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Abstract. It is shown that there exist nondeterministic finite automata with $n$

states whose equivalent deterministic finite automata need exactly $2^{n}-2^{k}$ (and also
$2^{n}-2^{k}-1)$ states for any integer $0 \leq k\leq\frac{n}{2}-2$ .

1 Introduction

After students start studying automata theory, they soon understand that nondeterministic
automata are more efficient them deterministic ones. In the standard $\mathrm{t}\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{k}[\mathrm{e}.\mathrm{g}.$ , Ha78, HU79,
LP81, Sa85], this is first demonstrated using finite automata: Namely, given a nondeterministic
finite automaton (NFA, for short) $M$ of $n$ states, one needs up to $2^{n}$ states to construct a deter-
ministic finite automaton (DFA, for short) which is equivalent to $M$ . Thus it appears that we
need much more states to simulate NFA’s by DFA’s. Note that, however, this shows only an upper
bound. To be more precise, let $\Delta(M, n)$ be the number of states that is necessary and sufficient
to simulate the NFA $M$ of $n$ states by some DFA. Then the above fact says that $\Delta(M, n)\leq 2^{n}$

for any NFA $M$ , which is one of the oldest theorem in automata theory [RS59].

It was not so old that this bound was shown to be $\mathrm{t}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}[\mathrm{M}_{071}]$ , i.e., there exists an NFA $M$ such
that $\triangle(M, n)--2^{n}$ . It is a little surprising that this result does not seem to be common; as far
as the authors know this result is not included in any $\mathrm{s}$.tandard textbook. (As a rare exception,
[HU79] suggests, as one of chapter-end exercises, that an NFA $M$ exists such that $\triangle(M, n)=2^{n-1}$

without citing [Mo71].) Even more surprising is that the research on $\Delta(M, n)$ completely stopped
there; the literature does not answer any basic questions like whether there is an NFA $M$ such
that $\Delta(M, n)=2^{n}-k$ . Clearly the most general and interesting question is whether there always
exists an NFA $M$ of $n_{1}$ states such that $\triangle(M, n_{1})=n_{2}$ for any integers $n_{1}$ and $n_{2}$ satisfying that
$n_{1}\leq n_{2}\leq 2^{n_{1}}$ .

In this paper, we cannot give answers to this final question, but we show that if the integer $n_{2}$

can be expressed as $2^{n_{1}}-2^{k}$ or $2^{n_{1}}-2^{k}-1$ for some integer $k\leq\lrcorner_{-2}n_{2}$ , then there is an NFA
$M$ of $n_{1}$ states such that $\Delta(M,n_{1})=n_{2}$ . An immediate corollary is that there are NFA’s $M$ of $n$

states such that $\triangle(M, n)=2^{n}-1,2^{n}-2,2^{n}-3,2^{n}-4,2^{n}-5,2^{n}-8,2^{n}-9,$ $\cdots$ . Thus the
first unsettled number is $2^{n}-6$ , i.e., it is not known at this moment if there is an NFA $M$ such
that $\Delta(M, n)=2^{n}-6$ (although our strong conjecture is that there does exist one).

Note that finite automata in this paper are always one-way and use the binary input symbols
$0$ and 1. If we allow three or more input symbols, then the above question becomes easier, i.e., it
is easier to find NFA’s whose deterministic counter parts need a specific number of states. If we
extend our attention to two-way $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ probabilistic finite automata, several other results exist
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on the number of states. Recently, for example, [Amb96] shows that there exist probabilistic finite
automata with an isolated cutpoint that need $\Omega(2^{n^{11}}-\mathrm{o}_{\mathrm{l}\circ}\mathrm{g}narrow 0\underline{n})$ deterministic states. [BL79] shows that
there is a two-way NFA of $O(n)$ states that needs $\Omega(2^{n^{2}})$ deterministic (one-way) states.

2 Preliminaries

A finite automaton $M$ is determined by giving the following five items: (i) A finite set $K$ of
states, $s_{0},$ $s_{1},$

$\cdots,$ $sn-1,$ $(\mathrm{i}\mathrm{i})$ A finite set $\Sigma$ of input symbols, which is always $\{0,1\}$ in this paper.
(iii) An initial state $(\in K)$ , which is usually $S_{0}$ in this paper. (iv) A set $F$ of accepting states
$(\subseteq K)$ . (v) A state transition function $\delta$ . If $\delta$ is a mapping from $K\cross\Sigma$ into $K$ , then $M$ is said
to be deterministic. If $\delta$ is a mapping from $K\cross\Sigma$ into $2^{k}$ , then $M$ is said to be nondeterministic.
The domain of $\delta$ is naturally extended from $K\cross\Sigma$ into $K\cross\Sigma^{*}$ . The definition of the language
accepted by $M$ may be omitted. If two finite automata $M_{1}$ and $M_{2}$ accept the same la.nguage,
then $M_{1}$ .and $M_{2}$ are said to be equivalent.

When we discuss the number of states of a DFA $M,$ $M$ must be a minimal DFA, i.e., it must be
guaranteed that there is no other DFA $M’$ that is equivalent to $M$ and has fewer states than $M$ .
It is a fundamental fact [RS59] that a DFA $M$ is minimal if (i) all states can be reachable from
the initial state and (ii) there are no two equivalent states. Here, two states $Q_{1}$ and $Q_{2}$ are said to
be equivalent if for all $x\in\Sigma^{*},$ $\delta(Q_{1}, x)\in F$ iff $\delta(Q_{2}, X)\in F$ . For an NFA $M$ of $n$ states, $\Delta(M, n)$

denotes the number of states of a minimal DFA $M’$ that is equivalent to $M$ . NFA’s should also
be minimal. However, within this paper, we only consider NFA’s whose $\triangle(M, n)$ value is large.
So, it is not necessary to give explicit proofs for the minimality of NFA’s because of the following
fact:

Proposition 1. If $\triangle(M, n)>2^{n-1}$ , then the NFA $M$ is minimal.
Proof. Obvious since $\triangle(M, n-1)\leq 2^{n-1}$ for any NFA $M$ of $n-1$ states.
Let $M_{1}$ be an NFA of $n$ states $K_{1}=\{S_{0}, S_{1}, \cdots, S_{n}-1\}$ . Then one can construct an equivalent

DFA $M_{2}$ as follows: We first introduce all the $2^{n}$ subsets of $K_{1}$ , each of which can be a state of
$M_{2}$ . Thus a state of the DFA $M_{2}$ corresponds to a family of states of the NFA $M_{1}$ . To avoid
confusion, a state of $M_{2}$ is often called an $F$-state. If an $\mathrm{F}$-state $X$ consists of $k(M_{1}’ \mathrm{s})$ states,
then it is said that the size of $X$ is $k$ and also denoted by $|X|=k$ . The initial state of $M_{2}$ is
$\{S_{0}\}$ if that of $M_{1}$ is $S_{0}$ . An $\mathrm{F}$-state $X\subseteq K_{1}$ of $M_{2}$ is a final state if $X$ includes at least one final
state of $M_{1}$ . The transition function $\delta_{2}$ of $M_{2}$ is defined using the transition function $\delta_{1}$ of $M_{1}$

as follows: For $\mathrm{F}$-states $Q_{1}$ and $Q_{2}\subseteq K_{1},$ $\delta_{2}(Q_{1}, a)\overline{=}Q_{2}(a\in\{0,1\})$ if
$s\in Q_{1}\cup\delta_{1}(S, a)=Q_{2}$

. After

determining this $\delta_{2}$ , we remove all $\mathrm{F}$-states which cannot be reached from the initial $\mathrm{F}$-state $\{S_{0}\}$ .
Note that this DFA may still $\mathrm{n}\mathrm{o}\mathrm{t}$

.
$.\mathrm{b}\mathrm{e}$ minimal. The whole procedure is usually called the “subset

construction” [RS59].
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Fig.1 : Transition Function of the NFA

3 1
Main Results

The following two theorems are proven. The two proofs are very $\mathrm{s}\mathrm{i}.\mathrm{m}$lilar, so only the difference
will be briefly given for the second theorem.

Theorem 1. There is an NFA $M$ of $n$ states such that $\triangle(M, n)=2^{n}-2^{k}-1$ for any integers
$n$ and $k$ satisfying that $0 \leq k\leq\frac{n}{2}-2$ .

Theorem 2. There is an NFA $M$ of $n$ states such that $\triangle(M, n)=2^{n}-2^{k}$ for any integers $n$

and $k$ satisfying that $0 \leq k\leq\frac{n}{2}-2$ .

3.1 Proof of Theorem 1

For simpler exposition, we first prove the theorem for $k=2$ and $n\geq 8$ . Let $M$ be the NFA of
$n$ states whose transition function is given in Fig. 1. Its initial state is $S_{0}$ and its final states are
also only $S_{0}$ . We first construct the DFA, denoted by $T$ , by the subset construction and show the
number of states in $T$ is at most $2^{n}-5$ . After that we shall show that no two states among those
$2^{n}-5$ ones are equivalent. Before describing details, we first take a look at the basic structure of
this NFA $M$ and its deterministic counterpart $T$ .

The state set of $M$ is divided into two groups $A=\{S_{\mathit{0}}, \cdots, S_{n}-3\}$ and $B=\{S_{n-2,1}S_{n}-\}$ . If
$M$ reads $0’ \mathrm{s}$ , its state is preserved within group $A$ or $B$ . In group $A,$ $M’ \mathrm{s}$ state is shifted on the

cycle of $S_{0}arrow S_{1}arrow\cdotsarrow S_{n-3}arrow S_{0}$ by reading $0’ \mathrm{s}$ . This is the same for the DFA $T$ : Let $X$
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be its $\mathrm{F}$-state consisting of $M’ \mathrm{s}$ states. If $T$ reads symbol $0,$ $X$ changes to $X’$ where each state in
$X$ is shifted one position on the above cycle. It is said that $X’$ is obtained from $X$ by a O-shifi
and $X$ is obtained from $X’$ by a $\theta- inv$-shifl. In group $B,$ $M’ \mathrm{s}$ state is shifted on the cycle of
$S_{n-2}arrow S_{n-1}arrow S_{n-2}$ by reading symbol $0$ .

State transitions by reading symbol 1 are also divided into two groups, Back-transitions (B-
transitions) and Forward-transitions ( $F$-transitions). $\mathrm{B}$-transitions include every transition to $S_{1}$

i.e., those from $S_{0},$ $S_{1},$
$\cdots,$ $S_{n-6},$ $S_{n-}2$ and $S_{n-1}$ . $\mathrm{F}$-transitions are all the other transitions. If we

consider only $\mathrm{F}$-transitions, then $M’ \mathrm{s}$ state is again shifted on the path $S_{1}arrow S_{2}arrow\cdotsarrow S_{n-5}arrow$

$S_{n-2}arrow S_{n-4}arrow S_{n-1}arrow S_{n-3}$. Similarly as $0$-shift and $0- \mathrm{i}\mathrm{n}\mathrm{V}^{-}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t}$ , we can consider 1-shift and
l-inv-shifl on this path. However, it is not a cyclic shift this time; If an $\mathrm{F}$-state $X$ contains $S_{1}$ ,
then by a l-inv-shift, this $S_{1}$ disappears, i.e., $|X|$ decreases by one. Similarly for a 1-shift when
$X$ includes $S_{n-3}$ .

Now we introduce an important definition: An $\mathrm{F}$-state $X$ is called an $S_{1}$ -pattern if it satisfies
the $\mathrm{f}\mathrm{o}\mathrm{I}1_{0}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ three conditions: (i) $2\leq|X|\leq n-3$ and all the $(M’ \mathrm{s})$ states included by $X$ are in
group A. (ii) $S_{0}\not\in X$ and $S_{1}\in X$ . $(\mathrm{i}\mathrm{i}\mathrm{i})X$ includes at least one $S_{i}$ such that $2\leq i\leq n-6$ . (This
region of states, i.e., $S_{i}$ for $2\leq i\leq n-6$ , are called $S_{1}$ -generating states. By reading symbol 1,
an $S_{1}$ -generating state $S_{i}$ is splitiled into $S_{i+1}$ and $S_{1}.$ )

Lemma 1. Let $X$ be any $\mathrm{F}$-state such that $2\leq|X|\leq n-3$ and all states in $X$ are in group
$A$ . Then there is an $S_{1}$-pattern $\mathrm{Y}$ such that $X$ can be obtained from $\mathrm{Y}$ by some number (may be
zero) of O-shifts.

Proof. If $X$ itself is an $S_{1}$-pattern, then we need zero $0$-shift. So suppose that $X$ is not an
$S_{1}$ -pattern. Since $|X|\leq n-3$ , at least one state in group $A$ is missing. Hence, one can change
$X$ into $X_{1}$ by some number of O-inv-shifts such that $X_{1}$ does not include $S_{0}$ but does include $S_{1}$ .
Now check if $X_{1}$ is an $S_{1}$ -pattern. If so, then we are done since $X$ can be obtained from $X_{1}$ by
$0$-shifts. Otherwise, let $X_{1}=\{S_{1}, S_{i_{1}}, Si_{2}, \cdots\}$ where $1\leq i_{1}\leq i_{2}\leq\cdots$ . Then since $X_{1}$ is not an
$S_{1}$ -pattern, $i_{1}\geq n-5$ . (Since $n\geq 8,$ $i_{1}\geq 3.$ ) Now apply O-inv-shifts until this $S_{i_{1}}$ changes to $S_{1}$

and let the resulting $\mathrm{F}$-state be $X_{2}$ . Then this $X_{2}$ does not include $S_{0}$ since $S_{i_{1}1}-$ is not in $X_{1}$ .
Also this $X_{2}$ must include some $S_{i}$ such that $2\leq i\leq n-6$ , that may be the former $S_{i_{2}}$ in $X_{1}$ or
the former $S_{1}$ in $X_{1}$ (recall that $X_{1}$ contains at least two states). Thus it turns out that this $X_{2}$

must be an $S_{1}$ -pattern and that is what we wanted. $\square$

Lemma 2. Let $X$ be any $\mathrm{F}$-state such that its subset, say, $X’$ , that gathers all states in group
$A$ is an $S_{1}$ -pattern. Then there is another $\mathrm{F}$-state $\mathrm{Y}$ such that $|\mathrm{Y}|=|X|-1$ and the DFA $T$

changes from $\mathrm{Y}$ to $X$ by reading a single 1.
Proof. Since $X’$ is an $S_{1}$ -pattern, $X$ can be written as $X=\{S_{1}, S_{i_{1}}, \cdots\}$ where $2\leq i_{1}\leq n-6$ .

Now let $\mathrm{Y}$ be the $\mathrm{F}$-state obtained from $X$ by a l-inv-shift. $\mathrm{Y}$ can be written as $\{s_{i_{1}-1}, \cdots\}$ and
$|\mathrm{Y}|=|X|-1$ . Now let $Z$ be the $\mathrm{F}$-state into which $T$ changes from $\mathrm{Y}$ by reading 1. (We wish
to show that $Z=X.$) Then, since the l-inv-shift of $X$ is $\mathrm{Y}$ , the 1-shift of $\mathrm{Y}$ is $X-\{S_{1}\}$ , which
means $Z$ must include this $X-\{S_{1}\}$ . Also, $Z$ must include $S_{1}$ since there is a $\mathrm{B}$-transition to
$S_{1}$ from $S_{i_{1}-1}$ in $\mathrm{Y}$ (this is the reason why we introduced the third condition for the $S_{1^{-}\mathrm{P}^{\mathrm{a}\mathrm{t}}}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{n}$ )

$\coprod$

.
Obviously, no other states are included in $Z$ , i.e., $X=Z$ .
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$-$ Now we are ready to show that $\triangle(M, n)=2^{n}-5$ . To do so, we will first show that the
DFA $T$ has $2^{n}-5$ states and then that $T$ is minimal. It turns out that among $2^{n}$ all subsets of
$\Sigma=\{S_{0}, S1, \cdots sn-1\}$ , the state set of $M$ , the following five subsets (five $\mathrm{F}$-states) are missing
in $T;(\mathrm{i})\phi$ (the empty set), (ii) $A=\{s_{0}, s_{1}, \cdots S_{n}-\mathrm{s}\},$ $(\mathrm{i}\mathrm{i}\mathrm{i})A\cup\{s_{n-2}\},$ $(\mathrm{i}\mathrm{v})A\cup\{s_{n-1}\}$ and $\{\mathrm{v})$

$A\cup\{S_{n-2,n-1}S\}$ . Let $\Gamma$ be the set of those five $\mathrm{F}$-states. In the following we shall use mathematical
induction to show that all the $\mathrm{F}$-states but those in $\Gamma$ appear in the DFA $T$ . The base of the
induction is $m=2$ . So, we first consider the case that $m=1$ , then the case that $m=2$ and then
the case that $m\geq 3$ (i.e., both are in group $B$).

Case 1. $(m=1)$ . $\{S_{0}\}$ is the initial state of $T$ . Each of $\{S_{1}\}$ through $\{S_{n-3}\}$ can be reached
by $0$-shifts from $\{S_{0}\}$ . $\{S_{n-2}\}$ and $\{S_{n-1}\}$ are reached from $\{S_{n-5}\}$ and $\{S_{n-4}\}$ by reading 1,
respectively.

Case 2. $(m=2)$ . All $\mathrm{F}$-states $X$ of size two are divided into the following three groups: (2-1)
Both states in $X$ are in group A. (2-2) One of the two states is in group A. (2-3) None is in group
$A$ .

Case 2-1. $X$ satisfies the conditions of Lemma 1. So there exists another $\mathrm{F}$-state, say, $\mathrm{Y}$ , such
that $\mathrm{Y}$ is an $S_{1}$ -pattern and $T$ can change from $\mathrm{Y}$ to $X$ by reading $0’ \mathrm{s}$ . $\mathrm{Y}$ satisfies the condition
of Lemma 2. So there exists another $\mathrm{F}$-state, $Z$ , such that $|Z|=1$ and $T$ can change from $Z$ to
$\mathrm{Y}$ by reading 1. Existence of such $Z$ is guaranteed by the argument in Case 1, and hence such an
$\mathrm{F}$-state $X$ must exist in $T$ .

Case 2-2. Let $X=\{Si, S_{j}\}$ when $0\leq i\leq n-3$ and $S_{j}=S_{n-1}$ or $S_{n-2}$ . Obviously there exists
$\mathrm{Y}=\{S_{1}, S_{j}’\}$ ( $s_{j^{\prime--}}S_{n}-1$ or $S_{n-2}$ ) such that $T$ moves from $\mathrm{Y}$ to $X$ by reading $0’ \mathrm{s}$ . Now consider
$Z=\{S_{n-3}, S_{j}\prime\prime\}$ where $j”=n-4$ if $j^{f}=n-1$ and $j”=n-5$ if $j’=n-2$ . One can see that $T$

moves from $Z$ to $\mathrm{Y}$ by reading 1. The existence of $Z$ is guaranteed by Case 2-1.

Case 2-3. $X=\{S_{n-2,n-1}S\}$ . Let $Z=\{s_{n-5}, s_{n-}4\}$ . $T$ moves from $Z$ to $X$ by reading 1. $Z$

must exist as shown in Case 2-1.
Case 3. $(m\geq 3)$ . Now our induction hypothesis is that every $\mathrm{F}$-state of size $m(\geq 2)$ exists in

$T$ if it is not in $\Gamma$ (recall that $\Gamma$ is the set of the five nonexistent $\mathrm{F}$-states). Under this assumption
we shall show any $\mathrm{F}$-state, $X$ , of size $m+1$ exists unless $X$ is in $\Gamma$ . As before, the $\mathrm{F}$-states of size
$m+1$ are divided into three groups: (3-1) All states in $X$ are in group A. (3-2) One of them is
in group B. (3-3) Two of them are in $B$ .

Case 3-1. Recall that $X$ (of size $m+1$ ) is not in F. Then $X$ is different from the whole $A$ and
hence it satisfies the condition of Lemma 1. The Proof is very similar to Case 2-1, i.e., we can
find an $\mathrm{F}$-state $Z$ of size $m$ from which $T$ can change to $X$ and whose existence is guaranteed by
the induction hypothesis.

Case 3-2. $X$ can be written as $X=X_{1}\cup X_{2}$ , where $|X_{1}|=m$ and $X_{1}\subseteq A$ and $X_{2}=\{S_{n-2}\}$

or $\{S_{n-1}\}$ . One can easily verify that $X_{1}$ satisfies the condition of Lemma 1. So, we can obtain
an $S_{1}$ -pattern $\mathrm{Y}_{1}\mathrm{b}.\mathrm{y}$ applying some number of $0- \mathrm{i}\mathrm{n}\mathrm{V}^{-}\mathrm{S}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t}\mathrm{s}$ . Also $\mathrm{Y}_{2}$ (again $\{S_{n-2}\}$ or $\{S_{n-1}\}$ ) is
obtained from $X_{2}$ by the same number of O-inv-shifts. Let $\mathrm{Y}=\mathrm{Y}_{1}\cup \mathrm{Y}_{2}$ . Then this $\mathrm{Y}$ satisfies the
condition of Lemma 2 and we can get an $\mathrm{F}$-state $Z$ of size $m$ by a l-inv-shift. Thus $X$ can be
reached from $Z$ whose existence is guaranteed by the induction hypothesis.
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Case 3-3. $X=X_{1}\cup X_{2}$ where $|X_{1}\rfloor=m-1$ and $X_{2}=\{s_{n-2,n-1}s\}$ . We need to consider
further two cases.

Case 3-3-1. $m=3$ . In this case $|X_{1}|=1$ . $T$ can change from $\{S_{n-5}, S_{n}-4, sn-3\}$ to
$\{s_{1}, s_{n-}2, s-1\}n$ by reading symbol 1 and then to $X$ by reading some number of $0’ \mathrm{s}$ . The ex-
istence of $\{sn-5, Sn-4, sn-3\}$ is guaranteed by Case 3-1.

Case 3-3-2. $m\geq 4$ . In th.is case $|X_{1}|\geq 2$ . Hence we can. make very similar argument as Case
3-2, which may be omitted.

Thus we have shown that any $\mathrm{F}-\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\not\in\Gamma$ appears in $T$ .
Lemma 3. Any $\mathrm{F}$-state in $\Gamma$ does not appear in $T$ .
Proof. First of all, $\phi \mathrm{c}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{o}\dot{\mathrm{t}}$ be $\mathrm{r}\mathrm{e}\mathrm{a}\dot{\mathrm{c}}\mathrm{h}\mathrm{e}\mathrm{d}$ from $\{S_{0}\}$ since we have no next-state entry in

Fig. 1 that contains $\phi$ . The other four $\mathrm{F}$-states are $\{S_{0}, S1, \cdots, sn-3\},$ $\{S_{0}, S1, \cdot\cdot*, S_{n-}3, sn-2\}$ ,
{So, $S_{1},$

$\cdots,$ $S_{n-3,n-}s1$ } and {So, $S_{1},$
$\cdots,$ $S_{n-3},$ $s_{n-}2,$ $S_{n}-1$ }. Now one can see that if $T$ could reach

one of those state from $\{S_{0}\}$ , then there must be $\mathrm{a}\mathrm{n}\mathrm{F}\sim$-state $X$ such that $X$ is different from any
of those four and $T$ can move from $X$ to one of the four state, say, $\mathrm{Y}$ , by reading symbol $0$ or 1.

Now we shall show that such $X$ does not exist: (i) If $T$ could move from $X$ to $\mathrm{Y}$ , then the
symbol read by $T$ is not 1. (The reason: $\mathrm{Y}$ contains $S_{0}$ but $S_{0}$ is not included in the column for
symbol 1 of Fig. 1.) (ii) So, the symbol read by $T$ must be $0$ . Let $X=X_{1}\cup X_{2}$ where $X_{1}\subseteq A$ .
Then since $X\not\in\Gamma,$ $X_{1}\neq A$ . Recall that a state transition by symbol $0$ is a “cyclic shift”, so by
reading $0,$ $X_{1}$ is shifted to some $X_{1}’$ that must not coincide $A$ again. Hence the next state of $X$

by reading $0$ must be different from $\mathrm{Y}$ since its group-A portion is the whole $A$ . $\square$

Now what remains is to show that the DFA $T$ is minimal:
Lemma 4. Any two states $X$ and $\mathrm{Y}$ of $T$ are not equivalent.
Proof. We first consider the case that $X$ and $\mathrm{Y}$ differ in their group-A portion. Let $X=X_{1}\cup X_{2}$

and $\mathrm{Y}=\mathrm{Y}_{1}\cup \mathrm{Y}_{2}$ where $X_{1}$ and $\mathrm{Y}_{1}$ are their group-A portions. Once again recall that the transition
by reading $0$ is a “cyclic shift”. Therefore, if $X_{1}\neq \mathrm{Y}_{1}$ then there exists a sequence $x$ of $0’ \mathrm{s}$ such
that $\delta(X_{1}, x)$ contains $S_{0}$ but $\delta(\mathrm{Y}_{1}, x)$

. does not or vice versa ( $\delta$ is the transition function of $T$ ). In
either case one of them is accepting and the other is not. (Actually the states in $X_{2}$ and $\mathrm{Y}_{2}$ are
also involved but they have no effect on whether or not those $\mathrm{F}$-states are final.) Thus if $X_{1}\neq \mathrm{Y}_{1}$

then $X$ and $\mathrm{Y}$ are not equivalent.
Next suppose that $X_{1}=\mathrm{Y}_{1}$ . Then $X_{2}$ and $\mathrm{Y}_{2}$ must be different. Let $X’=\delta(X, 1)$ and

$\mathrm{Y}’=\delta(\mathrm{Y}, 1)$ . Then one can see that the group-A portions of $X’$ and $\mathrm{Y}’$ are different. The reason
is that when $T$ reads 1, $S_{n-1}$ moves to $S_{n-3}$ (and also to $S_{1}$ ) and $S_{n-2}$ moves to $S_{n-4}$ (and also to
$S_{1})$ . Since there are no other transitions to $S_{n-3}$ or to $S_{n-4}$ by reading 1, if $X_{2}$ and $\mathrm{Y}_{2}$ are different
then the corresponding states in group-A reached from $X_{2}$ and $\mathrm{Y}_{2}$ by reading 1 are also different.
Thus $X’$ and $\mathrm{Y}’$ are not equivalent and hence $X$ and $\mathrm{Y}$ are not either. $\square$

3.2 The Case for a General $k$

The transition function of $T$ for general $k(0 \leq k\leq\frac{n}{2}-2)$ is illustrated in Fig. 2. Again the
whole state set is partitioned into $A=\{S_{\mathit{0}}, S1, \cdots, sn-k-1\}$ and $B=\{S_{n-k}, \cdots, S_{n}-1\}$ . What
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Fig.2 : Transition Function of the $\mathrm{N}1^{\mathrm{t}^{1}}\mathrm{A}$

we should be careful in the general case is the following: Recall that one of the key facts in the
previous proof is that any $\mathrm{F}$-state $\subset A+$ of size at least two can be changed, by O-inv-shifts, to
an $S_{1}$ -pattern which includes some $S_{1}$ -generating state. Let us also call a state $S_{i}$ of Fig. 2 an
$S_{1}$ -generating state if $2\leq i\leq n-2k-2$ . Then one can see that the number of the $S_{1}$ -generating
states decreases as $k$ increases. It is not hard to see that the above fact no longer holds if there
are too few $S_{1}$ -generating states. In other words, if there is an enough number of $S_{1}$ -generating
states, or if $k$ is relatively small (up to some $\frac{n}{3}$ ), then the proof of the general case is virtually the
same as before.

When $k$ is large, then we have few $S_{1}$ -generating states. Instead, however, one should notice
that we have more and more states in group $B$ . Looking at the state transition, it turns out that
the group-B states can play the same role as $S_{1}$ -generating states. Although details are omitted,
this is the reason why we can enlarge $k$ up to almost $\frac{n}{2}$ .
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4 Proof of Theorem 2

The transition function of the NFA $\dot{M}$ is exactly the same as Fig. 2 but only one entry. Namely,
the next states from $S_{0}$ by reading 1 is changed from $S_{1}$ tp $\phi$ Thus the $\mathrm{F}$-state $\phi$ must appear in
the equivalent DFA $T$ and $\phi$ is not equivalent to any other $\mathrm{F}$-state since it is completely impossible
to reach any accepting $\mathrm{F}$-state from $\phi$ . (One can see that there is a path to $S_{0}$ from every other
state in Fig. 2, which means $T$ can reach some accepting $\mathrm{F}$-state from any $\mathrm{F}$-state of size at least
one.)

Thus what we have to prove is that (i) $T$ has al.l the $\mathrm{F}$-states but $\Gamma-\{\phi\}$ and (ii) any two of
them are not equivalent. (ii) is exactly the same as before. To show (i), one should notice that
we did not use the transition from $S_{0}$ by reading 1 anywhere in Sec. 3.1. Details may be omitted.

5 $\mathrm{C}_{0}\mathrm{n}\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\tau$ Remarks

An apparent future goal is to find an NFA $M$ such that $\triangle(M, n)=2^{n}-6$ . Note that our basic
approach in this paper is to divide the whole $\mathrm{F}$-states into two groups and to prohibit the whole
group-A states from appearing in the equivalent DFA. $\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{S}$ the number of disappearing states has
to be the size of the power set of group $B$ , which is to be in the form of $2^{k}$ . The above number, 6,
is exactly the middle between $4(=2^{2})$ and $8(=2^{3})$ , which clearly makes it difficult to apply the
above basic approach. We probably need some new ideals.
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