The Terwilliger Algebra for Bipartite
P- and Q-polynomial Schemes

John S. Caughman, IV

Extended Abstract.

Let $Y = (X, \{R_i\}_{0 \leq i \leq D})$ denote a symmetric association scheme with $D \geq 3$. Suppose Y is bipartite P- and Q-polynomial, and fix any $x \in X$. Let $T = T(x)$ denote the Terwilliger algebra for Y with respect to x. The algebra T acts on the vector space $V = \mathbb{C}^X$ by matrix multiplication, and V is referred to as the standard module for T. V is equipped with the standard inner product on \mathbb{C}^X. It is known that T is a semisimple matrix algebra, and so by the Wedderburn-Artin theorem, V decomposes into a direct sum of irreducible T-modules. We study the action of T on these modules.

Let $E_0, E_1, ..., E_D$ denote the primitive idempotents for Y and let $E_0^*, E_1^*, ..., E_D^*$ denote the dual primitive idempotents for Y with respect to x. Fix any irreducible T-module $W \subseteq V$, and let r, d, t, and d^* respectively denote the endpoint, diameter, dual-endpoint and dual-diameter of W. In other words, set

$$r := \min\{i \mid E_i^* W \neq 0\},$$
$$d := |\{i \mid E_i^* W \neq 0\}| - 1,$$
$$t := \min\{i \mid E_i W \neq 0\},$$
$$d^* := |\{i \mid E_i W \neq 0\}| - 1.$$

We prove the following theorem.

Theorem. With the above notation, let W denote any irreducible T-module for Y. Then

(i) W must satisfy each of the following

$$d = d^*,$$
$$2r + d \geq D,$$
$$2t + d = D.$$

(ii) W is thin and dual-thin.

1Dept. of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706. Email: caughman@math.wisc.edu. AMS 1991 Subject Classification: Primary 05E30.
(iii) For any nonzero \(v \in E_tW \),

\[E_r^* v, E_{r+1}^* v, \ldots, E_{r+d}^* v \]

is an orthogonal basis for \(W \).

(iv) For any nonzero \(v \in E_r^*W \),

\[E_t v, E_{t+1} v, \ldots, E_{t+d} v \]

is an orthogonal basis for \(W \).

We describe the action of \(T \) on these bases by generalizing the intersection and dual-intersection numbers of \(Y \). These constants are then computed from the eigenvalues and dual-eigenvalues of \(Y \). Using these expressions, we prove that the isomorphism class of \(W \) is determined by two parameters, \(r \) and \(d \), the endpoint and diameter of \(W \), and we obtain simple expressions for the square-norms of our basis vectors for \(W \). In addition, we show how to recursively compute the multiplicities with which the irreducible \(T \)-modules occur in the Wedderburn decomposition of \(V \). Finally, we carry out all of the above computations for the bipartite schemes of type I.

References.

