<table>
<thead>
<tr>
<th>Title</th>
<th>An $O(\log n)$ parallel algorithm for constructing a spanning forest on Trapezoid graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Honma, Hirotoshi; Masuyama, Shigeru</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1997, 992: 114-121</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61149</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
An $O(\log n)$ parallel algorithm for constructing a spanning forest on Trapezoid graphs

本間 宏利 (Hirotoshi Honma)† 増山 繁 (Shigeru Masuyama)‡

† Department of Information Engineering, Kushiro National College of Technology, Kushiro-shi, Hokkaido 084, JAPAN
‡ Department of Knowledge-Based Information Engineering, Toyohashi University of Technology, Toyohashi-shi, Aichi 441, JAPAN

Abstract

Let $G = (V, E)$ be a simple graph with n vertices, m edges and p connected components. The problem of constructing a spanning forest is to find a spanning tree for each connected component of G. For a simple graph, Chin et al.[1] demonstrated that a spanning forest can be found in $O(\log^2 n)$ time using $O(n^2/\log^2 n)$ processors. In this paper, we propose an $O(\log n)$ time parallel algorithm with $O(n)$ processors on the EREW PRAM for constructing a spanning forest on trapezoid graphs.

1 Introduction

Given a simple graph $G = (V, E)$ with n vertices, m edges and p connected components, the spanning forest problem is to find a spanning tree for each connected component of G. If $p = 1$ for G, i.e., G is connected, the spanning forest problem is equivalent to the spanning tree problem of finding a connected subgraph which is a tree and contains all the vertices of G. These problems have applications to electrical power demand problem or computer network design problem etc. A spanning tree and a spanning forest can be found in linear time using, for example, the depth-first search. In recent years a large number of studies have been made to parallelize known sequential algorithms. The spanning tree problem can be solved in $O(\log n)$ time with $O(\log n + m)$ processors on CRCW PRAM (Concurrent-Read Concurrent-Write Parallel Random Access Machine) by Klein[5] et al.'s algorithm. Moreover, Chin[1] et al. demonstrated that a spanning forest can be found in $O(\log^2 n)$ time using $O(n^2/\log^2 n)$ processors for simple graphs. In general, it is known that more efficient or optimal parallel algorithms can be developed by restricting classes of graphs. For instance, Wang[7] et al. proposed an optimal parallel algorithm for constructing a spanning tree on
permutation graphs[2] which runs in $O(\log n)$ time using $O(n/\log n)$ processors on the EREW PRAM (Exclusive-Read Exclusive-Write Parallel Random Access Machine). In this paper, we propose an efficient parallel algorithm which runs in $O(\log n)$ time with $O(n/\log n)$ processors on the EREW PRAM.

In this paper, we propose an efficient parallel algorithm which runs in $O(\log n)$ time with $O(n)$ processors for constructing a spanning forest by restricting the class of graphs to trapezoid graphs[6].

We next illustrate the trapezoid graph. There are two horizontal lines, called the top channel and the bottom channel, respectively. Each channel is labeled with consecutive integer values 1,2,..,2n (where n is the number of trapezoids). A trapezoid T_i is defined by four corner points $[a_i, b_i, c_i, d_i]$ where $a_i, b_i (a_i < b_i)$ lie on the top channel and $c_i, d_i (c_i < d_i)$ lie on the bottom channel, respectively. Without loss of generality, we assume that each trapezoid has four corner points and all corner points are distinct[6]. The geometric representation described above is called a trapezoid diagram T.

![Trapezoid Diagram](image)

Figure 1: Trapezoid diagram T.

Figure 1 shows a trapezoid diagram T consisting of seventeen trapezoids. We assume that trapezoids are labeled in increasing order of their corner points b_i's, i.e., $i < j$ if $b_i < b_j$. An undirected graph $G = (V, E)$ is called a trapezoid graph if there exists a trapezoid diagram T satisfying

$$V = \{i \mid \text{vertex } i \text{ corresponds to trapezoid } T_i\},$$

$$E = \{(i, j) \mid \text{trapezoids } T_i \text{ and } T_j \text{ intersect in trapezoid diagram } T \}.$$

Input of trapezoid diagram consists of array $T_T[1:2n]$ of corner points, array $P_T[1:2n]$ of corner point numbers each of which is assigned to each corner point on the top channel and array $T_B[1:2n]$ of corner points, array $P_B[1:2n]$ of corner point numbers each of which is assigned to each corner point on the bottom channel. Table 1 shows $T_T[1:2n], P_T[1:2n], T_B[1:2n], P_B[1:2n]$ for trapezoid diagram T shown in Figure 1. The trapezoid graph G corresponding to the trapezoid diagram T illustrated in Figure 1 is shown in Figure 2. The
class of trapezoid graphs includes two well-known classes of intersection graphs[2], the class of permutation graphs[2] and the class of interval graphs[2]. The former is obtained by setting \(a_i = b_i \) and \(c_i = d_i \) for all \(i \), and the latter is obtained by setting \(a_i = c_i \) and \(b_i = d_i \) for all \(i \), respectively.

Figure 2: Trapezoid graph \(G \) and Spanning Forest of \(G \)

Table 1: Arrays \(T_T, P_T, T_B, P_B \).

\(T_T \)	\(a_2 \)	\(a_5 \)	\(a_1 \)	\(b_1 \)	\(b_2 \)	\(a_3 \)	\(b_3 \)	\(a_4 \)	\(b_4 \)	\(b_5 \)	\(a_6 \)	\(b_6 \)	\(a_7 \)	\(b_7 \)	\(a_8 \)	\(a_{11} \)	\(a_9 \)
\(P_T \)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
\(T_B \)	\(c_2 \)	\(c_5 \)	\(c_{d_2} \)	\(c_1 \)	\(d_1 \)	\(d_5 \)	\(c_7 \)	\(d_7 \)	\(c_3 \)	\(d_3 \)	\(c_4 \)	\(d_4 \)	\(c_5 \)	\(d_5 \)	\(c_8 \)	\(d_8 \)	\(c_{11} \)
\(P_B \)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

\(T_T \)	\(b_8 \)	\(b_9 \)	\(a_{10} \)	\(b_{10} \)	\(b_{11} \)	\(a_{12} \)	\(b_{12} \)	\(a_{13} \)	\(b_{13} \)	\(a_{14} \)	\(b_{14} \)	\(a_{15} \)	\(a_{16} \)	\(b_{15} \)	\(b_{16} \)	\(a_{17} \)	\(b_{17} \)
\(P_T \)	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
\(T_B \)	\(c_{10} \)	\(d_{10} \)	\(d_{11} \)	\(c_{13} \)	\(c_{12} \)	\(d_{12} \)	\(c_9 \)	\(d_9 \)	\(d_{13} \)	\(c_{15} \)	\(c_{14} \)	\(d_{14} \)	\(c_{17} \)	\(c_{16} \)	\(d_{15} \)	\(d_{16} \)	\(d_{17} \)
\(P_B \)	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34

2 Parallel Algorithm

In this section we propose a parallel algorithm for constructing a spanning forest of trapezoid graphs. The algorithm can be parallelized by applying pointer jumping technique[3][4] and parallel prefix computation[3][4]. Algorithm CSF (Construction of Spanning Forest) for constructing a spanning forest of a trapezoid graph is presented as follows:

Algorithm CSF

Input: Arrays \(T_T[1:2n], P_T[1:2n], T_B[1:2n], P_B[1:2n] \).

Output: A spanning forest \(F^* \) of \(G \). Initially \(F^* \) be a graph with \(n \) vertices and no edge.
(Step 1) [Construction of arrays $P_a[1 : n], P_b[1 : n], P_c[1 : n], P_d[1 : n].]

1. If $T_T[i]$ is corner point ‘$a_i’$, $P_T[i]$ is stored to $P_a[j]$, otherwise (i.e., $T_T[i]$ is ‘$b_j’$) $P_T[i]$ is stored to $P_b[j]$ in parallel for $i, 1 \leq i \leq 2n$.

2. If $T_B[i]$ is corner point ‘$c_j’$, $P_B[i]$ is stored to $P_c[j]$, otherwise (i.e., $T_B[i]$ is ‘$d_i’$) $P_B[i]$ is stored to $P_d[j]$ in parallel for $i, 1 \leq i \leq 2n$.

Table 2 shows the result obtained by applying Step 1 to Table 1. Each of $P_a[1 : n], P_b[1 : n], P_c[1 : n], P_d[1 : n]$ is an array having corner point numbers assigned to corner points ‘$a’,$‘$b’,$‘$c’,$‘$d’ for each trapezoid T_i, $1 \leq i \leq n$ on trapezoid diagram T, respectively.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_a</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>16</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>P_b</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>31</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>P_c</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td>7</td>
<td>15</td>
<td>24</td>
<td>18</td>
<td>17</td>
<td>22</td>
<td>21</td>
<td>28</td>
<td>27</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>P_d</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>16</td>
<td>25</td>
<td>19</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
</tbody>
</table>

(Step 2) [Construction of arrays $L_a[1 : n], L_c[1 : n], R_d[1 : n].]$

1. Let $L_a[i]$ be $\min(P_a[n], P_a[n-1], \ldots, P_a[i])$ in parallel for $i, 1 \leq i \leq n$.

2. Let $L_c[i]$ be $\min(P_c[n], P_c[n-1], \ldots, P_c[i])$ in parallel for $i, 1 \leq i \leq n$.

3. Let $R_d[i]$ be $\max(P_c[1], P_c[2], \ldots, P_c[i])$ in parallel for $i, 1 \leq i \leq n$.

(Step 3) [Construction of arrays $S_a[1 : n]$ and $C[1 : n].]$

Initially $C[i] := 0$ for all i.

1. If $P_a[i] = L_a[i]$, let $S_a[i]$ be a pointer to i (self-loop), otherwise, let $S_a[i]$ be a pointer to $i+1$ in parallel for $i, 1 \leq i \leq n$.

Then, we apply pointer jumping technique to $S_a[i]$ in parallel for $i, 1 \leq i \leq n$.

2. If $P_a[i] > L_a[i+1]$, then $C[i] := S_a[i+1]$ and $F^* := F^* \cup \{ (i, S_a[i+1]) \}$ in parallel for $i, 1 \leq i \leq n-1$.

(Step 4) [Construction of arrays $S_c[1 : n].]$

1. If $P_a[i] = L_c[i]$, let $S_c[i]$ be a pointer to i (self-loop), otherwise, let $S_c[i]$ be a pointer to $i+1$ in parallel for $i, 1 \leq i \leq n$.

Then, we apply pointer jumping technique to $S_c[i]$ in parallel for $i, 1 \leq i \leq n$.

2. If $P_a[i] > L_c[i+1]$ and $C[i] = 0$, then $C[i] := S_c[i+1]$ and $F^* := F^* \cup \{ (i, S_c[i+1]) \}$ in parallel for $i, 1 \leq i \leq n-1$.

(Step 5) [Construction of arrays $S_d[1 : n].]$

1. If $P_d[i] = R_d[i]$, let $S_d[i]$ be a pointer to i (self-loop), otherwise, let $S_d[i]$ be a pointer $i-1$ in parallel for $i, 1 \leq i \leq n$.

Then, we apply pointer jumping technique to $S_d[i]$ in parallel for $i, 1 \leq i \leq n$.

2. If $R_d[i] > L_d[i+1]$ and $C[i] = 0$, then $C[S_d[i+1]] := S_d[i]$ and $F^* := F^* \cup \{ (S_d[i+1], S_d[i]) \}$ in parallel for $i, 1 \leq i \leq n-1$.

3. Change F^* to be an undirected graph by neglecting the direction of each edge in F^*.

Table 3 shows the result obtained by applying Steps 2,3,4,5 for Table 2. Figure 2 shows the spanning forest $F^* = (V, E')$ constructed by Algorithm CSF for trapezoid graph G, where
$V=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17\}$,
$E'=\{(1,2),(2,5),(3,5),(4,5),(6,7),(7,4),(8,11),(9,11),(10,11),(12,13),(13,9),(14,15),(15,16),(16,17)\}$.

Table 3: Arrays $L_a, L_c, R_d, S_a, S_c, C$.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_a</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>16</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>L_a</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>30</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>S_a</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>P_b</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>28</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>P_c</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>13</td>
<td>7</td>
<td>15</td>
<td>24</td>
<td>18</td>
<td>17</td>
<td>22</td>
<td>21</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>L_c</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>S_c</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>P_d</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>16</td>
<td>25</td>
<td>19</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>R_d</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>S_d</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>0</td>
<td>13</td>
<td>9</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

3 The correctness and complexity of Algorithm CSF

Before proving the correctness of Algorithm CSF, note that notation (v, w) where v, w are vertices, is used for both directed and undirected edges. Note also that we sometimes use abbreviated expressions like "$(i, S_a[i])$ is an edge of trapezoid graph G" which means "directed edge $(i, S_a[i])$ corresponds to an undirected edge of trapezoid graph $G"$, and "a connected graph is constructed" which means "a graph which is connected by neglecting the direction of edges", whenever no confusion may arise. Furthermore recall that F^* is directed until Step 5-(3) is executed, but F^* is regarded as an undirected graph by neglecting the direction of edges when we refer to connected components of F^*. Finally, note that T is a rooted tree (in-tree) when we refer to the root of T.

Lemma 1

For $i,j, 1 \leq i < j \leq n$, if $P_b[i] > L_a[j]$, $(i, S_a[j])$ is an edge of trapezoid graph G after the execution of Step 3.

For $i,j, 1 \leq i < j \leq n$, if $P_d[i] > L_c[j]$, $(i, S_c[j])$ is an edge of trapezoid graph G after the execution of Step 4.

For $i,j, 1 \leq i < j \leq n$, if $R_d[i] > L_c[j]$, $(S_c[j], S_d[i])$ is an edge of trapezoid graph G after executing Step 5.

Proof. We first give a condition for (i,j) to exist between two distinct vertex i and j ($i < j$) in trapezoid graph G. By the definition of trapezoid graph, there exists (i,j) between two
distinct vertex i and j in G if and only if trapezoid T_i and T_j intersect in trapezoid diagram T. If trapezoid T_i and T_j intersect, it satisfies either $P_b[i] > P_a[j]$ on the top channel or $P_d[i] > P_c[i]$ on the bottom channel. Therefore, edge (i, j) exists between i and j in G if and only if (1) is satisfied:

$$(i - j)(P_b[i] - P_a[j]) < 0 \text{ or } (i - j)(P_d[i] - P_c[j]) < 0. \quad (1)$$

By the assumption that $i < j$ and $P_b[i] > L_a[j]$ we obtain

$$(i - j)(P_b[i] - L_a[j]) < 0. \quad (2)$$

After executing Step 4-(1) $S_a[j]$ has value k_1 ($k_1 \geq j$) which satisfies $L_a[j] = P_a[k_1]$. Besides, by the definition that $L_a[j] = \min(P_a[j], P_a[j+1], ..., P_a[n])$ we obtain

$$S_a[j] \geq j,$$

$$L_a[j] = L_a[S_a[j]] = P_a[S_a[j]].$$

By applying the above to (2), we obtain

$$(i - S_a[j])(P_b[i] - P_a[S_a[j]]) < 0. \quad (3)$$

(3) means that there exists an edge between vertex i and $S_a[j]$ in G. Therefore $(i, S_a[j])$ is an edge in a trapezoid graph G. A similar discussion proves that $(i, S_c[j])$ is an edge and $(S_c[j], S_d[i])$ is an edge in G. □

Lemma 2 If array $C[1 : n]$ has q '0' elements after executing Step 4, F^* has n vertices, $n - q$ edges and q connected components such that each connected component is a tree with root i, where $C[i] = 0$. □

Proof. After executing Step 4, $C[n]$ obviously has value '0'. We consider a vertex i such that $C[i] = 0, C[i + 1], C[i + 2], ..., C[n - 1] \neq 0, C[n] = 0$. If such i does not exist, G is connected (i.e., $p = 1$). Now we assume G has more than one connected components (i.e., $p > 1$). Then, since $C[n - 1] \neq 0$, there exists an edge $(n - 1, n)$ incident to vertex $n - 1$ and n. And also, since $C[n - 2] \neq 0$, there exists an edge incident to vertex $n - 2$ and incident to either vertex $n - 1$ or n. In this way, there exists an edge between vertex j and one among vertices $j + 1, j + 2, ..., n$ for each vertex j, $i + 1 \leq j \leq n - 1$. On the other hand, since $C[i] = 0$, there exists no edge between vertex i and vertex j where $j \geq i + 1$. Thus, a connected graph
having $n-i$ vertices from $i+1$ to n, and $n-i-1$ edges is constructed. By the definition of a tree, this subgraph of G is a tree with root n. Similarly, we can construct other trees with root j which corresponds to $C[j] = 0$ for remaining vertex set $\{1, 2, ..., i\}$ where $1 \leq j \leq i$. Since $C[1:n]$ has q '0' elements, we can finally construct q distinct trees in F^*. By Lemma 1, edges constructed by Steps 3,4 are edges of trapezoid graph G. Therefore F^* is a subgraph of G with q connected components, n vertices, $n-q$ edges and each connected component is a tree with root i where $C[i] = 0$. □

Lemma 3
After executing Step 5, F^* is a spanning forest of G. □

Proof. It is easy to see that F^* is a spanning forest of G if and only if F^* is a spanning subgraph of G where each of connected components of F^* is a tree and there exists no edge in G which connects two distinct connected components of F^*. We call this condition, condition 1 and prove that F^* constructed after executing Step 5 satisfies this condition.

By Lemma 2, F^* is a spanning subgraph of G after executing Step 4 and has $q(q \leq p)$ connected components $t_1, t_2, ..., t_q$ which are arranged in increasing order of the number assigned to the root of each tree t_i, n vertices and $n-q$ edges.

We also denote each connected component of F^* constructed after executing Step 5 by $t'_1, t'_2, ..., t'_p$. These connected components are constructed as follows.

For $t_j, t_{j+1}, 1 \leq j \leq q-1$, if $P_d[i] > L_c[i+1]$ where i and $i+1$ correspond to the root vertex of t_j and the vertex of t_{j+1} having the minimum number, respectively, then $(S_c[i + 1], S_d[i])$ is added to F^*. Note that $S_c[i + 1]$ is in t_{j+1} and $S_d[i]$ is in one of t_k, $1 \leq k \leq j$, and $(S_c[i + 1], S_d[i])$ is an edge incident to t_{j+1} and one of t_k, $1 \leq k \leq j$, furthermore, it is also an edge of G by Lemma 1. For each t_i, at most one edge is connected to each t_j where $j < i$. Hence, F^* is acyclic. As otherwise, any t_i has two edges connected to t_j, t_k ($j, k < i, j \neq k$), which is a contradiction.

Therefore F^* is a spanning subgraph of G where each of connected components $t'_1, t'_2, ..., t'_p$ of F^* is a tree, since the connection of two trees by one edge forms a tree by the property of a tree. On the other hand, unless $P_d[i] > L_c[i+1]$, it is clear that there exists no edge between t_{j+1} and one of t_k, $1 \leq k \leq j$ from definition of R_d and L_c. It means that there exists no edge in G connecting two distinct connected components of F^*. Therefore F^* satisfies condition 1 and is a spanning forest of G. □

We now analyze the complexity of Algorithm CSF. Step 1 can be executed in $O(\log n)$ time using $O(n/\log n)$ processors by applying Brent's scheduling principle[3][4]. Step 2
can be executed in $O(\log n)$ time using $O(n/\log n)$ processors by applying parallel prefix computation[3][4]. Steps 3,4,5-(1) can be executed in $O(\log n)$ time using $O(n)$ processors by applying pointer jumping technique[3][4]. Steps 3,4,5-(2) can be executed in $O(\log n)$ time using $O(n/\log n)$ processors by applying Brent's scheduling principle. Above parallel algorithm design techniques can be executed on EREW PRAM. Hence we have the following theorem.

Theorem 1 Algorithm CSF constructs a spanning forest of trapezoid graphs in $O(\log n)$ time with $O(\log n)$ processors on EREW PRAM.

Acknowledgements

We would like to thank Ministry of Education, Science and Culture of Japan for awarding the first author a research fellowship at Toyohashi University of Technology, which enabled us to do this research.

References

