<table>
<thead>
<tr>
<th>Title</th>
<th>Tight Graphs and Their Primitive Idempotents (Groups and Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Pascasio, Arlene A.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1997), 991: 101-102</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61119</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Tight Graphs and Their Primitive Idempotents*

Arlene A. Pascasio
De La Salle University
Manila, Philippines

March 4, 1997

Abstract

In this paper, we prove

Theorem 1. Let Γ denote a distance-regular graph with diameter $d \geq 3$. Suppose E and F are primitive idempotents of Γ, with cosine sequences $\sigma_0, \sigma_1, \ldots, \sigma_d$ and $\rho_0, \rho_1, \ldots, \rho_d$, respectively. Then the following are equivalent.

i) The entry-wise product $E \circ F$ is a scalar multiple of a primitive idempotent of Γ.

ii) There exists a real number ϵ such that

$$\sigma_i \rho_i - \sigma_{i-1} \rho_{i-1} = \epsilon (\sigma_{i-1} \rho_i - \sigma_i \rho_{i-1}) \quad (1 \leq i \leq d).$$

Let Γ denote a distance-regular graph with diameter $d \geq 3$ and distinct eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_d$. In [1], Jurišić, Koolen and Terwilliger proved that the valency k and the intersection numbers a_1, b_1 satisfy

$$
\left(\frac{\theta_1}{a_1 + 1} + \frac{k}{a_1 + 1}\right) \left(\frac{\theta_d}{a_1 + 1} + \frac{k}{a_1 + 1}\right) \geq \frac{-a_1 b_1}{(a_1 + 1)^2}.
$$

They called the graph tight whenever Γ is not bipartite, and equality holds above. Combining Theorem 1 with some of their results, we obtain

Corollary 2. Let Γ denote a nonbipartite distance-regular graph with diameter $d \geq 3$ and distinct eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_d$. The following are equivalent.

i) There exist nontrivial primitive idempotents E, F of Γ such that (i), (ii) hold in Theorem 1.

ii) Γ is tight.

Moreover, if (i), (ii) hold then the eigenvalues of Γ associated with E, F are a permutation of θ_1, θ_d.

*This work was done when the author was an Honorary Fellow at the University of Wisconsin-Madison (September 1996 – September 1997) supported by the Department of Science and Technology, Philippines.
Reference

Acknowledgement
The author wishes to thank Professor Paul Terwilliger for his many valuable suggestions.