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Abstract
Let $G=(V, E)$ be a simple graph with $n$ vertices, $m$ edges and $p$ connected com-

ponents. The problem of constructing a spanning forest is to find a spanning tree for
each connected component of $G$ . For a simple graph, Chin et $\mathrm{a}1.[1]$ demonstrated that
a spanning forest can be found in $O(log^{2}n)$ time using $O(n^{2}/log^{2}n)$ processors. In
this paper, we propose an $O(logn)$ time parallel algorithm with $O(n)$ processors on
the EREW PRAM for constructing a spanning forest on trapezoid graphs.

1 Introduction

Given a simple graph $G=(V, E)$ with $n$ vertices, $m$ edges and $p$ connected components, the

spanning forest problem is to find a spanning tree for each connected component of $G$ . If

$p=1$ for $G$ , i.e., $G$ is connected, the spanning forest problem is equivalent to the spanning

tree problem of finding a connected subgraph which is a tree and contains all the vertices

of $G$ . These problems have applications to electrical power demand problem or computer

network design problem etc. A spanning tree and a spanning forest can be found in linear

time using, for example, the depth-first search. In recent years a large number of studies have

been made to parallelize known sequential algorithms. The spanning tree probIem can be

solved in $o(logn)$ time with $O(logn+m)\tau$ processors on CRCW PRAM (Concurrent-Read

Concurrent-Write Parallel Rando..m $\mathrm{A}\mathrm{c}$.cess Machine) by $\mathrm{K}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{n}[5].\mathrm{e}\mathrm{t}$ al.’s $\mathrm{a}$.lgorithm. Moreover,

$\mathrm{C}\mathrm{h}\mathrm{i}\mathrm{n}[1]$ et al. demonstrated that a spanning forest can be found in $O(log^{2}n)$ time using

$O(n^{2}/log^{2}n)$ processors for simple graphs. In general, it is known that more efficient or

optimal parallel algorithms can be developed by restricting classes of graphs. For instance,

$\mathrm{w}_{\mathrm{a}\mathrm{n}\mathrm{g}}[7]$ et al. proposed an optimal parallel algorithm for constructing a spanning tree on
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permutation $graphs[2]$ which runs in $O(logn)$ time using $O(n/logn)$ processors on the
EREW PRAM (Exclusive-Read Exclusive-Write Parallel Random Access Machine). In this
paper, we propose an efficient parallel algorithm which runs in $O(logn)$ time with $O(n)$

processors for constructing a spanning forest by restricting the class of graphs to trapezoid
$graphs[6]$ .

We next illustrate the trapezoid graph. There are two horizontal lines, called the top
channel and the bottom channel, respectively. Each channel is labeled with consecutive
integer values $1’,2,\ldots,2n$ (where $n$ is the number of $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{e}\ldots \mathrm{z}$oids). A trapezoid $T_{i}$ is defined
by four corner points $[a_{i}, b_{i}, c_{i}, d_{i}]$ where $a_{i},$ $b_{i}(a_{i}<b_{i})$ lie on the top channel and $c_{i},$

$d_{i}$

$(c_{i}<d_{i})$ lie on the bottom channel, respectively. Without loss of generality, we assume that
each trapezoid has four corner points and all corner points are $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{t}[6]$ . The geometric
representation described above is called a trapezoid diagram $T$ .

Figure 1: Trapezoid diagram $T$ .

Figure 1 shows a trapezoid diagram $T$ consisting of seventeen trapezoids. We assume that
trapezoids are labeled in increasing order of their corner points $b_{i}’ \mathrm{s}$ , i.e., $i<j$ if $b_{i}<b_{j}$ . An
undirected graph $G=(V, E)$ is called a trapezoid graph if there exists a trapezoid diagram
$T$ satisfying

$V=$ {$i|$ vertex $i$ corresponds to trapezoid $T_{i}$ },
$E=$ { $(i,j)|$ trapezoids $T_{i}$ and $T_{j}$ intersect in trapezoid diagram $T$ } $.[6]$

Input of trapezoid diagram consists of array $T_{T}[1 : 2n]$ of corner points, array $P_{T}[1 : 2n]$

of corner point numbers each of which is assigned to each corner point on the top channel
and array $T_{B}[1:2n]$ of corner points, array $P_{B}[1 : 2n]$

. of corner point numbers each of which
is assigned to each corner point on the bottom channel. Table 1 shows $T_{T}[1:2n],$ $P_{T}[1:2n]$ ,
$T_{B}[1 : 2n],$ $P_{B}[1 : 2n]$ for trapezoid diagram $T$ shown in Figure 1. The trapezoid graph $G$

corresponding to the trapezoid diagram $T$ illustrated in Figure 1 is shown in Figure 2. The
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class of trapezoid graphs includes two well-known classes of intersection $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{S}[2]$ , the class

of permutation $graph_{S}[2]$ and the class of interval $graphs[2]$ . The former is obtained by

setting $a_{i}=b_{i}$ and $c_{i}=d_{i}$ for all $i$ , and the latter is obtained by setting $a_{i}=c_{i}$ and $b_{i}=d_{i}$

for all $i$ , respectively.

Figure 2: Trapezoid graph $G$ and Spanning Forest of $G$

Table 1: Arrays $\tau_{\tau},$ $P_{T},$ $TB,$ $P_{B}$ .

$P_{T}T_{T}$ $a_{2}1$ $a_{2^{5}}$ $a_{3^{1}}$
$b_{1}4$ $b_{2}5$

$a_{3}6$
$b7^{3}$

$a_{8^{4}}$

$b_{4}$ $b_{5}$
$a_{6}$

$b_{6}$
$a_{7}$

$b_{7}$
$a_{8}$ $a_{11}$ $a_{9}$

9 10 11 12 13 14 15 16 17
$P_{B}^{B}T$ $c_{2}1$ $c_{2^{5}}$

$d3^{2}$
$c_{1}4$

$d_{1}5$ $d6^{5}$
$c_{7^{7}}$

$d_{7}8$
$c_{9^{3}}$

$10d_{3}$
$11c_{4}$

$12d_{4}$
$13c_{5}$

$d_{5}14$
$15c_{8}$

$16d_{8}$
$c_{11}17$

$T_{T}$ $b_{8}$ $b_{9}$
$a_{10}$ $b_{10}$ $b_{11}$ $a_{12}$ $b_{12}$ $a_{13}$ $b_{13}$ $a_{14}$ $b_{14}$ $a_{15}$ $a_{16}$ $b_{15}$ $b_{16}$ $a_{17}$ $b_{17}$

$P_{T}$ 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
$T_{B}$ $c_{10}$ $d_{10}$ $d_{11}$ $c_{13}$ $c_{12}$ $d_{12}$ $c_{9}$

$d_{9}$ $d_{13}$ $c_{15}$ $c_{14}$ $d_{14}$ $c_{17}$ $c_{16}$ $d_{15}$ $d_{16}$ $d_{17}$

$P_{B}$ 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

2 Parallel Algorithm

In this section we propose a parallel algorithm for constructing a spanning forest of trape-

zoid graphs. The algorithm can be parallelized by applying pointer jumping $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}[3][4]$

and parallel prefix $\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[3][4]$ . Algorithm CSF (Construction of Spanning Forest) for

constructing a spanning forest of a trapezoid graph is presented as follows:

Algorithm CSF
Input: Arrays $\tau_{\tau}[1:2n],$ $PT[1:2n],$ $\tau_{B}[1:2n],$ $PB[1:2n]$ .
$o_{utp}$ : A $\mathrm{s}\mathrm{p}\mathrm{a}\ldots \mathrm{n}$ning forest $F^{*}$ of $G$ . Initially $F^{*}$ be a graph with $n$ vertices and no edge.
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(Step 1) [Construction of arrays $P_{a}[1:n],P_{b}[1:n],Pc[1:n],P_{d}[1:n].$]
(1) If $T_{T}[i]$ is corner point $‘ a_{j}’,$ $P_{T}[i]$ is stored to $P_{a}[j]$ , otherwise (i.e., $T_{T}[i]$ is.
$‘ b_{j}’)P_{T}[i]$ is stored to $P_{b}[i]$ in parallel for $i,1\leq i\leq 2n$ .
(2) If $T_{B}[i]$ is corner point $‘ c_{j}’,$ $P_{B[]}i$ is stored to $P_{c}[j]$ , otherwise (i.e., $T_{B}[i]$ is
$‘ d_{j}’)P_{B}[i]$ is stored to $P_{d}[j]$ in parallel for $i,1\leq i\leq 2n$ .

Table 2 shows the result $\mathrm{o}\mathrm{b}.\mathrm{t}$ ained by $\mathrm{a}\mathrm{p}\mathrm{P}^{1}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}\sim$ Step 1 to Table 1. Each of $P_{a}[1:n],P_{b}[1$ :
$n],P_{c}[1 : n],\dot{P}_{d}[1 : n]$ is an array having corner point numbers assigned to corner points
$‘ a’,‘ b’,‘ c’,‘ d$ ’ for each trapezoid $T_{i},$ $1\leq i\leq n$ on trapezoid diagram $T$ , respectively.

Table 2: Arrays $P_{a},$ $P_{b},$ $P\mathrm{C}’ P_{d}$ .

(Step 2) [Construction of arrays $L_{a}[1:n],L[C]1:n,R_{d}[1:n].$ ]
(1) Let $L_{a}[i]$ be $\min(P_{a}[n],P_{a}[n-1],\ldots,P_{a}[i])$ in parallel for $i,$ $1\leq i\leq n$ .
(2) Let $L_{c}[i]$ be $\min(P_{c}[n],P[\mathrm{C}n-1],\ldots,PC[i])$ in parallel for $i,$ $1\leq i\leq n$ .
(3) Let $R_{d}[i]$ be $\max(P_{C}[1],Pc[2],\ldots,P_{\mathrm{C}}[i])$ in parallel for $i,$ $1\leq i\leq n$ .

(Step 3) [Construction of arrays $S_{a}[1:n.]$ and $C[..1$ : $n].$ ]
Initially $C[i]:=0$ for all $i$ .
$\mathrm{a}_{\mathrm{P}^{\mathrm{o}\mathrm{i}}+^{a}\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{r}}(1)\mathrm{I}\mathrm{f}P_{a,\mathrm{e}}[\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{t}_{\mathrm{o}i1}i]=L[i],1\mathrm{e}\mathrm{t}s_{a}\mathrm{a}\mathrm{a}\mathrm{f}_{11}^{i}]\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}i,1\leq i\leq n\mathrm{b}\mathrm{e}\mathrm{a}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}_{0}i.$

( $self$-loop), otherwise, let $S_{a}[i]$ be

Then, we apply pointer jumping technique to $S_{a}[i]$ in parallel for $i,$ $1\leq i\leq n$ .
(2) If $P_{b}[i]>L_{a}[i+1]$ , then $C[i]:=S_{a}[i+1]$ and $F^{*}:=F^{*}\cup\{(i, S_{a}[i+1])\}$ in
parallel for $i,1\leq i\leq n-1$ .

(Step 4) [Construction of arrays $s_{c}[1:n].$ ]
$\mathrm{a}\mathrm{p}_{\mathrm{o}\mathrm{i}}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{o}i+1\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{f}_{\mathrm{e}1\mathrm{f}\mathrm{r}}^{\mathrm{b}\mathrm{o}_{1<}}\mathrm{e}\mathrm{a}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}\leq(1)\mathrm{I}\mathrm{f}P_{c}[i]=L_{C}[i],1\mathrm{e}\mathrm{t}s[_{1}Ci\mathrm{o}n\mathrm{o}i,ii$

.
(self-loop), otherwise, let $S_{c}[i]$ be

Then, we apply pointer jumping $\mathrm{t}\mathrm{e}\mathrm{c}\overline{\mathrm{h}\mathrm{n}}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}$ to $S_{c}[i]$ in parallel for $i,$ $1\leq i\leq n$ .
(2) If $P_{d}[i]>L_{c}[i+1]$ and $C[i]=0$ , then $C[i]:=S_{c}[i+1]$ and $F^{*}:=F^{*}\cup$

$\{(i, S_{c}[i+1])\}$ in parallel for $i,$ $1\leq i\leq n-1$ .

(Step 5) [Construction of arrays $S_{d}[1:n].$ ]
$\mathrm{a}\mathrm{p}_{\mathrm{o}\mathrm{i}}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}i-1^{d}\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}11^{d}\mathrm{e}1\mathrm{f}\mathrm{o}\mathrm{r}(1)\mathrm{I}\mathrm{f}P_{d[i}]=R[i],1\mathrm{e}\mathrm{t}s[i\mathrm{b}\mathrm{e}_{i},\mathrm{a}\mathrm{l}\mathrm{p}_{\mathrm{o}\mathrm{i},\leq}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{o}ii\leq n$

.
(self-loop), otherwise, let $S_{d}[i]$ be

Then, we apply pointer jumping technique to $S_{d}[i]$ in parallel for $i,$ $1\leq i\leq n$ .
(2) If $R_{d}[i]>L_{c}[i+1]$ and $C[i]=0$ , then $C[S_{c}[i+1]]:=S_{d}[i]$ and $F^{*}$ $:=$

$F^{*}\cup\{(s_{c}[i+1], S_{d}[i])\}$ in parallel for $i,$ $1\leq i\leq n-1$ .
(3) Change $F^{*}$ to be an undirected graph by neglecting the direction of each
edge in $F^{*}$ .

Table 3 shows the result obtained by applying Steps 2,3,4,5 for Table 2. Figure 2 shows
the spanning forest $F^{*}=(V, E’)$ constructed by Algorithm CSF for trapezoid graph $G$ , where
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$V=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17\}$ ,
$E’=\{(1,2),(2,5),(3,5),(4,5),(6,7),(7,4),(8,11),(9,11),(10,11),(12,13),(13,9),(14,15),(15,16),(16,17)\}$.

Table 3: Arrays $L_{a},$ $L_{\mathrm{C}},$ $Rd,$ Sa’ $sc’ s_{d},$ $c$ .

3 The correctness and complexity of Algorithm CSF

Before proving the correctness of Algorithm CSF, note that notation $(v, w)$ where $v,$ $w$ are

vertices, is used for both directed and undirected edges. Note also that we sometimes use

abbreviated expressions like “ $(i, S_{a}[i])$ is an edge of trapezoid graph $G$” which means “directed

edge $(i, S_{a}[i])$ corresponds to an undirected edge of trapezoid graph $G$”, and “a connected

graph is constructed” which means “a graph which is connected by neglecting the direction

of edges”, whenever no confusion may arise. Furthermore recall that $F^{*}$ is directed until

Step $5-(3)$ is executed, but $F^{*}$ is regarded as an undirected graph by neglecting the direction

of edges when we refer to connected components of $F^{*}$ . Finally, note that $T$ is a rooted tree

(in-tree) when we refer to the root of $T$ .

Lemma 1

For $i,j,$ $1\leq i<j\leq n$ , if $P_{b}[i]>L_{a}[\dot{\uparrow}],$ $(i, S_{a}[j])$ is an edge of trapezoid graph $G$ afler the

execution of Step 3.

For $i,j_{f}1\leq i<j\leq n$ , if $P_{d}[i]>L_{c}[j],$ $(i, S_{c}[i])$ is an edge of trapezoid graph $G$ afler the

execution of Step 4.
For $i,j,$ $1\leq i<j\leq n_{f}$ if $R_{d}[i]>L_{c}[j],$ $(S_{c}[j], S_{d}[i])$ is an $e\dot{d}ge$ of trapezoid graph $G$ afler

executing Step 5

Proof. We first give a condition for $(i,j)$ to exist between two distinct vertex $i$ and $j(i<j)$

in trapezoid graph $G$ . By the definition of trapezoid graph, there exists $(i,j)$ between two
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distinct vertex $i$ and $j$ in $G$ if and only if trapezoid $T_{i}$ and $T_{j}$ intersect in trapezoid diagram
$T$ . If trapezoid. $\tau_{i}$ and $T_{j}$ intersect, it satisfies either $P_{b}[i]>P_{a}[j]$ on the top channel or
$P_{d}[i]>P_{c}[i]$ on the bottom channel. Therefore, edge $(i,j)$ exists between $i$ and $j$ in $G$ if and

only if (1) is satisfied:

$(i-j)(P_{b}[i]-P_{a}[i])<0$ or $(i-j)\sim(P_{d[i]-}. P_{C}[i])<0$ . (1)

By the assumption that $i<j$ and $P_{b}[i]>L_{a}[j]$ we obtain

$(i-j)(P_{b}[i]-L_{a}[j])<0$ . (2)

After executing Step $4-(1)S_{a}[j]$ has value $k_{1}(k_{1}\geq j)$ which satisfies $L_{a}[\dot{\uparrow}]=P_{a}[k_{1}]$

Besides, by the definition that $L_{a}[i]= \min(P_{a}[j], P_{a}[j+1], \ldots, P_{a}[n])$ we obtain

$S_{a}[j]\geq j$ ,

$L_{a}[j]=La[S_{a}[j]]=P[aa[Sj]]$ .

By applying the above to (2), we obtain

$(i-S_{a}[j])(P_{b}[i]-P_{a}[s_{a}[j]])<0$ . (3)

(3) means that there exists an edge between vertex $i$ and $S_{a}[i]$ in $G$ . Therefore $(i, S_{a}[i])$

is an edge in a trapezoid graph $G$ . A similar discussion proves that $(i, S_{c}[i])$ is an edge and
$(S_{c}[j], S_{d}[i])$ is an edge in $G\square$

Lemma 2 If array $C[1:n]$ has $q‘ \mathit{0}$
’ elements afler executing Step 4, $F^{*}$ has $n$ vertices,

$n-q$ edges and $q$ connected components such that each connected component is a tree with

root $i_{f}$ where $C[i]=0$ . $\square$

Proof. After executing Step 4, $C[n]$ obviously has value $‘ 0’$ . We consider a vertex $i$ such

that $C[i]=0,$ $C[i+1],$ $C[i+2],$ $\ldots,C[n-1]\neq 0,C[n]=0$ . If such $i$ does not exist, $G$ is

connected (i.e., $p=1$ ). Now we assume $G$ has more than one connected components (i.e.,

$p>1)$ . Then, since $C[n-1]\neq 0$ , there exists an edge $(n-1, n)$ incident to vertex $n-1$ and
$n$ . And also, since $C[n-2]\neq 0$ , there exists an edge incident to vertex $n-2$ and incident to

either vertex $n-1$ or $n$ . In this way, there exists an edge between vertex $j$ and one among

vertices $j+1,j+2,\ldots,n$ for each vertex $j,$ $i+1\leq j\leq n-1$ . On the other hand, since $C[i]=0$ ,

there exists no edge between vertex $i$ and vertex $j$ where $j\geq i+1$ . Thus, a connected graph
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having $n-i$ vertices from $i+1$ to $n$ , and $n-i-1$ edges is constructed. By the definition of

a tree, this subgraph of $G$ is a tree with root $n$ . Similarly, we can construct other trees with

root $j$ which corresponds to $C[j]=0$ for remaining vertex set $\{1, 2, \ldots,i\}$ where $1\leq j\leq i$ .
Since $C[1:n]$ has $q‘ 0$ ’ elements, we can finally construct $q$ distinct trees in $F^{*}$ . By Lemma

1, edges constructed by Steps 3,4 are edges of trapezoid graph $G$ . Therefore $p*$ is a subgraph

of $G$ with $q$ connected components, $n$ vertices, $n-q$ edges and each connected component is

a tree with root $i$ where $C[i]=0$ . $\square$

Lemma 3 Afler executing Step $\mathit{5}_{J}F^{*}$ is a spanning forest of G. $\square$

Proof. It is easy to see that $F^{*}$ is a spanning forest of $G$ if and only if $F^{*}$ is a spanning

subgraph of $G$ where each of connected components of $F^{*}$ is a tree and there exists no edge in
$G$ which connects two distinct connected components of $F^{*}$ . We call this condition, condition

1 and prove that $F^{*}$ constructed after executing Step 5 satisfies this condition.

By Lemma 2, $F^{*}$ is a spanning subgraph of $G$ after executing Step 4 and has $q(q\leq$

$p)$ connected components $t_{1},t_{2},\ldots,t_{q}$ which are arranged in increasing order of the number

assigned to the root of each tree $t_{i},$ $n$ vertices and $n-q$ edges.

We also denote each connected component of $F^{*}$ constructed after executing Step 5 by
$t_{1}’,t_{2}’,\ldots,t_{p}’$ . These connected components are constructed as follows.

For $t_{j},t_{j+}1,1\leq j\leq q-1$ , if $P_{d}[i]>L_{c}[i+1]$ where $i$ and $i+1$ correspond to the root vertex

of $t_{j}$ and the vertex of $t_{j+1}$ having the minimum number, respectively, then $(S_{c}[i+1], S_{d}[i])$

is added to $F^{*}$ . Note that $S_{c}[i+1]$ is in $t_{j+1}$ and $S_{d}[i]$ is in one of $t_{k},$ $1\leq k\leq j$ , and
$(S_{c}[i+1], S_{d}[i])$ is an edge incident to $t_{j+1}$ and one of $t_{k},$ $1\leq k\leq j$ , furthermore, it is also

an edge of $G$ by Lemma 1. For each $t_{i}$ , at most one edge is connected to each $t_{j}$ where $j<i$ .
Hence, $F^{*}$ is acyclic. As otherwise, any $t_{i}$ has two edges connected to $t_{j},t_{k}(j, k<i, j\neq k)$ ,

which is a contradiction.

Therefore $F^{*}$ is a spanning subgraph of $G$ where each of connected components $t_{1}’,t_{2}’,\ldots,t’p$

of $F^{*}$ is a tree, since the connection of two trees by one edge forms a tree by the property of a

tree. On the other hand, unless $P_{d}[i]>L_{c}[i+1]$ , it is clear that there exists no edge between
$t_{j+1}$ and one of $t_{k},$ $1\leq k\leq j$ from definition of $R_{d}$ and $L_{c}$ . It means that there exists no edge
in $G$ connecting two distinct connected components of $F^{*}$ . Therefore $F^{*}$ satisfies condition
1 and is a spanning forest of G. $\square$

We now analyze the complexity of Algorithm CSF. Step 1 can be executed in $O(logn)$

time using $O(n/logn)$ processors by applying Brent’s scheduling $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{e}[3][4]$ . Step 2
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can be executed in $O(logn)$ time using $O(n/logn)$ processors by applying parallel prefix
$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[3][4]$ . Steps $3,4,5-(1)$ can be executed in $O(logn)$ time using $O(n)$ processors
by applying pointer jumping $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}[3][4]$ . Steps $3,4,5-(2)$ can be executed in $O(logn)$

time using $O(n/logn)$ processors by applying Brent’s scheduling principle. Above parallel
algorithm design techniques can be executed on EREW PRAM. Hence we have the following
theorem.

Theorem 1 Algorithm $CSF$ constructs a spanning forest of trapezoid graphs in $O(logn)$

time with $O(logn)$ processors on EREW PRAM.
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