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1 Introduction

Research on the dynamics of large deformation of one-dimensional elastic
media, such as .rods, belts and cables are important for engineering and
its applications. Such a nonlinear problem, however, is difficult to handle
theoretically because of our shortage of mathematical methods.

Recently, Goldstein and Petrich [1] have discovered the connection be-
tween dynamics of curves and soliton theory. They have shown that the
dynamics of a curve in a plane is governed geometrically by the modified
KdV (mKdV) equation in a particular case. Their theory has some advan-

| tages: we can treat exact nonlinear motion of curves analytically by using
powerful methods of soliton theory. Another is that their formalism is so gen-
eral that there is a possibility to apply the theory to various one-dimensional
phenomena, such as the growth of boundaries of crystals and so on.

In their analysis, however, the dynamics is determined by assuming the
velocities of curves a priori, not by using the basic equations of motion of
the curve. Moreover, the properties of the curve, such as the constitutive
equation, are not taken into consideration. Therefore we cannot use their
theory directly to the problem of elastic rods.

The aim of our study is to show the way of utilizing the new tool of the

soliton approach to analyze the nonlinear deformation of real elastic rods,
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and to clarify the meaning of their assumption of velocities from the physical
point of view. Moreover, we construct discrete model for an extensible string
to simulate dynamics of the rod. We use exact solutions of the mKdV equa-
tion, such as the one-soliton and the breather to study the dynamics of the
rod. The analysis is performed by some perturbation methods and nur_nefica.l

calculations.

2 Basic equations for an elastic rod

We consider basic equations of motion for an elastic rod in a plane. Let
r(o,t) denote the position vector of the rod at time ¢, and o is a parameter

which represents the unstretched length of the rod. There is a metric g on

the rod defined by

I
¥

; (1)

g:

then the arclength s is given by

szvfoay/g(a',t)da'. | (2)

The arclength s is used as a coordinate of the rod in the following. The unit

tangent vector t of the rod is

or _1/9 0T
=2, =9 1/25; (3)

- and the unit vector normal to t is represented by n, which is related to

t

the curvature of the rod « and t by the Serret-Frenet formula in its two-

dimensional version

o t 0 « t |
'a; = ’ (4)

n -k 0 n

where £ = 00/0s and 0 is an angle between the x-axis and t.

Basic equations for motion of the rod in {t,n} frame are written as [2]

V9 dt? 0 Js
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| _ Jade  Os Q (6)
The right-hand sides (r.h.s.) of (5) and (6) represent the resultant force

and moment acting on each material segment, respectively, and M is the
moment, N thé axial force, ) shear force, p the density, A the cross sectional
area, I the geometrical moment of inertia of the rod. In (5), ¢; and ¢, are
applied forces tangential and normal to the rod, respectively, and we will
neglect these external forces in the followmg study. The total derivative with

respect to time is written by usmg (2) as

d 0 dsO
AT T _+</dtln\/_ds)8’ (7)
and the last term in (7) represents the stretching effect of the rod.

The constitutive equation for N we use in this study is

N = EA(\/3 - 1), (8)

where E is the Young’s modulus of the rod. For the constitutive equation of
M, we adopt the Bernoulli-Euler assumption, and considering the stretching

effect of the neutral axis, we can write
M = EIk.\/3g. 9

Subtracting @) from (5) and (6) and ‘substituting constitutive equations
(8) and (9) into basic equations, we obtain

pAdr N Okfg k d*0
Jade (EA as TEIF s ~Pl Gan)t

+ (EAn(ﬁ-l)—EI&s—‘@Jr Iﬁi-‘f—q) (10)

Non-dimensional form of this equation is rewritten as

1 d&r (0.9 afc\/g— vk d26
Jade " (33 T 5s _fdt2)t

, ; 8%\/— 0 1 d%* :

+ (ﬂ(\/s_l—l)-7 53'7372‘) (11)
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In (11), r and s are normalized by sg, which is a typical width of wave occur-
ring in the rod, « is normalized by 1/s¢, A and I are normalized by y2? and
Yo, respectively, where o is a diameter of the rod. The velocity vg is normal-
ized by the linearized longitudinal velocity \/17 , and ¢ is normalized by #,,
where so/to = vo. The non-dimensional parameter v = (yo/s0)? represents

narrowness of the rod, which is considered to be quite small in this paper.

3 Analysis of curves by the soliton theory

In this section, we summarize the analysis of curves by the soliton approach

[1], [3]- Let the curve dynamics in the plane be of the form

dr

< =Ut+Wn, (12)

where r, t, etc. are defined as in the previous section. It must be noted here

that s and ¢ derivatives do not commute in general: from (3), (4) and (12),
we obtain _

d 0 oUu 0 ,

27351 =~ (?5‘ B ”W) 55’ (13)

where [, ] is the usual Poisson bracket. By using (4), (12) and (13), we can

show the following equations:

dt (oW o
dn ow
d 1n V9 = 6—U — kW, | (16)
Ok _82W 2 Bn e .

where the recursion operator R is defined by

R—-———+K, +-—/dsrc - (18)
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The crucial assumption of the soliton approach is that we seek solutions
with
Ok

W=R'-, (19)

then from (17) we obtain the dynamics of the curvature

6_/4: = Rn+1.a_'€_

ot Os’ (20)

For the lowest order case n = 0, we obtain the mKdV equation

ok FBx 3 ,0x
5t~ 058 12" 85 (21)

In this papér, we call (20) the (n+1)th-order mKdV equation, which is com-
pletely integrable by the soliton theory for each .
Therefore we solve the (n+1)th-order mKdV equation and substitute so-

dx '_ ' dy . )
7, = cos (/ nds), 7, = sin (/ kds ), (22)

to obtain shapes of certain classes of dynamically moving curves. We note

lutions into

here that the assumption (19) for the form of the normal velocity has no clear
physical meaning. Accordingly, it can be expected to be compatible with the
“basic equations of Vmotion for real materials only in special cases. In the
following sections, we will consider dynamics of an elastic rod by using this
assumption, justifying it in the case n = 0 by identifying certain mechanically

consistent solutions.

4 Comparison and symmetry

4.1 Perturbation analysis

In order to utilize the soliton approach discussed in the previous section
to analyze the nonlinear deformation of real elastic rods, we must compare

the dynamics of (12) with that of (11) and check in which situations the
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assumption of the velocity is satisfied. Differentiating (12) with respect to

time gives _
d’r daUu ow daw ow 9
dt2_(dt_W6.s —nUW)t+(dt +Uas. +nU)n (23)

The compatibility conditions for (23) and (11) are

woW 0 onfg &8
—Jt—_W_BT_nUW = \/‘683 + v76/9 Y (7 (24)
dt +UaaW+’°U2 = k/9(vg—1)
82»%\/— 0 1 d%

—~1V9- +1V9 995 Jg dtt (25)
The equations (16), (17), (24) and (25) for \/ﬁ,n,‘W and U are the basic
equations which connect the elastic theory and the soliton theory. In the
féllowing analysis, we assume £k — 0 as s — £o00, i.e., we consider the rod
as infinitely long and neglect boundary effects. |
Since v and the stretch effect are considered to be small, we will solve
these equations by a perturbation method. As we can see in (20), we can
set orders of variables as: K ~ ¢,0, ~ ¢,0; ~ €>"*3 and W ~ £?*2 where ¢

is called the booking parameter which will be related to v afterwards. Then

we expand k£ and W in terms of ¢ as

K = EKo+ 521‘61 + 0] (63) y (26)
W = ey + w4 0 (e274). (27)

In the lowest order of ¢, we assume (19) in order to use the soliton approach,

then we put

0 0
wo = R{;%, Ro=& + K%+ %/dsno. (28)

Next we expand ,/g in terms of 8 From the balance of acceleration and axial
force OW/0t ~ k/g(,/g — 1) in (25), we get the order of the perturbation as
V9 =14 O(e****). Thus we can expand /g as

Vg =14 €"HG + ™5 H + 0 (e*4°). (29)
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Then we obtain from (7)

4 o430 | enyr 0 9
7= mTe 8t/Gd583' - (30)

Here we can determine U from (16) by integrating once with respect to s as
U = ?t? / Kowods + €22 /(ngwl + K1wp)ds. (31)

* Substituting (26) and (27) into (17), we obtain from the order of ¢2***
the (n+1)th-order mKdV equation- |

o Oko
8"10 Ryt — 95 = Rowp _ (32)
and from g2"*5
Ok, 0w, O ‘
- % v 6:;1 + 9 (lﬁo /(Iio’w1 + K1wo)ds + £1 / "70'w0d'5)‘ =0.  (33)

Here we relate ¢ with 4. In order to take the shearing force into account, it

is natural to choose

y = pet™t3 | (34)

by considering the balance of terms in (24) and (25), where in (34), p is a
real constant. Then we substitute (31) into (24) and considering (34), we

obtain from the order of £4*t+5

0 0 0G
E/nowods — wg (Iio//io’wod-s + %) = 55’ (35)

from the order of *"+¢

0 0
E/(ﬂowl + K wo)ds — 5—w0w1

0 k OH 0
~% (/ KoWods /(Kowl + fclwo)ds) = + pn()%‘. (36)

We also substitute (31) into (25) to obtain from the order of e*+5

6w0 +/nowods (fso/nowods + %—) = koG, (37)
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and from the order of g4"+¢

ow 0
_325—1 + (2no/nowods + —(;;?) /(nowl +k/§1wo)ds
.0 2 52
—I—%/ngwods + K (/ nowods) =k G+ koH —p 8:20' (38)

We will solve (32), (33), (35)-(38) for ko, &1, wy, G and H. We see‘that
mechanical effects arise at higher order of ¢ (i.e., €4**%) in comparison with
the order of the dynamics for the curvature (i.e., €"**). This means that
the dynamics of the rod is governed mainly by the geometrical constraint
(17) and that the rod considered in this paper is like a ”string” more than a

"rod”. This coincides the fact that we treat the parameter v to be small.

4.2 Lowest order case

Let us consider the special case n = 0 first, i.e. kg is governed By the mKdV

equation. In this case, we can prove that only in the case
(9t = —’Uas ) (39)

the basic equations are compatible [4], where v represents the soliton veloc-
ity. Therefore we find that only solutions of the travelling wave type satisfy
the elastic equations, under the assumption (28) for the velocity and using
this kind of perturbation analysis. In this case, the rod shows shape-steady
motions. ‘ |

Since 0; = —'va;, the solﬁtion of the mKdV equation of thé traivelling

wave type is given by

K= '—4% tan™t (exp(as+ a3t)) = —2asecha(s + a’t). . (40)

This is a loop which propagates without deformation. The shape and the
Velocity of the sohtafy wave are determined by the value a, which is related
with the initial tension of the rod. It is worth while to mention here that

although the shape of the famous Elastica and the loop soliton are the same,
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the mechanism for force balance is different. Shapes of the Elastica are
formed by the balance of stresses and an external force, while the loop soliton

is the balance of stresses and the centrifugal force.

4.3 Higher order case

Let us move on to consider the case n = 1. In this case, we obtain the

second-order mKdV equation

0k 0 (0% 3 s 5 Oko\gs = 20%Kg
E‘%(as4+8 ("( ’+ °a2)) )

One soliton solution of this equation is given by

sin(2a(s — 64a't))
=45 tan (cosh(Za(s - 64a4t))> .

(42)

The position of the curve in this case is given by integrating (22) as

L s_'_cos@ sin © — cosh © sinh® ' (43)
T = a cosh®2? + asin®2 ’

cos © cosh © + sin © sinh®

y = acosh®?+asin®2 '’ (44)

where © = 2as—128 a°t. This is illustrated in Fig.1. In this case, the trav-
| elling wave on the rod is no longer a simple loop, but shows more complicated

deformation like a "worm.”

5 Breather soliton and two-soliton on the
rod

Let us consider the solution of a non-travelling wave type in this section.
To avoid complicated discussions, we focus on the case of n = 0, i.e., & is
governed by the mKdV equation. As we prove in the previous section, only
solutions of fhe travelling wave type satisfy the basic equations of the elastic

theory under the perturbé,tion method. Thus the idea for realization of more
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than two-soliton on the rod is that we put different orderings on parameters
in solutions. For wxample, the breather solution for the mKdV equation is

given by

9. (_q sin(2as — 8a(a? — 362)1) ) |

£ =455 90 | & cosh(28s + 8B(F% — 3a2)1) (45)

0s
Here we put f/a < 1 and B < 1, then we can prove that (45) can satisfy
the basic equations up to the perturbated order. This is illustrated in Fig.2.
We see that in this breather case, the envelope will propagate like a solitary
wave, and the carrier wave oscillates with a high frequency.

In the case of usual two solifon solutions, we use numerical simulations
to check its stability. If the difference of the two loops are sm@ﬂ, we can see
that the collision are not distructive to each loops (Fig. 3) and Jmaintain its
shape after the collision. On the other hand, in the case that the difference of
the two loops are not small, the loops are largely disturbed by thé collision.
These are natural results from the above discussions, because if the difference
of the two loops are small, then we can consider these two loops as travelling

wave type ”as a whole”.
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One Soliton solution of the higher mKdV equation

-

v Fig.2 v
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Time evolution of the breather soliton on the string (a) t=0.4 (b) t=0.7

Fig.3
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