Title
SPECTRAL GEOMETRY OF KAHLER HYPERSURFACES
IN THE COMPLEX GRASSMANN MANIFOLD

Author(s)
MIYATA, YOICHIRO

Citation
数理解析研究所講究録 (1997), 995: 95-110

Issue Date
1997-05

URL
http://hdl.handle.net/2433/61215

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
SPECTRAL GEOMETRY OF KÄHLER HYPERSURFACES
IN THE COMPLEX GRASSMANN MANIFOLD

YOICHIRO MIYATA (東京都立大学 宮田洋一郎)

§1. Introduction.
Let M be a compact C^∞-Riemannian manifold, $C^\infty(M)$ the space of all smooth functions on M, and Δ the Laplacian on M. Then Δ is a self-adjoint elliptic differential operator acting on $C^\infty(M)$, which has an infinite discrete sequence of eigenvalues: $\text{Spec}(M) = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda_k < \cdots \uparrow \infty\}$. Let $V_k = V_k(M)$ be the eigenspace of Δ corresponding to the k-th eigenvalue λ_k. Then V_k is finite-dimensional. We define an inner product $(f, g)_{L^2} = \int_M fg \, dv_M$ on $C^\infty(M)$, where dv_M denotes the volume element on M. Then $\sum_{k=0}^\infty V_k$ is dense in $C^\infty(M)$ and the decomposition is orthogonal with respect to the inner product $(\cdot, \cdot)_{L^2}$. Thus we have $C^\infty(M) = \sum_{k=0}^\infty V_k(M)$ (in L^2-sense).

Since M is compact, V_0 is the space of all constant functions which is 1-dimensional.

In this point of view, it is one of the simplest and the most interesting problems to estimate the first eigenvalue. In [10], A. Ros gave the following sharp upper bound for the first eigenvalue of Kähler submanifold of a complex projective space.

Theorem 1.1. Suppose that M is a complex m-dimensional compact Kähler submanifold of the complex projective space $\mathbb{C}P^n$ of constant holomorphic sectional curvature c. Then the first eigenvalue λ_1 satisfies the following inequality:

$$\lambda_1 \leq c(m+1)$$

The equality holds if and only if M is congruent to the totally geodesic Kähler submanifold $\mathbb{C}P^m$ of $\mathbb{C}P^n$.

If M is not totally geodesic, J-P. Bourguignon, P. Li and S. T. Yau in [1] gave the following more sharp estimate. (See also [7].)

Theorem 1.2. Suppose that M is a complex m-dimensional compact Kähler submanifold of $\mathbb{C}P^n$, which is fully immersed and not totally geodesic. Then the first eigenvalue λ_1 satisfies the following inequality:

$$\lambda_1 \leq c\, m \, \frac{n+1}{n}$$

It is unknown when the equality holds in this inequality.

Our purpose is to give the upper bound for the first eigenvalue of Kähler hypersurfaces of a complex Grassmann manifold.
Let denote by $G_r(\mathbb{C}^n)$ the complex Grassmann manifold of r-planes in \mathbb{C}^n, equipped with the Kähler metric of maximal holomorphic sectional curvature c. We obtain the following result which is a natural generalization of Theorem 1.1.

Theorem A. Suppose that M is a compact connected Kähler hypersurface of $G_r(\mathbb{C}^n)$. Then the first eigenvalue λ_1 satisfies the following inequality:

$$\lambda_1 \leq c \left(n - \frac{n-2}{r(n-r) - 1} \right)$$

The equality holds if and only if $r = 1, n$, and M is congruent to the totally geodesic complex hypersurface \mathbb{CP}^{n-2} of the complex projective space \mathbb{CP}^{n-1}.

The 2-plane Grassmann manifold $G_2(\mathbb{C}^n)$ admits the quaternionic Kähler structure \mathfrak{J}. For the normal bundle $T^\perp M$ of a Kähler hypersurface M of $G_2(\mathbb{C}^n)$, $\mathfrak{J}T^\perp M$ is a vector bundle of real rank 6 over M which is a subbundle of the tangent bundle of $G_2(\mathbb{C}^n)$. We consider a Kähler hypersurface M of $G_2(\mathbb{C}^n)$ satisfying the property that $\mathfrak{J}T^\perp M$ is a subbundle of the tangent bundle TM of M. In the section 4, we will introduce examples satisfying this property.

For a Kähler hypersurface of $G_2(\mathbb{C}^n)$ satisfying this property, we obtain the following upper bound of the first eigenvalue.

Theorem B. Suppose that M is a compact connected Kähler hypersurface of $G_2(\mathbb{C}^n)$, $n \geq 4$. If M satisfies the condition $\exists T^\perp M \subset TM$, then the following inequality holds:

$$\lambda_1 \leq c \left(n - \frac{n-1}{2n-5} \right)$$

The equality holds if and only if $n = 4$ and M is congruent to the totally geodesic complex hypersurface Q^3 of the complex quadric $Q^4 = G_2(\mathbb{C}^4)$.

These two theorems are proved in the section 5. More detailed proofs of any our results are given in [8].

Notations. $M_{r,s}(\mathbb{C})$ denotes the set of all $r \times s$ matrices with entries in \mathbb{C}, and $M_r(\mathbb{C})$ stands for $M_{r,r}(\mathbb{C})$. I_r and O_r denote the identity r-matrix and the zero r-matrix.

§2. Preliminaries.

In this section, we discuss geometries of the complex r-plane Grassmann manifold and its first standard imbedding.

Let $M_r(\mathbb{C}^n)$ be the complex Stiefel manifold which is the set of all unitary r-systems of \mathbb{C}^n, i.e.,

$$M_r(\mathbb{C}^n) = \{ Z \in M_{n,r}(\mathbb{C}) | Z^*Z = I_r \}.$$

The complex r-plane Grassman manifold $G_r(\mathbb{C}^n)$ is defined by

$$G_r(\mathbb{C}^n) = M_r(\mathbb{C}^n)/U(r).$$
The origin \(o \) of \(G_r(\mathbb{C}^n) \) is defined by \(\pi(Z_0) \), where \(Z_0 = \begin{pmatrix} I_r \\ 0 \end{pmatrix} \) is a element of \(M_r(\mathbb{C}^n) \), and \(\pi: M_r(\mathbb{C}^n) \rightarrow G_r(\mathbb{C}^n) \) is the natural projection.

The left action of the unitary group \(\tilde{G} = SU(n) \) on \(G_r(\mathbb{C}^n) \) is transitive, and the isotropy subgroup at the origin \(o \) is

\[
\tilde{K} = S(U(r) \cdot U(n-r))
\]

so that \(G_r(\mathbb{C}^n) \) is identified with a homogeneous space \(\tilde{G}/\tilde{K} \)

Set \(\tilde{\mathfrak{g}} = su(n) \) and

\[
\hat{\mathfrak{e}} = \mathbb{R} \oplus su(r) \oplus su(n-r)
\]

then \(\tilde{\mathfrak{g}} \) and \(\hat{\mathfrak{e}} \) are the Lie algebra of \(\tilde{G} \) and \(\tilde{K} \), respectively. Define a linear subspace \(\hat{\mathfrak{m}} \) of \(\tilde{\mathfrak{g}} \) by

\[
\hat{\mathfrak{m}} = \left\{ \begin{pmatrix} 0 & -\xi^* \\ \xi & 0 \end{pmatrix} \mid \xi \in M_{n-r,r}(\mathbb{C}) \right\},
\]

then \(\hat{\mathfrak{m}} \) is identified with the tangent space \(T_o(G_r(\mathbb{C}^n)) \). The \(\tilde{G} \)-invariant complex structure \(J \) of \(G_r(\mathbb{C}^n) \) and the \(\tilde{G} \)-invariant Kähler metric \(\tilde{g}_c \) of \(G_r(\mathbb{C}^n) \) of the maximal holomorphic sectional curvature \(c \) are given by

\[
J \begin{pmatrix} 0 & -\xi^* \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{-1} \xi^* \\ -\sqrt{-1} \xi & 0 \end{pmatrix},
\]

(2.1)

\[
\tilde{g}_{c_o}(X, Y) = -\frac{2}{c} \text{tr} XY, \quad X, Y \in \hat{\mathfrak{m}}.
\]

In the case of \(r = 2 \), the complex 2-plane Grassmann manifold \(G_2(\mathbb{C}^n) \) admits another geometric structure named the quaternionic Kähler structure \(J \). \(J \) is a \(\tilde{G} \)-invariant subbundle of \(\text{End}(T(G_2(\mathbb{C}^n))) \) of rank 3, where \(\text{End}(T(G_2(\mathbb{C}^n))) \) is the \(\tilde{G} \)-invariant vector bundle of all linear endmorphisms of the tangent bundle \(T(G_2(\mathbb{C}^n)) \). Under the identification with \(T_o(G_r(\mathbb{C}^n)) \) and \(\hat{\mathfrak{m}} \), the fiber \(J_o \) at the origin \(o \) is given by

\[
J_o = \left\{ J_{\xi} = \text{ad}(\xi) \mid \xi \in \hat{\mathfrak{e}_q} \right\},
\]

where \(\hat{\mathfrak{e}_q} \) is an ideal of \(\hat{\mathfrak{e}} \) defined by

\[
\hat{\mathfrak{e}_q} = \left\{ \begin{pmatrix} u_1 & 0 \\ 0 & 0 \end{pmatrix} \mid u_1 \in su(2) \right\} \cong su(2).
Choose a basis \(\{ \varepsilon_1, \varepsilon_2, \varepsilon_3 \} \) of \(\mathfrak{su}(2) \) satisfying \([\varepsilon_i, \varepsilon_{i+1}] = 2\varepsilon_{i+2} \pmod{3} \). Set
\[
\tilde{\varepsilon}_i = \left(\begin{array}{cc} \varepsilon_i & 0 \\ 0 & 0 \end{array} \right)
\]
and \(J_i = J_{\tilde{\varepsilon}_i} \) for \(i = 1, 2, 3 \), then the basis \(\{ J_1, J_2, J_3 \} \) is a canonical basis of \(\mathfrak{J}_0 \), satisfying
\[
J_i^2 = -id_m \quad \text{for} \quad i = 1, 2, 3,
\]
\[
J_1J_2 = -J_2J_1 = J_3, \quad J_2J_3 = -J_3J_2 = J_1, \quad J_3J_1 = -J_1J_3 = J_2,
\]
\[
\tilde{g}_{c_{\mathcal{O}}}(J_iX, J_iY) = \tilde{g}_{c_{\mathcal{O}}}(X, Y), \quad \text{for} \ X, Y \in \tilde{m} \text{ and } i = 1, 2, 3.
\]

There exists an element \(\mathring{\varepsilon}_{\mathbb{C}} \) of the center of \(\mathfrak{g} \) such that \(J \) is given by \(J = ad(\mathring{\varepsilon}_{\mathbb{C}}) \) on \(m \). Therefore, \(J \) is commutable with \(\mathfrak{J} \).

Let \(HM(n, \mathbb{C}) \) be the set of all Hermitian \((n, n)\)-matrices over \(\mathbb{C} \), which can be identified with \(\mathbb{R}^{n^2} \). For \(X, Y \in HM(n, \mathbb{C}) \), the natural inner product is given by
\[
(2.2) \quad (X, Y) = \frac{2}{c} tr XY.
\]

\(GL(n, \mathbb{C}) \) acts on \(HM(n, \mathbb{C}) \) by \(X \mapsto BXB^*, B \in GL(n, \mathbb{C}), X \in HM(n, \mathbb{C}) \). Then the action of \(SU(n) \) leaves the inner product \((2.2)\) invariant.

The first standard imbedding \(\Psi \) of \(G_r(\mathbb{C}^n) \) is defined by
\[
\Psi(\pi(z)) = zZ^* \in HM(n, \mathbb{C}), \quad Z \in M_\Gamma(\mathbb{C}^n).
\]

\(\Psi \) is \(SU(n) \)-equivariant and the image \(N \) of \(G_r(\mathbb{C}^n) \) under \(\Psi \) is given as follows:
\[
(2.3) \quad N = \Psi(G_r(\mathbb{C}^n)) = \{ A \in HM(n, \mathbb{C}) \mid A^2 = A, \ trA = r \}.
\]

The tangent bundle \(TN \) and the normal bundle \(T^\perp N \) are given by
\[
(2.4) \quad T_{A_o}N = \{ X \in HM(n, \mathbb{C}) \mid AX +XA = X \} \subset HM_0,
\]
\[
T_{A_o}^\perp N = \{ Z \in HM(n, \mathbb{C}) \mid ZA = ZX \}.
\]

In particular, at the origin \(A_o = \Psi(0) = \left(\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right) \), we can obtain
\[
(2.5) \quad T_{A_o}N = \left\{ \left(\begin{array}{cc} 0 & \xi^* \\ \xi & 0 \end{array} \right) \mid \xi \in M_{n-r, r}(\mathbb{C}) \right\},
\]
\[
T_{A_o}^\perp N = \left\{ \left(\begin{array}{cc} Z_1 & 0 \\ 0 & Z_2 \end{array} \right) \mid Z_1 \in HM(r, \mathbb{C}), Z_2 \in HM(n - r, \mathbb{C}) \right\}.
\]

The complex structure \(J \) acts on \(T_{A_o}N \) as follows:
\[
(2.6) \quad J \left(\begin{array}{cc} 0 & \xi^* \\ \xi & 0 \end{array} \right) = \left(\begin{array}{cc} 0 & -\sqrt{-1}\xi^* \\ \sqrt{-1}\xi & 0 \end{array} \right).
\]
If \(r = 2 \), then the quaternionic Kähler structure \(\mathfrak{J} \) acts on \(T_{A_{\mathrm{o}}}N \) as follows:

\[
J_{\xi} \begin{pmatrix} 0 & \xi^* \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} 0 & \varepsilon \xi^* \\ -\xi \varepsilon & 0 \end{pmatrix}, \quad \varepsilon \in \text{su}(2).
\]

Let \(\tilde{\sigma} \) and \(\tilde{H} \) denote the second fundamental form and the mean curvature vector of \(\Psi \), respectively. Then, for \(A \in N \) and \(X, Y \in T_{A}N \), we can see

\[
\tilde{\sigma}_{A}(X, Y) = (XY + YX)(I - 2A)
\]

(2.8)

\[
\tilde{H}_{A} = \frac{c}{2r(n-r)}(rI - nA)
\]

and \(\tilde{\sigma} \) satisfies the following:

(2.10) \(\tilde{\sigma}_{A}(JX, JY) = \tilde{\sigma}_{A}(X, Y) \),

(2.11) \((\tilde{\sigma}_{A}(X, Y), A) = -(X, Y) \).

§3. Examples.

One of the most simple typical examples of submanifolds of \(G_{r}(\mathbb{C}^{n}) \) is a totally geodesic submanifold. B. Y. Chen and T. Nagano in [3, 4] determined maximal totally geodesic submanifolds of \(G_{2}(\mathbb{C}^{n}) \). For arbitrary \(r \), I. Satake and S. Ihara in [11, 5] determined all (equivariant) holomorphic imbeddings of a symmetric domain into another symmetric domain. Taking a compact dual symmetric space if necessary, we obtain the complete list of maximal totally geodesic Kähler submanifolds of \(G_{r}(\mathbb{C}^{n}) \).

Since totally geodesic submanifolds of \(G_{r}(\mathbb{C}^{n}) \) are symmetric spaces, we can calculate the first eigenvalue of the Laplacian of \(M \). (cf. [14])

Theorem 3.1. Let \(M \) be a proper maximal totally geodesic Kähler submanifold of \(G_{r}(\mathbb{C}^{n}) \), and \(\lambda_{1} \) the first eigenvalue of the Laplace-Beltrami operator with respect to the induced Kähler metric. Then, \(M \) and \(\lambda_{1} \) are one of the following (up to isomorphism).

1. \(M_{1} = G_{r}(\mathbb{C}^{n-1}) \rightarrow G_{r}(\mathbb{C}^{n}), \quad 1 \leq r \leq n - 2, \quad \text{and} \quad \lambda_{1} = c(n - 1) \)
2. \(M_{2} = G_{r-1}(\mathbb{C}^{n-1}) \rightarrow G_{r}(\mathbb{C}^{n}), \quad 2 \leq r \leq n - 1, \quad \text{and} \quad \lambda_{1} = c(n - 1) \)
3. \(M_{3} = G_{r_{1}}(\mathbb{C}^{n_{1}}) \times G_{r_{2}}(\mathbb{C}^{n_{2}}) \rightarrow G_{1+r_{2}}(\mathbb{C}^{n_{1}+n_{2}}), \quad 1 \leq r_{i} \leq n_{i} - 1, \quad i = 1, 2, \quad \text{and} \quad \lambda_{1} = c \min\{n_{1}, n_{2}\} \)
4. \(M_{4} = M_{4,p} = Sp(p)/U(p) \rightarrow G_{p}(\mathbb{C}^{2p}), \quad p \geq 2, \quad \text{and} \quad \lambda_{1} = c(p + 1) \)
5. \(M_{5} = M_{5,p} = SO(2p)/U(p) \rightarrow G_{p}(\mathbb{C}^{2p}), \quad p \geq 4, \quad \text{and} \quad \lambda_{1} = c(p - 1) \)
6. \(M_{6,m} = \mathbb{C}P^{p} \rightarrow G_{r}(\mathbb{C}^{n}) : \text{the complex projective space}, \quad r = \left(\begin{array}{c} p \\ m-1 \end{array} \right), \quad n = \left(\begin{array}{c} p+1 \\ m \end{array} \right), \quad 2 \leq m \leq p-1, \quad \text{and} \quad \lambda_{1} = c(p+1) \left(\begin{array}{c} p-1 \\ m-1 \end{array} \right)^{-1} \)
7. \(M_{7} = Q^{3} \rightarrow Q^{4} = G_{2}(\mathbb{C}^{4}) : \text{the complex quadric}, \quad \text{and} \quad \lambda_{1} = 3c \)
8. \(M_{8} = M_{8,2l} = Q^{2l} \rightarrow G_{r}(\mathbb{C}^{2r}) : \text{the complex quadric}, \quad r = 2^{l-1}, \quad l \geq 3, \quad \text{and} \quad \lambda_{1} = c \frac{2^{l}}{2^{l-2}} \)
In above list, notice that $M_{4,2} = M_7$ and $M_{5,4} = M_{8,6}$.

Another one of the most simple typical examples of submanifolds of $G_r(C^n)$ is a homogeneous Kähler hypersurface. K. Konno in [6] determined all Kähler C-spaces embedded as a hypersurface into a Kähler C-space with the second Betti number $b_2 = 1$.

Theorem 3.2. Let M be a compact, simply connected homogeneous Kähler hypersurface of $G_r(C^n)$, and λ_1 the first eigenvalue of the Laplace-Beltrami operator with respect to the induced Kähler metric. Then, M and λ_1 are one of the following (up to isomorphism).

1. $M_9 = \mathbb{C}P^{n-2} \hookrightarrow \mathbb{C}P^{n-1} = G_1(C^n)$ and $\lambda_1 = c(n - 1)$
2. $M_{10} = Q^{n-2} \hookrightarrow \mathbb{C}P^{n-1} = G_1(C^n)$ and $\lambda_1 = c(n - 2)$
3. $M_7 = Q^3 \hookrightarrow Q^4 = G_2(C^4)$ and $\lambda_1 = 3c$
4. $M_{11} = Sp(l)/U(2)Sp(l - 2) \hookrightarrow G_l(C^{2l})$: Kähler C-space of type (C_l, α_2), $l \geq 2$ and $\lambda_1 = c(2l - 1)$

M_9 and M_7 are totally geodesic. M_9, M_{10}, and M_7 are symmetric spaces. If $l = 2$, then M_{11} is congruent to M_7.

For each l with $l > 2$, M_{11} is not a symmetric space. Then, it is not easy to calculate the first eigenvalue λ_1 of M_{11}. We will calculate λ_1 of M_{11} in the next section.

From these two theorems, we obtain the following proposition:

Proposition 3.3. Let M be either a proper maximal totally geodesic Kähler submanifold of $G_r(C^n)$ or a compact simply connected homogeneous Kähler hypersurface of $G_r(C^n)$. Then, the first eigenvalue λ_1 of M with respect to the induced Kähler metric satisfies the following inequality:

$$\lambda_1 \leq c(n - 1).$$

Moreover, the equality holds if and only if M is congruent to one of the follows:

$$M_1, \ M_2, \ M_{4,2} = M_7, \ M_9, \ M_{11}.$$

§4. the homogeneous Kähler hypersurface (C_l, α_2).

In this section, we will consider the first eigenvalue of the Kähler C-space of type (C_l, α_r). For details, see [2] and [13].

The Kähler C-space of type (C_l, α_r) is a compact simply connected homogeneous Kähler manifold $M = G/K = Sp(l)/U(r) \cdot Sp(l - r)$, $1 \leq r \leq l$. Denote by \mathfrak{g} and \mathfrak{k} Lie algebras of G and K, respectively, i.e.,

$$\mathfrak{g} = \mathfrak{sp}(l) = \left\{ \begin{pmatrix} A & -\overline{C} \\ C & A \end{pmatrix} \mid A, C \in M_l(C), \quad A^* = -A, \quad ^t\overline{C} = C \right\},$$
\[\mathfrak{g} = \{ \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A' & 0 & -\overline{C'} \\ 0 & 0 & A & 0 \\ C' & 0 & 0 & \overline{A'} \end{pmatrix} \mid A \in M_r(\mathbb{C}), \quad A', C' \in M_{l-r}(\mathbb{C}), \quad A^* = -A, \quad A'^* = -A', \quad ^tC' = C' \} \]

\[= \mathfrak{u}(r) + \mathfrak{sp}(l-r). \]

g is a compact semisimple Lie algebra of type C_l.

For $x, y \in M_{l-r,r}(\mathbb{C})$ and $z \in M_r(\mathbb{C})$ with $^t z = z$, define

\[\eta(x, y, z) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ z & ty & 0 & -t^x \\ y & 0 & 0 & 0 \end{pmatrix}. \]

Note that, if $r = l$, then we ignore x and y, and $\eta(x, y, z)$ and $\eta(0, 0, z)$ denote a matrix $\begin{pmatrix} 0 & 0 \\ z & 0 \end{pmatrix}$, $z \in M_l(\mathbb{C})$, $^t z = z$.

Let $\mathfrak{m}, \mathfrak{m}^+$ and \mathfrak{m}^- be subspaces of \mathfrak{g} defined by

\[\mathfrak{m} = \{ \eta(x, y, z) - \eta(x, y, z)^* \}, \]
\[\mathfrak{m}^+ = \{ \eta(x, y, z) \}, \]
\[\mathfrak{m}^- = \{ \eta(x, y, z)^* \}, \]

so that $\mathfrak{m}, \mathfrak{m}^+$ and \mathfrak{m}^- are K-invariant under the adjoint action, and \mathfrak{m} is identified with the tangent space $T_o M$ of M at the origin $o = \{ K \}$. Moreover, the complexification $\mathfrak{m}^\mathbb{C}$ of \mathfrak{m} is the direct sum $\mathfrak{m}^\mathbb{C} = \mathfrak{m}^+ + \mathfrak{m}^-$, and \mathfrak{m}^\pm is the $\pm \sqrt{-1}$-eigenspace of the complex structure J of M at the origin o.

For any positive real number a, the Einstein-Kähler metric $g(a)$ of M is given by

\[g(a)(X, X) = 2a \text{tr}(x^* x + y^* y + \overline{z}z), \quad X = \eta(x, y, z) - \eta(x, y, z)^* \in \mathfrak{m}. \]

Relative to this metric, the scalar curvature τ of M is given by

\[\tau = \frac{2(2l - r + 1)}{a} \dim_{\mathbb{C}} M. \]

Y. Matsushima and M. Obata showed the following:

Theorem 4.1 [9]. Let M be an n-dimensional compact Einstein Kähler manifold of positive scalar curvature τ. Then the first eigenvalue $\lambda_1(M)$ of the Laplacian satisfies that

\[\lambda_1(M) \geq \frac{\tau}{n}. \]

The equality holds if and only if M admits an one-parameter group of isometries (i.e., a non-trivial Killing vector field).

The natural inclusion $\mathfrak{sp}(l) \hookrightarrow SU(2l)$ defines an immersion φ of M into $\tilde{M} = G_r(\mathbb{C}^{2l}) = \tilde{G}/\tilde{K} = SU(2l)/S(U(r) \cdot U(2l - r))$ by

\[\varphi(g \cdot K) = g \cdot \tilde{K}, \quad g \in G. \]
Under identification of $T_o\tilde{M}$ with $\tilde{\mathfrak{m}}$, the image of $X = \eta(x, y, z) - \eta(x, y, z)^* \in \mathfrak{m}$ is
\[
\varphi_*(X) = \begin{pmatrix}
0 & -x^* & -\bar{z} & -y^* \\
x & 0 & 0 & 0 \\
z & 0 & 0 & 0 \\
y & 0 & 0 & 0
\end{pmatrix},
\]
so that we have
\[
(4.2) \quad \tilde{g}_c(\varphi_*(X), \varphi_*(X)) = \frac{4}{c} \text{tr}(x^*x + y^*y + \bar{z}z).
\]
Therefore, Theorem 4.1, (4.1) and (4.2) imply the following.

Theorem 4.2. For the Kähler C-space $M = Sp(l)/U(r) \cdot Sp(l-r)$ of type (C_l, α_r) equipped with the Kähler metric $g(\frac{2}{c})$, M is immersed to $G_r(\mathbb{C}^{2l})$ by the Kähler immersion φ. The complex dimension, and the first eigenvalue $\lambda_1(M)$ of the Laplacian are given by
\[
\dim_{\mathbb{C}} M = \frac{r(4l - 3r + 1)}{2}, \quad \lambda_1(M) = c(2l - r + 1).
\]
In particular, if $r = 2$, then $M = Sp(l)/U(2) \cdot Sp(l - 2)$ is a Kähler hypersurface of $G_2(\mathbb{C}^{2l})$, whose first eigenvalue $\lambda_1(M)$ of the Laplacian is given by
\[
\lambda_1(M) = c(2l - 1).
\]
For $z \in M_r(\mathbb{C})$, define an unit vector ν at the origin o of $G_2(\mathbb{C}^{2l})$ by
\[
\nu(z) = \begin{pmatrix}
0 & 0 & -z^* & 0 \\
0 & 0 & 0 & 0 \\
z & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \in \tilde{\mathfrak{m}}, \quad \frac{4}{c} \text{tr} z^*z = 1.
\]
Then $\nu(z)$ is tangent to M if and only if z is symmetric.

The Kähler hypersurface $M = (C_l, \alpha_2)$ satisfies the following property relative to the quaternionic Kähler structure \tilde{J} of $G_2(\mathbb{C}^{2l})$.

Proposition 4.3. The Kähler hypersurface $M = Sp(l)/U(2) \cdot Sp(l - 2)$ of $G_2(\mathbb{C}^{2l})$ satisfies
\[
(4.3) \quad \tilde{J} T^\perp M \subset TM \quad (\iff J_\xi \perp \tilde{J}_\xi \text{ for any } \xi \in T^\perp M),
\]
where TM and $T^\perp M$ are the tangent bundle and the normal bundle of M, respectively.

Proof. Let ν_o be an unit normal vector of M at o defined by
\[
\nu_o = \nu(z_o), \quad z_o = \frac{1}{2} \sqrt{\frac{c}{2}} \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix},
\]
so that the normal space $T_o^\perp M$ is given by

$$T_o^\perp M = \mathbb{R}\{\nu_o, J\nu_o = \nu(\sqrt{-1}z_o)\}.$$

Then we see

$$\mathcal{J}_o T_o^\perp M = \mathbb{R}\{J_i\nu_o, J_iJ\nu_o, i = 1, 2, 3\} = \mathbb{R}\{\nu(z_0\varepsilon_i), \nu(\sqrt{-1}z_0\varepsilon_i), i = 1, 2, 3\},$$

where J_1, J_2 and J_3 are a canonical basis of \mathfrak{J}_o defined in the section 2. It is easy to check that $z_0\varepsilon_i$ and $\sqrt{-1}z_0\varepsilon_i$ are symmetric, so that we obtain

$$\mathcal{J}_o T_o^\perp M \subset T_o M.$$

Since the quaternionic Kähler structure \mathcal{J} is \tilde{G}-invariant, and since the immersion φ is G-equivariant, (4.3) holds at any point of M. □

If the ambient space is $G_2(\mathbb{C}^4)$, then the condition (4.3) determines a Kähler hypersurface as follows:

Proposition 4.4. Suppose that a Kähler hypersurface M of $Q^4 = G_2(\mathbb{C}^4)$ satisfies the condition

$$\mathcal{J} T^\perp M \subset TM.$$

Then M is totally geodesic. Moreover, if M is compact, then M is congruent to a complex quadric $Q^3 = Sp(2)/U(2)$.

Proof. Denote by $\tilde{\nabla}$ the Riemannian connection of Q^4, and denote by ∇, σ, A and ∇^\perp, the Riemannian connection, the second fundamental form, the shape operator, and the normal connection of M, respectively. It is well-known that Gauss’ formula and Weingarten’s formula hold:

$$\begin{align*}
\tilde{\nabla}_X Y &= \nabla_X Y + \sigma(X, Y), \\
\tilde{\nabla}_X \xi &= -A_\xi X + \nabla^\perp_X \xi,
\end{align*}$$

for $X, Y \in TM$ and $\xi \in T^\perp M$. The metric condition implies

$$\tilde{g}_c(\sigma(X, Y), \xi) = \tilde{g}_c(A_\xi X, Y).$$

Relative to the complex structure J, σ and A satisfy

$$\sigma(X, JY) = J\sigma(X, Y), \quad A_\xi \circ J = -J \circ A_\xi = -A_J \xi.$$

For a local unit normal vector field ξ, we define local vector fields as follow: $e_i = J_i \xi$, $i = 1, 2, 3$, where J_1, J_2 and J_3 are a local canonical basis of \mathcal{J}. Then,
under the assumption of this proposition, \(\{e_1, e_2, e_3, Je_1, Je_2, Je_3, \xi, J\xi\} \) is a local orthonormal frame field of \(Q^4 \) such that \(\{e_1, e_2, e_3, Je_1, Je_2, Je_3\} \) is a tangent frame of \(M \). For \(X \in TM \), (4.4) implies
\[
\nabla_X e_i + \sigma(X, e_i) = (\tilde{\nabla}_X J_i) \xi + J_i(\tilde{\nabla}_X \xi) = (\tilde{\nabla}_X J_i) \xi - J_i A \xi X + J_i(\nabla_{\xi}^\perp \xi)
\]
Since \(J \) is parallel with respect to the connection \(\tilde{\nabla} \), we have \(\tilde{\nabla}_X J_i \in J \), so that the normal component of (4.7) is
\[
\sigma(X, e_i) = -\tilde{g}_c(J_i A \xi X, \xi) \xi - \tilde{g}_c(J_i A \xi X, J \xi) J \xi = g_c(A \xi X, e_i) \xi + g_c(A \xi X, Je_i) J \xi.
\]
From these two equations, we get
\[
\nabla_{\xi}^\perp \xi = 0.
\]
Instead of \(X \), applying to \(JX \), we have
\[
g_c(A \xi X, e_i) = g_c(-A \xi JX, Je_i) = 0.
\]
Therefore, we have \(A = 0 \), or \(\sigma = 0 \), so that \(M \) is totally geodesic. By B. Y. Chen and T. Nagano [3]'s results, if \(M \) is compact, \(M \) is congruent to a complex quadric \(Q^3 = Sp(2)/U(2) \).

\section{proof of main theorems.}

Let \(M \) be a compact connected Kähler hypersurface of \(G_r(\mathbb{C}^n) \) immersed by a immersion \(\varphi \). It is well-known that every \(HM(n, \mathbb{C}) \)-valued function \(F \) satisfies
\[
(5.1) \quad (\Delta F, \Delta F)_{L^2} - \lambda_1(\Delta F, F)_{L^2} \geq 0
\]
The equality holds if and only if \(F \) is a sum of eigenfunctions with respect to eigenvalues 0 and \(\lambda_1 \). It is equivalent to that there exists a constant vector \(C \in HM(n, \mathbb{C}) \) such that \(\Delta(F - C) = \lambda_1(F - C) \).

Denote by \(H \) the mean curvature vector of the isometric immersion \(\Phi = \Psi \circ \varphi \). Then, since \(M \) is minimal in \(G_r(\mathbb{C}^n) \), (2.9) implies
\[
(5.2) \quad 2(r(n - r) - 1)HA = 2r(n - r)\tilde{H}_A - \tilde{\sigma}_A(\xi, \xi) - \tilde{\sigma}_A(J \xi, J \xi)
= c(rI - nA) - \tilde{\sigma}_A(\xi, \xi) - \tilde{\sigma}_A(J \xi, J \xi),
\]
where \(A \) is a position vector of \(\Phi(M) \) in \(HM(n, \mathbb{C}) \), and \(\xi \) is a local unit normal vector field of \(\varphi \). Using (2.11) and (5.2), we get
\[
(5.3) \quad (HA, A) = -1.
\]
\(HM(n, \mathbb{C}) \)-valued function \(\Phi \) satisfies \(\Delta \Phi = -2(r(n - r) - 1)H \), so that (5.1) and (5.3) imply the following. The equality condition dues to T. Takahashi's theorem in [12].
Lemma 5.1.

\[(5.4) \quad 2(r(n-r) - 1) \int_M (H_A, H_A) dv_M - \lambda_1 vol(M) \geq 0.\]

The equality holds if and only if Φ is a minimal immersion of M into some round sphere in $HM(n, \mathbb{C})$, more precisely, there exists some positive constant R and some constant vector $C \in HM(n, \mathbb{C})$ such that H_A satisfies

\[(5.5) \quad H_A = \frac{1}{R^2} (C - A).\]

Lemma 5.2. If the equality holds in (5.4), then M is contained in a totally geodesic submanifold of $G_r(\mathbb{C}^n)$ which is product of Grassmann manifolds, more precisely, there exist integers $k_i, r_i, i=1, \cdots, m$ such that

\[
0 \leq r_i \leq k_i, \quad r_1 \geq r_2 \geq \cdots \geq r_m, \\
\sum_{i=1}^{m} r_i = r, \quad \sum_{i=1}^{m} k_i = n,
\]

\[(5.6) \quad M \subset G_{r_1}(\mathbb{C}^{k_1}) \times G_{r_2}(\mathbb{C}^{k_2}) \times \cdots \times G_{r_m}(\mathbb{C}^{k_m}) \subset G_r(\mathbb{C}^n).\]

Notice that $G_0(\mathbb{C}^{k_i}) = G_{k_i}(\mathbb{C}) = \{\text{one point}\}$.

proof. Assume that this equality holds in (5.4).

Since M is minimal in $G_r(\mathbb{C}^n)$, H is normal to $G_r(\mathbb{C}^n)$. Then, from (2.4) and (5.5), we get

\[(5.7) \quad CA = AC,\]

where C is a constant vector in Lemma 5.1. Since $SU(n)$ acts on $G_r(\mathbb{C}^n)$ transitively, without loss of generalization, we can assume that C is a diagonal matrix as follows:

\[
(5.8) \quad C = \begin{pmatrix} c_1 I_{k_1} & 0 \\ c_2 I_{k_2} & \cdots \\ \vdots & \ddots \\ 0 & \cdots & c_m I_{k_m} \end{pmatrix}, \quad k_i > 0, \quad c_i \neq c_j (i \neq j).
\]

Notice that

\[n = k_1 + k_2 + \cdots + k_m.\]

Define a linear subspace L of $HM(n, \mathbb{C})$ by

\[
L = \left\{ Z \in HM(n, \mathbb{C}) \mid ZC = CZ \right\},
\]

so that

\[
L = \left\{ \begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_m \end{pmatrix} \mid Z_i \in M_{k_i}(\mathbb{C}) \right\}.
\]
From (5.7), M is contained in $G_r(\mathbb{C}^n) \cap L$.

For each integer r_i with $0 \leq r_i \leq k_i$, $\sum_{i=1}^{m} r_i = r$, let's define connected subsets of $G_r(\mathbb{C}^n)$ by

$$W_{r_1, \ldots, r_m} = \left\{ \begin{pmatrix} A_1 & & & & \\ & A_2 & & & \\ & & \ddots & & \\ & & & 0 & \\ & & & & A_m \end{pmatrix} | A_i \in M_{k_i}(\mathbb{C}), A_i^2 = A_i, \quad tr A_i = r_i \right\}.$$

So, $G_r(\mathbb{C}^n) \cap L$ is a disjoint union of all W_{r_1, \ldots, r_m}'s. Since M is connected, M is contained in suitable one of W_{r_1, \ldots, r_m}'s, saying W_{r_1, \ldots, r_m}. By the definition, we see

$$W_{r_1, \ldots, r_m} = G_{r_1}(\mathbb{C}^{k_1}) \times G_{r_2}(\mathbb{C}^{k_2}) \times \cdots \times G_{r_m}(\mathbb{C}^{k_m}).$$

Without loss of generalization, we can choose a diagonal matrix C with respect to which the inequalities $r_1 \geq r_2 \geq \cdots \geq r_m$ hold. □

From (2.8), (2.10) and (5.2), we get

$$(5.9) \quad H_A = \frac{c}{2(r(n-r)-1)} \left\{ (rI-nA) - \frac{4}{c}(\Psi_* \xi)^2(I-2A) \right\}. $$

Using (2.2) and (2.3), we see

$$(5.10) \quad (H_A, H_A) = \frac{c}{2(r(n-r)-1)^2} \left\{ nr(n-r) - 2tr \frac{4}{c} (\Psi_* \xi)^2 \left(I + \frac{n-2r}{r} A \right) \\
+ tr \frac{16}{c^2} (\Psi_* \xi)^2(I-2A)(\Psi_* \xi)^2(I-2A) \right\}. $$

Since the immersion Ψ is \tilde{G}-equivariant, for any $A \in \Phi(M)$, there exists a element $g_A \in \tilde{G}$ and a matrix $v_A \in M_{n-r, r}(\mathbb{C})$ satisfying $A_o = g_A A g_A^*$ and

$$(5.11) \quad \sqrt{\frac{c}{4}} \begin{pmatrix} 0 & v_A^* \\ v_A & 0 \end{pmatrix} = g_A (\Psi_* \xi) g_A^*.$$

Since the inner product $(,)$ is \tilde{G}-equivariant and ξ is unit, we have $tr v_A^* v_A = tr v_A v_A^* = 1$. After translating by g_A, together with (5.11), (5.10) implies

$$(5.12) \quad (H_A, H_A) = \frac{c}{2(r(n-r)-1)^2} \left\{ n(r(n-r) - 2) + 2tr (v_A^* v_A v_A^* v_A) \right\}.$$
Lemma 5.3. (a) For $v \in M_{n-r,r}(\mathbb{C})$ with $\text{tr} \, v^*v = 1$, the following inequality holds

\begin{equation}
\text{tr} \, v^*vv^*v \leq 1.
\end{equation}

(b) Moreover, next three conditions are equivalent to each other.

1. The equality holds in (5.13)
2. The hermitian r-matrix v^*v is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix}$.
3. The hermitian $(n-r)$-matrix vv^* is similar to $\begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}$.

(c) If the equality holds in (5.13), then there exists $R = \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix} \in S(U(r) \cdot U(n-r))$ such that $v' = QvP^*$ satisfies $v'^*v' = \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}$.

Proof. Lemma 5.3 follows from that both of hermitian matrices v^*v and vv^* are similar to diagonal matrices with non-negative eigenvalues.

Form (5.12) and Lemma 5.3, the following lemma is immediately obtained, which is used to prove Theorem A.

Lemma 5.4.

\begin{equation}
(H_A, H_A) \leq \frac{c}{2(r(n-r)-1)} \left\{ n - \frac{n-2}{r(n-r)-1} \right\}.
\end{equation}

The equality holds if and only if, for any $A \in \Phi(M)$, it is possible to choose v_A satisfying

\begin{equation}
v_A^*v_A = \begin{pmatrix} 1 & 0 \\ 0 & 0_{r-1} \end{pmatrix} \quad \text{and} \quad v_Av_A^* = \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix}.
\end{equation}

proof of Theorem A. (5.4) and (5.14) imply

$$\lambda_1 \leq c \left(n - \frac{n-2}{r(n-r)-1} \right).$$

Let's assume that this equality holds. Then, the equality conditions of Lemmas 5.1 and 5.4 hold.

Assume $m = 1$. Then, (5.5) and (5.9) imply

$$\frac{1}{R^2} (c_1 I - A) = \frac{c}{2(r(n-r)-1)} \left\{ (rI - nA) - \frac{4}{c} (\Psi^*\xi)^2 (I - 2A) \right\}.$$
After translating by g_{A}, together with (5.11) and (5.15), we obtain

$$\frac{1}{R^{2}}(c_{1} - 1)I_{r} = \frac{c}{2(r(n-r) - 1)} \left\{ (r - n)I_{r} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0_{r-1} \end{pmatrix} \right\},$$

$$\frac{1}{R^{2}}c_{1}I_{n-r} = \frac{c}{2(r(n-r) - 1)} \left\{ rI_{n-r} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0_{n-r-1} \end{pmatrix} \right\}.$$

The first equation implies $r = 1$, and the second one implies $n - r = 1$. So, we have $n = 2$ and $r = 1$. This contradicts that Λf is a complex hypersurface.

Since $m \geq 2$, from Lemma 5.2, M is contained in a proper totally geodesic submanifold of $G_{r}(\mathbb{C}^{n})$. On the other hand, M is of complex codimension 1 in $G_{r}(\mathbb{C}^{n})$. Consequently, either $r = 1$ or $r = n - 1$ occurs, and M is a totally geodesic complex hypersurface of a complex projective space $\mathbb{C}P^{n-1} \cong G_{1}(\mathbb{C}^{n}) \cong G_{n-1}(\mathbb{C})$. □

Proof of Theorem B. Let’s assume that M is a compact connected Kähler hypersurface of $G_{2}(\mathbb{C}^{n})$ satisfying the condition $J \xi \perp \exists \xi$. Since both of the complex structure and the quaternionic Kähler structure are \tilde{G}-invariant, we obtain, at the origin A_{o},

$$J \left(\begin{array}{c} 0 \\ v_{A}^{*} \\ 0 \end{array} \right) \perp J_{i} \left(\begin{array}{c} 0 \\ v_{A}^{*} \\ 0 \end{array} \right), \quad i = 1, 2, 3,$$

where J_{1}, J_{2} and J_{3} are a canonical basis of \exists_{o} defined in the section 2. Set

$$v_{A} = (v_{A}', v_{A}''), \quad v_{A}', v_{A}'' \in M_{n-2,1}(\mathbb{C}) \cong \mathbb{C}^{n-2}.$$

Using (2.6) and (2.7), (5.16) implies that $|v_{A}'| = |v_{A}''|$ and $v_{A}' \perp v_{A}''$. Combing them with $tr v_{A}'^{*}v_{A} = 1$, we obtain $|v_{A}'| = |v_{A}''| = \frac{1}{\sqrt{2}}$, so that

$$v_{A}'^{*}v_{A} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Together with (5.17), (5.12) implies

$$(H_{A}, H_{A}) = \frac{c}{2(2n - 5)} \left\{ n - \frac{n-1}{2n-5} \right\}.$$

Therefore, form Lemma 5.1, we obtain

$$\lambda_{1} \leq c \left(n - \frac{n-1}{2n-5} \right).$$

Let’s assume that this equality holds. Then, the equality conditions of Lemma 5.1 holds.
Computing dimensions of manifolds in (5.6), we have

\[(5.18) \quad 2n - 5 \leq \sum_{i=1}^{m} r_i(k_i - r_i). \]

From \(\sum_{i=1}^{m} r_i = 2 \) and \(r_1 \geq r_2 \geq \cdots \geq r_m \), the following two cases occur:

Case I: \(r_1 = r_2 = 1, \quad r_3 = \cdots = r_m = 0 \),

Case II: \(r_1 = 2, \quad r_2 = \cdots = r_m = 0 \).

In Case I, (5.18) implies \(2n - 5 \leq k_1 + k_2 - 2 \leq n - 2 \), so \(n \leq 3 \). This is contradiction.

Therefore, Case II occurs. Then, (5.18) implies \(2n - 5 \leq 2(k_1 - 2) \), so that we have \(n = k_1, \quad m = 1, \quad k_2 = \cdots = k_m = 0 \). (5.19) and (5.17) imply

\[\frac{1}{R^2} \left(c_1 I - A \right) = \frac{c}{2(2n-5)} \left\{ (2I - nA) - \frac{4}{c}(\Psi_\epsilon \epsilon)'(I - 2A) \right\}. \]

After translating by \(g_A \), together with (5.11) and (5.17), we obtain

\[\frac{1}{R^2} (c_1 - 1) = \frac{c}{2(2n-5)} \left\{ 2 - n + \frac{1}{2} \right\}, \]

\[\frac{1}{R^2} c_1 I_{n-2} = \frac{c}{2(2n-5)} \left\{ 2I_{n-2} - v_A v_A^* \right\}. \]

The second equation implies

\[(5.19) \quad v_A v_A^* = dI_{n-2}, \quad d = 2 - \frac{2(2n-5)}{c} \frac{c_1}{R^2}. \]

From (5.17), we have

\[d v_A = dI_{n-2} v_A = (v_A v_A^*) v_A = v_A (v_A^* v_A) = \frac{1}{2} v_A, \]

so that \(d = \frac{1}{2} \). Consequently, taking traces of both sides of (5.19), we obtain \(n = 4 \).

Therefore, from Proposition 4.4, \(M \) is congruent to \(Q^3 \). \(\square \)

REFERENCES

