
An $O(logn)$ parallel algorithm for constructing
a spa.nning forest on. $\mathrm{T}\mathrm{r}\mathrm{a}_{\mathrm{P}.\mathrm{g}\mathrm{r}}\mathrm{e}\mathrm{z}\mathrm{o}\mathrm{i}\mathrm{d}\sim$.aphs

本間 宏利 $($Hirotoshi $\mathrm{H}_{\mathrm{o}\mathrm{n}\mathrm{m}\mathrm{a}})^{\uparrow}$ 増山 繁 (Shigeru $\mathrm{M}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{y}\mathrm{a}\mathrm{m}\mathrm{a}$) I

\dagger Department of lnformation Engineering,
Kushiro National College of Technology,

Kushiro-shi, Hokkaido 084, JAPAN

\ddagger Department of Knowledge-Based lnformation Engineering,
Toyohashi UniV-ersity- of Technology
Toyohashi-shi, Aichi 441, JAPAN

Abstract
Let $G=(V, E)$ be a simple graph with n vertices, m edges and p connected com-

ponents. The problem of constructing a spanning forest is to find a spanning tree for
each connected component of G . For a simple graph, Chin et $\mathrm{a}1.[1]$ demonstrated that
a spanning forest can be found in $O(log^{2}n)$ time using $O(n^{2}/log^{2}n)$ processors. In
this paper, we propose an $O(logn)$ time parallel algorithm with $O(n)$ processors on
the EREW PRAM for constructing a spanning forest on trapezoid graphs.

1 Introduction

Given a simple graph $G=(V, E)$ with n vertices, m edges and p connected components, the

spanning forest problem is to find a spanning tree for each connected component of G . If

$p=1$ for G , i.e., G is connected, the spanning forest problem is equivalent to the spanning

tree problem of finding a connected subgraph which is a tree and contains all the vertices

of G . These problems have applications to electrical power demand problem or computer

network design problem etc. A spanning tree and a spanning forest can be found in linear

time using, for example, the depth-first search. In recent years a large number of studies have

been made to parallelize known sequential algorithms. The spanning tree probIem can be

solved in $o(logn)$ time with $O(logn+m)\tau$ processors on CRCW PRAM (Concurrent-Read

Concurrent-Write Parallel Rando..m $\mathrm{A}\mathrm{c}$.cess Machine) by $\mathrm{K}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{n}[5].\mathrm{e}\mathrm{t}$ al.’s a.lgorithm. Moreover,

$\mathrm{C}\mathrm{h}\mathrm{i}\mathrm{n}[1]$ et al. demonstrated that a spanning forest can be found in $O(log^{2}n)$ time using

$O(n^{2}/log^{2}n)$ processors for simple graphs. In general, it is known that more efficient or

optimal parallel algorithms can be developed by restricting classes of graphs. For instance,

$\mathrm{w}_{\mathrm{a}\mathrm{n}\mathrm{g}}[7]$ et al. proposed an optimal parallel algorithm for constructing a spanning tree on

数理解析研究所講究録
992巻 1997年 114-121 114

permutation $graphs[2]$ which runs in $O(logn)$ time using $O(n/logn)$ processors on the
EREW PRAM (Exclusive-Read Exclusive-Write Parallel Random Access Machine). In this
paper, we propose an efficient parallel algorithm which runs in $O(logn)$ time with $O(n)$

processors for constructing a spanning forest by restricting the class of graphs to trapezoid
$graphs[6]$.

We next illustrate the trapezoid graph. There are two horizontal lines, called the top
channel and the bottom channel, respectively. Each channel is labeled with consecutive
integer values $1’,2,\ldots,2n$ (where n is the number of $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{e}\ldots \mathrm{z}$oids). A trapezoid T_{i} is defined
by four corner points $[a_{i}, b_{i}, c_{i}, d_{i}]$ where $a_{i},$ $b_{i}(a_{i}<b_{i})$ lie on the top channel and $c_{i},$

d_{i}

$(c_{i}<d_{i})$ lie on the bottom channel, respectively. Without loss of generality, we assume that
each trapezoid has four corner points and all corner points are $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{t}[6]$. The geometric
representation described above is called a trapezoid diagram T .

Figure 1: Trapezoid diagram T .

Figure 1 shows a trapezoid diagram T consisting of seventeen trapezoids. We assume that
trapezoids are labeled in increasing order of their corner points $b_{i}’ \mathrm{s}$, i.e., $i<j$ if $b_{i}<b_{j}$. An
undirected graph $G=(V, E)$ is called a trapezoid graph if there exists a trapezoid diagram
T satisfying

$V=$ {$i|$ vertex i corresponds to trapezoid T_{i} },
$E=$ { $(i,j)|$ trapezoids T_{i} and T_{j} intersect in trapezoid diagram T } $.[6]$

Input of trapezoid diagram consists of array $T_{T}[1 : 2n]$ of corner points, array $P_{T}[1 : 2n]$

of corner point numbers each of which is assigned to each corner point on the top channel
and array $T_{B}[1:2n]$ of corner points, array $P_{B}[1 : 2n]$

. of corner point numbers each of which
is assigned to each corner point on the bottom channel. Table 1 shows $T_{T}[1:2n],$ $P_{T}[1:2n]$,
$T_{B}[1 : 2n],$ $P_{B}[1 : 2n]$ for trapezoid diagram T shown in Figure 1. The trapezoid graph G

corresponding to the trapezoid diagram T illustrated in Figure 1 is shown in Figure 2. The

115

class of trapezoid graphs includes two well-known classes of intersection $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{S}[2]$, the class

of permutation $graph_{S}[2]$ and the class of interval $graphs[2]$. The former is obtained by

setting $a_{i}=b_{i}$ and $c_{i}=d_{i}$ for all i , and the latter is obtained by setting $a_{i}=c_{i}$ and $b_{i}=d_{i}$

for all i , respectively.

Figure 2: Trapezoid graph G and Spanning Forest of G

Table 1: Arrays $\tau_{\tau},$ $P_{T},$ $TB,$ P_{B} .

$P_{T}T_{T}$ $a_{2}1$ $a_{2^{5}}$ $a_{3^{1}}$
$b_{1}4$ $b_{2}5$

$a_{3}6$
$b7^{3}$

$a_{8^{4}}$

b_{4} b_{5}
a_{6}

b_{6}
a_{7}

b_{7}
a_{8} a_{11} a_{9}

9 10 11 12 13 14 15 16 17
$P_{B}^{B}T$ $c_{2}1$ $c_{2^{5}}$

$d3^{2}$
$c_{1}4$

$d_{1}5$ $d6^{5}$
$c_{7^{7}}$

$d_{7}8$
$c_{9^{3}}$

$10d_{3}$
$11c_{4}$

$12d_{4}$
$13c_{5}$

$d_{5}14$
$15c_{8}$

$16d_{8}$
$c_{11}17$

T_{T} b_{8} b_{9}
a_{10} b_{10} b_{11} a_{12} b_{12} a_{13} b_{13} a_{14} b_{14} a_{15} a_{16} b_{15} b_{16} a_{17} b_{17}

P_{T} 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
T_{B} c_{10} d_{10} d_{11} c_{13} c_{12} d_{12} c_{9}

d_{9} d_{13} c_{15} c_{14} d_{14} c_{17} c_{16} d_{15} d_{16} d_{17}

P_{B} 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

2 Parallel Algorithm

In this section we propose a parallel algorithm for constructing a spanning forest of trape-

zoid graphs. The algorithm can be parallelized by applying pointer jumping $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}[3][4]$

and parallel prefix $\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[3][4]$. Algorithm CSF (Construction of Spanning Forest) for

constructing a spanning forest of a trapezoid graph is presented as follows:

Algorithm CSF
Input: Arrays $\tau_{\tau}[1:2n],$ $PT[1:2n],$ $\tau_{B}[1:2n],$ $PB[1:2n]$.
o_{utp} : A $\mathrm{s}\mathrm{p}\mathrm{a}\ldots \mathrm{n}$ning forest F^{*} of G . Initially F^{*} be a graph with n vertices and no edge.

116

(Step 1) [Construction of arrays $P_{a}[1:n],P_{b}[1:n],Pc[1:n],P_{d}[1:n].$]
(1) If $T_{T}[i]$ is corner point $‘ a_{j}’,$ $P_{T}[i]$ is stored to $P_{a}[j]$, otherwise (i.e., $T_{T}[i]$ is.
$‘ b_{j}’)P_{T}[i]$ is stored to $P_{b}[i]$ in parallel for $i,1\leq i\leq 2n$.
(2) If $T_{B}[i]$ is corner point $‘ c_{j}’,$ $P_{B[]}i$ is stored to $P_{c}[j]$, otherwise (i.e., $T_{B}[i]$ is
$‘ d_{j}’)P_{B}[i]$ is stored to $P_{d}[j]$ in parallel for $i,1\leq i\leq 2n$.

Table 2 shows the result $\mathrm{o}\mathrm{b}.\mathrm{t}$ ained by $\mathrm{a}\mathrm{p}\mathrm{P}^{1}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}\sim$ Step 1 to Table 1. Each of $P_{a}[1:n],P_{b}[1$:
$n],P_{c}[1 : n],\dot{P}_{d}[1 : n]$ is an array having corner point numbers assigned to corner points
$‘ a’,‘ b’,‘ c’,‘ d$ ’ for each trapezoid $T_{i},$ $1\leq i\leq n$ on trapezoid diagram T , respectively.

Table 2: Arrays $P_{a},$ $P_{b},$ $P\mathrm{C}’ P_{d}$.

(Step 2) [Construction of arrays $L_{a}[1:n],L[C]1:n,R_{d}[1:n].$]
(1) Let $L_{a}[i]$ be $\min(P_{a}[n],P_{a}[n-1],\ldots,P_{a}[i])$ in parallel for $i,$ $1\leq i\leq n$.
(2) Let $L_{c}[i]$ be $\min(P_{c}[n],P[\mathrm{C}n-1],\ldots,PC[i])$ in parallel for $i,$ $1\leq i\leq n$.
(3) Let $R_{d}[i]$ be $\max(P_{C}[1],Pc[2],\ldots,P_{\mathrm{C}}[i])$ in parallel for $i,$ $1\leq i\leq n$.

(Step 3) [Construction of arrays $S_{a}[1:n.]$ and $C[..1$: $n].$]
Initially $C[i]:=0$ for all i .
$\mathrm{a}_{\mathrm{P}^{\mathrm{o}\mathrm{i}}+^{a}\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{r}}(1)\mathrm{I}\mathrm{f}P_{a,\mathrm{e}}[\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{t}_{\mathrm{o}i1}i]=L[i],1\mathrm{e}\mathrm{t}s_{a}\mathrm{a}\mathrm{a}\mathrm{f}_{11}^{i}]\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}i,1\leq i\leq n\mathrm{b}\mathrm{e}\mathrm{a}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}_{0}i.$

($self$-loop), otherwise, let $S_{a}[i]$ be

Then, we apply pointer jumping technique to $S_{a}[i]$ in parallel for $i,$ $1\leq i\leq n$.
(2) If $P_{b}[i]>L_{a}[i+1]$, then $C[i]:=S_{a}[i+1]$ and $F^{*}:=F^{*}\cup\{(i, S_{a}[i+1])\}$ in
parallel for $i,1\leq i\leq n-1$.

(Step 4) [Construction of arrays $s_{c}[1:n].$]
$\mathrm{a}\mathrm{p}_{\mathrm{o}\mathrm{i}}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{o}i+1\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{f}_{\mathrm{e}1\mathrm{f}\mathrm{r}}^{\mathrm{b}\mathrm{o}_{1<}}\mathrm{e}\mathrm{a}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}\leq(1)\mathrm{I}\mathrm{f}P_{c}[i]=L_{C}[i],1\mathrm{e}\mathrm{t}s[_{1}Ci\mathrm{o}n\mathrm{o}i,ii$

.
(self-loop), otherwise, let $S_{c}[i]$ be

Then, we apply pointer jumping $\mathrm{t}\mathrm{e}\mathrm{c}\overline{\mathrm{h}\mathrm{n}}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}$ to $S_{c}[i]$ in parallel for $i,$ $1\leq i\leq n$.
(2) If $P_{d}[i]>L_{c}[i+1]$ and $C[i]=0$, then $C[i]:=S_{c}[i+1]$ and $F^{*}:=F^{*}\cup$

$\{(i, S_{c}[i+1])\}$ in parallel for $i,$ $1\leq i\leq n-1$.

(Step 5) [Construction of arrays $S_{d}[1:n].$]
$\mathrm{a}\mathrm{p}_{\mathrm{o}\mathrm{i}}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}i-1^{d}\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}11^{d}\mathrm{e}1\mathrm{f}\mathrm{o}\mathrm{r}(1)\mathrm{I}\mathrm{f}P_{d[i}]=R[i],1\mathrm{e}\mathrm{t}s[i\mathrm{b}\mathrm{e}_{i},\mathrm{a}\mathrm{l}\mathrm{p}_{\mathrm{o}\mathrm{i},\leq}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{o}ii\leq n$

.
(self-loop), otherwise, let $S_{d}[i]$ be

Then, we apply pointer jumping technique to $S_{d}[i]$ in parallel for $i,$ $1\leq i\leq n$.
(2) If $R_{d}[i]>L_{c}[i+1]$ and $C[i]=0$, then $C[S_{c}[i+1]]:=S_{d}[i]$ and F^{*} $:=$

$F^{*}\cup\{(s_{c}[i+1], S_{d}[i])\}$ in parallel for $i,$ $1\leq i\leq n-1$.
(3) Change F^{*} to be an undirected graph by neglecting the direction of each
edge in F^{*} .

Table 3 shows the result obtained by applying Steps 2,3,4,5 for Table 2. Figure 2 shows
the spanning forest $F^{*}=(V, E’)$ constructed by Algorithm CSF for trapezoid graph G , where

117

$V=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17\}$,
$E’=\{(1,2),(2,5),(3,5),(4,5),(6,7),(7,4),(8,11),(9,11),(10,11),(12,13),(13,9),(14,15),(15,16),(16,17)\}$.

Table 3: Arrays $L_{a},$ $L_{\mathrm{C}},$ $Rd,$ Sa’ $sc’ s_{d},$ c .

3 The correctness and complexity of Algorithm CSF

Before proving the correctness of Algorithm CSF, note that notation (v, w) where $v,$ w are

vertices, is used for both directed and undirected edges. Note also that we sometimes use

abbreviated expressions like “ $(i, S_{a}[i])$ is an edge of trapezoid graph G” which means “directed

edge $(i, S_{a}[i])$ corresponds to an undirected edge of trapezoid graph G”, and “a connected

graph is constructed” which means “a graph which is connected by neglecting the direction

of edges”, whenever no confusion may arise. Furthermore recall that F^{*} is directed until

Step $5-(3)$ is executed, but F^{*} is regarded as an undirected graph by neglecting the direction

of edges when we refer to connected components of F^{*} . Finally, note that T is a rooted tree

(in-tree) when we refer to the root of T .

Lemma 1

For $i,j,$ $1\leq i<j\leq n$, if $P_{b}[i]>L_{a}[\dot{\uparrow}],$ $(i, S_{a}[j])$ is an edge of trapezoid graph G afler the

execution of Step 3.

For $i,j_{f}1\leq i<j\leq n$, if $P_{d}[i]>L_{c}[j],$ $(i, S_{c}[i])$ is an edge of trapezoid graph G afler the

execution of Step 4.
For $i,j,$ $1\leq i<j\leq n_{f}$ if $R_{d}[i]>L_{c}[j],$ $(S_{c}[j], S_{d}[i])$ is an $e\dot{d}ge$ of trapezoid graph G afler

executing Step 5

Proof. We first give a condition for (i,j) to exist between two distinct vertex i and $j(i<j)$

in trapezoid graph G . By the definition of trapezoid graph, there exists (i,j) between two

118

distinct vertex i and j in G if and only if trapezoid T_{i} and T_{j} intersect in trapezoid diagram
T . If trapezoid. τ_{i} and T_{j} intersect, it satisfies either $P_{b}[i]>P_{a}[j]$ on the top channel or
$P_{d}[i]>P_{c}[i]$ on the bottom channel. Therefore, edge (i,j) exists between i and j in G if and

only if (1) is satisfied:

$(i-j)(P_{b}[i]-P_{a}[i])<0$ or $(i-j)\sim(P_{d[i]-}. P_{C}[i])<0$. (1)

By the assumption that $i<j$ and $P_{b}[i]>L_{a}[j]$ we obtain

$(i-j)(P_{b}[i]-L_{a}[j])<0$. (2)

After executing Step $4-(1)S_{a}[j]$ has value $k_{1}(k_{1}\geq j)$ which satisfies $L_{a}[\dot{\uparrow}]=P_{a}[k_{1}]$

Besides, by the definition that $L_{a}[i]= \min(P_{a}[j], P_{a}[j+1], \ldots, P_{a}[n])$ we obtain

$S_{a}[j]\geq j$,

$L_{a}[j]=La[S_{a}[j]]=P[aa[Sj]]$.

By applying the above to (2), we obtain

$(i-S_{a}[j])(P_{b}[i]-P_{a}[s_{a}[j]])<0$. (3)

(3) means that there exists an edge between vertex i and $S_{a}[i]$ in G . Therefore $(i, S_{a}[i])$

is an edge in a trapezoid graph G . A similar discussion proves that $(i, S_{c}[i])$ is an edge and
$(S_{c}[j], S_{d}[i])$ is an edge in $G\square$

Lemma 2 If array $C[1:n]$ has $q‘ \mathit{0}$
’ elements afler executing Step 4, F^{*} has n vertices,

$n-q$ edges and q connected components such that each connected component is a tree with

root i_{f} where $C[i]=0$. \square

Proof. After executing Step 4, $C[n]$ obviously has value $‘ 0’$. We consider a vertex i such

that $C[i]=0,$ $C[i+1],$ $C[i+2],$ $\ldots,C[n-1]\neq 0,C[n]=0$. If such i does not exist, G is

connected (i.e., $p=1$). Now we assume G has more than one connected components (i.e.,

$p>1)$. Then, since $C[n-1]\neq 0$, there exists an edge $(n-1, n)$ incident to vertex $n-1$ and
n . And also, since $C[n-2]\neq 0$, there exists an edge incident to vertex $n-2$ and incident to

either vertex $n-1$ or n . In this way, there exists an edge between vertex j and one among

vertices $j+1,j+2,\ldots,n$ for each vertex $j,$ $i+1\leq j\leq n-1$. On the other hand, since $C[i]=0$,

there exists no edge between vertex i and vertex j where $j\geq i+1$. Thus, a connected graph

119

having $n-i$ vertices from $i+1$ to n , and $n-i-1$ edges is constructed. By the definition of

a tree, this subgraph of G is a tree with root n . Similarly, we can construct other trees with

root j which corresponds to $C[j]=0$ for remaining vertex set $\{1, 2, \ldots,i\}$ where $1\leq j\leq i$.
Since $C[1:n]$ has $q‘ 0$ ’ elements, we can finally construct q distinct trees in F^{*} . By Lemma

1, edges constructed by Steps 3,4 are edges of trapezoid graph G . Therefore $p*$ is a subgraph

of G with q connected components, n vertices, $n-q$ edges and each connected component is

a tree with root i where $C[i]=0$. \square

Lemma 3 Afler executing Step $\mathit{5}_{J}F^{*}$ is a spanning forest of G. \square

Proof. It is easy to see that F^{*} is a spanning forest of G if and only if F^{*} is a spanning

subgraph of G where each of connected components of F^{*} is a tree and there exists no edge in
G which connects two distinct connected components of F^{*} . We call this condition, condition

1 and prove that F^{*} constructed after executing Step 5 satisfies this condition.

By Lemma 2, F^{*} is a spanning subgraph of G after executing Step 4 and has $q(q\leq$

$p)$ connected components t_{1},t_{2},\ldots,t_{q} which are arranged in increasing order of the number

assigned to the root of each tree $t_{i},$ n vertices and $n-q$ edges.

We also denote each connected component of F^{*} constructed after executing Step 5 by
$t_{1}’,t_{2}’,\ldots,t_{p}’$. These connected components are constructed as follows.

For $t_{j},t_{j+}1,1\leq j\leq q-1$, if $P_{d}[i]>L_{c}[i+1]$ where i and $i+1$ correspond to the root vertex

of t_{j} and the vertex of t_{j+1} having the minimum number, respectively, then $(S_{c}[i+1], S_{d}[i])$

is added to F^{*} . Note that $S_{c}[i+1]$ is in t_{j+1} and $S_{d}[i]$ is in one of $t_{k},$ $1\leq k\leq j$, and
$(S_{c}[i+1], S_{d}[i])$ is an edge incident to t_{j+1} and one of $t_{k},$ $1\leq k\leq j$, furthermore, it is also

an edge of G by Lemma 1. For each t_{i} , at most one edge is connected to each t_{j} where $j<i$.
Hence, F^{*} is acyclic. As otherwise, any t_{i} has two edges connected to $t_{j},t_{k}(j, k<i, j\neq k)$,

which is a contradiction.

Therefore F^{*} is a spanning subgraph of G where each of connected components $t_{1}’,t_{2}’,\ldots,t’p$

of F^{*} is a tree, since the connection of two trees by one edge forms a tree by the property of a

tree. On the other hand, unless $P_{d}[i]>L_{c}[i+1]$, it is clear that there exists no edge between
t_{j+1} and one of $t_{k},$ $1\leq k\leq j$ from definition of R_{d} and L_{c} . It means that there exists no edge
in G connecting two distinct connected components of F^{*} . Therefore F^{*} satisfies condition
1 and is a spanning forest of G. \square

We now analyze the complexity of Algorithm CSF. Step 1 can be executed in $O(logn)$

time using $O(n/logn)$ processors by applying Brent’s scheduling $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{e}[3][4]$. Step 2

120

can be executed in $O(logn)$ time using $O(n/logn)$ processors by applying parallel prefix
$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[3][4]$. Steps $3,4,5-(1)$ can be executed in $O(logn)$ time using $O(n)$ processors
by applying pointer jumping $\mathrm{t}\mathrm{e}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}[3][4]$. Steps $3,4,5-(2)$ can be executed in $O(logn)$

time using $O(n/logn)$ processors by applying Brent’s scheduling principle. Above parallel
algorithm design techniques can be executed on EREW PRAM. Hence we have the following
theorem.

Theorem 1 Algorithm CSF constructs a spanning forest of trapezoid graphs in $O(logn)$

time with $O(logn)$ processors on EREW PRAM.

Acknowledgement s

We would like to thank Ministry of Education, Science and Culture of Japan for awarding
the first author a research fellowship at Toyohashi University of Technology, which enabled
us to do this research.

References

[1] F. Y. Chin, J. Lam and I. Chen, Efficient parallel algorithms for some graph problems,
Communications of the ACM, 25,9 (1982).

[2] M. C. Golumbic, Algorithmic Gmph Theory and Perfect Graphs, Academic Press, New
York (1988).

[3] A. Gibbons and W. Rytter, Efficient parallel algorithms, Cambridge University Press
(1988).

[4] J. J\’aJ\’a, An Introduction to parallel algorithms, Addison-Wesley Publishing Company
(1992).

[5] P. Klein and C. Stein, A parallel algorithm for eliminating cycle in undirected graphs,
Information processing. letters., 34 (1990) 307-312.

[6] Y. D. Liang, Dominations in trapezoid graphs, Information processing. letters., 52
(1994) 309-315.

[7] Yue-Li Wang, Hon-Chan Chen and Chen-Yu Lee, An $O(\log$ n) parallel algorithm for
constructing a spanning tree on permutation graphs, Information processing. letters.,
56 (1995) 83-87.

121

