a subgroup of $SL(3, \mathbb{C})$. R, R^G, R_G, M and N are defined similarly for \mathbb{C}^3 and G as in 5. Now theorem 5 suggests the necessity to study

$$F_G := \{ I \mid G\text{-invariant ideal of } R, N \subset I \subset M, R/I \simeq \mathbb{C}G \},$$

which would be a fiber of the origin of the quotient space \mathbb{C}^3/G in the Hilbert scheme of G-orbits. For that purpose we need detailed structures of the coinvariant algebras R_G.

What we have mainly obtained so far are

- decomposition of R_G (or its overalgebra) into irreducible components, particularly for groups of orders $60(A_5)$, $168(PSL(2,7))$, $108, 180, 216, 504, 648$, and 1080,

- explicit determination of basis for each irreducible component above for A_5 and $PSL(2,7)$.

As an outcome of these calculations we can show that F_{A_5} is a union of projective lines whose graph is given by

```
3_2
   /
  /
4
   /
  /
5
  /
3_1
```

and a graph for $PSL(2,7)$ also can be given. Details will appear in [GNS].

References

