goooboooobgon
1001 0 19970 39-63

' Can we find a new deformation of (SLH? |

- — Conjectures and supporting evidences —

by

" Takahiro KAWAI®) (A F&4% )
Research Institute for Mathematical Sc1ences
Kyoto University
Kyoto, 606-01 Japan

 and

| Yoshitsugu TAKEI® (kT8 A% )
Research Institute for Mathematical Sciences
Kyoto University '
- Kyoto, 606-01 Japan

(*) Supported in part by Grant-in-Aid for Scientific Research (B)
(No. 08454029).
(**) Supported in part by Grant-in-Aid for Sc1ent1ﬁc Research on
- Priority Areas 231 (No. 08211235) and that for -
Encouragement of Young Scientists (No. 08740101).

39



40

§0. Background of the problem.

In developing WKB analysis of Painlevé transcendents, we have introduced
a large parameter 7 into the Painlevé equation (P;) (J = LII,---,VI)
and the associated Schrodinger equation (SLj) ([KT1]); the parameter 7
is designed to introduce a filtration suited for our study ([KT1], [AKT],
[KT2], [KT3]). At the same time some special class of solutions of the
equation (P;) which have some homogeneity property with respect to 7 is
sometimes important, particularly when we apply our results to the study
of ordinary Painlevé transcendents (i.e., with 7 being set to be 1). As we
note in Section 1, an important class of homogeneous solutions is given
by what we call pure solutions of (Py), that is, multiple-scale solutions
obtained by setting all @; and 3; to be 0 except for ap and [y in the
construction described in Section 1 of [AKT]. As is explained in Section
1, the homogeneity is attained by attributing some homogeneity degree
not only to the independent variables of (SL;) (i.e.,  and ¢) but also to
relevant parameters (such as a in (Py1)). In connection with this fact it
is an important issue-to show that the invariant Ej(n) = .5, —J
of (SLy) near the double turning point (cf. [AKT, §3]) is 1ndependent
of the parameters contained in the coefficients of (Py). As one can easily
see (cf. Proposition 1.1 in Section 1), this property of E; is equivalent to
the assertion that E; vanishes except for Ej if the relevant 2-parameter
solution Aj(t; @, B) is pure. This assertion “E; = 0 (j # 0)” is a quite
intriguing one, and it is rather hard to believe it. But a computer-assisted
computation done by T. Aoki really validates the vanishing of E; (j = 1,2)
in the case of (Pr1). This result of Aoki is very remarkable and encouraging.

Now let us recall that the constancy of E; in ¢ is a consequence of
the fact that (SLy) is isomonodromically deformed in ¢ ([KT2]). We then
wonder the invariance of E; with respect to the parameters in the coeffi-
cients of (Py) might be a symptom of the (hitherto unknown) deformation
in the parameters.

The principal aim of this report is to construct explicitly a candldate
for a new dlfferentlal equatlon which is compatlble with (SLy) when
J =1L » ' - : : -

The notations and symbols we use here are mostly the same as those
in [AKT] and [KT3]. Throughout this report we basically concentrate
our attention to the case J = II, although most of the formal aspects of
the problem are uniformly valid for all J. We also use the symbol a to
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denote the parameter « in (Pyp): (to dlstmgulsh it from the parameter o
in An(¢; @, 8)). '

§1. Preliminaries.

In [AKT, §1 and Appendlx] functions qS 7(t) and 6;(t), which are basic ones
in our construction of solutions of (Py), have been given in a form involving
indefinite integrals. There is, however, a uniform way of normalizing these.
functions without ambiguities resulting ;from the choice of the end-points
of the integrals. We refer the reader to [KT3] and [T] for the uniform
description of ¢ and 0 for general J, and here we tabulate the normalized
¢s and 05 for J =1 and II.

Table 1.1.

Q) b1(t) = /(; 12D dt

and

01(75) = 223% Xy (t)°n? ‘with 62 + t=0.
(ii)  pu(t) = / 632 + tat

- (6X +t5)\
911(t)—.( 024a)2 T,

where 2A3 + Ao + a = 0 and 6)o(r)? + r = 0.

The extra factor #2 in 6; and ;1 above makes pure multiple-scale so-
lutions to be homogeneous with respect to 7, that is, A1 (¢; ag, 5o) (resp.,
At (8, a; ao, Bo)) assumes the form n=2/5 f(n*/5t) (resp., n=1/3g(n*/3¢, na)).
(See [KT3] and [T] for the details.) Another important consequence of the
uniform normalization used here is that the correspondence between free
parameters contained in the multiple-scale solutions (such as (4.49) and’
(4.50) in [AKT]) becomes quite simple. See [T] for the details; we only
note that (4.49) and (4.50) in [AKT] become 31mply Qo = ao and ,80 = BO
under this uniform normalization. -
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The homogenelty of the pure multiple-scale solution (%, a; ag, Bo)
mentioned above makes Sodd(z,t,a;n) for (SLy1) to enjoy the following
homogeneity property:

(1.1) Sodd(r~13z, =23 r~a,rn) = r1/38,44 (x, t} dﬂ?) |
| foranyr >0 ,

or equivalently,

20 1.0 o0 06 1

(12) (—gta — —l'% — aé‘& + 773_7’ - '?;)Sc?dd (-’B,t,aﬂ?) =0

'We then use the deformation equation

0

(1.3) 7 Jodd

0
= 2 (Ar1Soad)

to derive the following relation (1.4) from (1.2):

1.4 — Sodddxr = a— Sodd dz,
(1.4) Ui an CO0) odd 9a 00 /‘odd |

~where C(\o) designates a sufficiently tiny circle around £ = Ao(t). Here
we have also used the relation (28/0z + 1)Soq4 = (8/0z)(xSodd)-
Let us now recall that the invariant E(n) is equal to

(1.5) 3 Sodd dx.

C(Xo)

(Cf. [AKT, §3]) Thus the reletion (1.4) entails the fo.llowing

Proposition 1.1. The following assertions are equivalent: \
(A.1) E(n) is a genuine constant, that is, F(n) consists of one term Ey.
(A.2) E(n) is independent of a, that is, 0E/Ba vanishes identically.

Our hope is that the verification of (A.2) might be analytically more
amenable than (A.1). In what follows we say for brevity that a formal
series u in ~1/2 is single-valued (near )o) if all of its coefficients are
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singleévalued analytic functions with possible pole singularities at = = ).
Note that :

(1.6) f » —a—uda: =0
C(ro) OT-

holds for any single-valued formal series u. Therefore, (A.2) is validated if

we can find a single-valued formal series u for which the following relation
holds:

0S0aa _ Ou
da ~ Oz’

(A.3)

Another somewhat more sophisticated trial to confirm (A.2) was pro-
posed by T. Aoki.

Proposition 1.2. Let P denote the operator

2 3QII
Oz

33

353 — 4’ Qn — 21

(1.7)

and let *P denote its formal adjoint operator (, which actually coincides
with —P). Then the following assertion (A.4) entails (A.3).
(A.4) There exists a single-valued formal series w which satisfies

0Qu
(1.8)  Sa=tPw

To show this implication we need the following
Lemma 1.1. (T. Aoki)
S o | . 00
(1.9) , ,7{ 95044 dz = f da —2 dz.
o) O C(ro) 280da

Proof. Although Aoki’s original proof used the theory of variations, we
present a more elementary and WKB-theoretic proof here. Let us first
differentiate with respect to a the Riccati equation associated with (SLyp) :

3S+ 028 _ 6Q
da 0Oalzx =" da

(1.10) 25
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Comparison of even (with respect to the sign +1/Qo) parts in both sides
of (1.10) gives us then

05644
da

_3Seven ya2Seven _ 26Q
) + Jadx T 8a"

(1'11) 2(Sodd + Seven 9a

Using the Well—_k‘nbwn'relatioﬂ

0544
(1.12) Seven =~ o,
we find -
n? 2 0Q 05 18 Va‘Seven"._‘
(1.13) 25de " oa :'2'_( S(z:d )

This completes the proof of the lemma.

To prove Pi'oposition 1.2 it Sufﬁces to note that P annihilates Vi,
where 14 denotes the WKB solutions of (SLir) given respectively in the
form

(1.14) \/Fl_mexp(:l:/ Soddd.’L').

Otherwise stated, 1/So44 = ¥+ _ is annihilated by the operator P. Hence
the existence of a single-valued w satisfying (1.8) implies that the right-
hand side of (1.9) vanishes. Thus (A.4) entails (A.2).

Our task is, thus, to find single-valued solutions of (A.3) or (1.8). This
we will try in Section 2.
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§2. Trials for constructing the required single-valued series.

To find single-valued solutions of (A. 3) or (1 8), let us consider the follow-
ing auxiliary equation:

(2.1) ( 0 49,

Here and in what follows, A, . (resp., A,) denotes 9A/0z (resp., dA/da).
Note that A = (2(x — X))7%, as we are considering the case J = IL

Lemma 2.1. For any (i.e., not necessarily single-valued) solution v of
(2.1), u = vSoqq and w = v / (2n?) satisfy the following relations:

aSodd . ou 8 0 . _ A
3Q _t ‘ 9 _ 0
(2.3) S0 Py + g with 'P =4y Q -t 202 Q. o
8 0 _

Proof. Differentiating the deformation equation (1.3) with respect to a,
we find

(24) (2~ 2 )% _ %(Agsodd).
Hence we obtain
(2.5) . (%__%A)(agc;dd_%)_

o (AaSoas) — (2~ 4l )u

3t 0x /
On the other hand, (1.3) and (2.1) entail o

(2. 6)(—- —A— )u = (Aq n A'u:,,- - :z:'U)Sodd + v(A Sodd + Aas°dd)

Or
" 0S54 '
L= A('Ua;Sodd,'i' v axdd) AqSoda-
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This implies that the right-hand side of (2.5) vanishes. Thus we have
shown (2.2).

- To show (2.3) we first recall that the compatibility of (SLy) and its
deformation equation (Dy) entails

0Q s _ 1
ot  2n2

(2.7) tPA;.

(See [AKT, §2]. ) Differentiating (2.7) with respect to a (with J = = II), we
find the following relation (2.8) by the definition of tP:

(2.8) . (%- Aai ~24,)Qu = ; 1 7o P Ao

On the other hand, a direct computation shows

(29) (%—A(—%—2A ) tP(%—Aa‘9 + A, )

Hence (2.1) together with (2.8) and (2.9) implies the following:

0 0
2100 (Eﬁ ~ Az —24 )(Qa — tpw)
A,
___ t ey
217 PA ( 272 ) 0. | |
This shows (2.3). | : Q.E.D.

Now our task is to construct a single-valued solution v of (2.1) so that
f or g may vanish. Before reporting our trials, let us note the constraints

on f and g are not so stingy as one might 1mag1ne In fact we have the
following

Proposition 2.1. 'Let n be an integer and let f = Zj>0 fjlzn“j/2 be a
single-valued series that satisfies
( 0 0

2 _ A2 _u4 )f 0.

(2.11) 5 9%

Assume that the free parameters ag and Bo that determine o (t,a,n; ag, Bo)
are both different from 0. Assume further that f;/o consists of k-instanton
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terms with k odd and |k| < j if j is odd, and k even and |k| < j if j is
even. Then there exists a formal series ¢ = 3. ¢;n~7 that satisfies the
following: B

Ocj _ Ocj _
(2.12) B = 5a =0 for anyj.
(2.13) f=c(n ' Soaa)™
Proof. Let us first note that u = f’(n"ll.S’ovdd)“” satisfies
A« — , | ,
(2.14) ((—9; - ABa:) = 0.

In fact, a straightforward computation using (1.3) shows

N

=nA f(Sodd) " + f(_n(Sodd) T 1(A Sodd + ASodd .'1:)
+ ’I’I,A( odd) T odd,m) = 0.

Clearly u = } .5, u; /2n73/? is single-valued. ‘Furthermore its instanton
structure is the same as that of f, because S,qq — 75-; has the same
instanton structure as that of f and because S_; is free from instanton
terms. Hence it suffices for us to verlfy that such a solution u of (2 14) is
actually a constant series in the sense of (2.12).

In our argument the fact that the differentiation of an instanton term
with respect to ¢ enhances the degree of the term in 7 plays an 1mportant
role. Hence we introduce the following notations: -

(2.16) uJ /2 denotes the part of T - which

contains an extra-factor o (through the
differentiation of exp(:l:éqb(t a)n)).

(2.17) | ‘u’j/zy is, ;by'déﬁnition —ajﬁ _u];/é.v

We now ekpand A in 7~1/2 using the 'expahs‘ion of A1 and equate -the

coefficients of like powers of 7 in (2.14): the highest degree term in (2.14),
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ie., ( U1/2)77'_1/2( which is actually of degree £1/2 not ——1/2 ) should

Vamsh since u /o consists of (+ 1) instanton terms, this means u; /2§ should
vanish. ;From the coefficient of n° we next find:

(2.18) (% - Aoaa )uo + Puy = 0.

Since Ap and up consist of O-instanton terms and since ul does not

contain O-instanton terms by the definition, (2.18) entails

0 0 -
(2.19) (E - Aoy )uo =0
and that -
(2.20) (£2)-instanton terms of u; should vanish.

The relation
A 0
(2.21) U3/2 - A1/2—8—5U0 =0,

which results from the comparison of the coefficients of n~1/2, will play an
important role at the next stage (i.e., in proving the vanishing of ug/,),
but it does not help us at this stage. The companson of the coefficients of
n~1 gives '

(2.22) | AU2+‘u1 ( 6”0 Ao‘?;“) =0.

Since we have confirmed that (£2)-instanton terms of uy vanish, we find

(2.23) .u1 ——u1

On the other hand, using the explicit computatlon of )\H (cf [AKT, Ap-
pendix]), we find that the 0-instanton term of A; is given by the following;:

AoAfs/?(—ﬁaoﬂo) A Y2008,
RCES R N

(2.24)
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where A = (6A3 +t). Hence the comparison of 0-instanton terms in (2.22)
entails IR

. 0 0 | —6&0,80/\013*3/2 Oz()ﬂoA—l/2 Buo
2.25)
(2.25) (at Aoa ) = ( @227 (@=o) )

We now expand U -as Z i>—n G () (@ — Ao) and substitute it 1nt0 (2:19).
Since Ag = 1/(2(z — Xo)), we immediate find N = 0. We further find

(2.26) c1(t) = 0, o |
(2.27) ¢, () = (B + Derr1(8)Xo(2) + (B + 2)ck42()/2=0 (k> 0),

while no condition is imposed upon ¢ at this stage. Let us also expand
u1 88 )i pr &5 (T — Ao)? and substitute it into (2.25). As we find by (2. 26)
that the right-hand side of (2.25) begins with 2caa080A 712/ (x — Ag)2,
should be 0. But then the left-hand side of (2.25) begins with (—d; / 2(3: —
Xo)), lacking a double-pole term. Hence we conclude :

(2.28). B cacpBoA~Y2 = .
Since apfp # 0 by the assumption, (2.27) with k = 0 then implies
(2.29) cp = 0.

Hence it follows from (2.27) that cy vanishes for all k > 1. Therefore uot is
a constant independent of both z and ¢. This fact also 1mp11es that (2.21)
now takes the following form:

(2.21") | | u3/2=.0.

Since ug/9 does not contain a 0-instanton term by the assumption, (2.21")
implies the vanishing of ug/5, in just the same way as in the verification of
the vanishing of u; /3. We also note the vanishing of du/8z renders (2.22)
the same as (2.18) with the indices of u shifted. Thus our reasoning goes
on exactly in the same way as before, and we find u; is also independent
of both z and ¢. Repeating this, we conclude

(2.30) u=ch77__j
o 20
with
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be; _ 0¢j

(231) or Ot

=0 for any j.

Q.E.D.

This proposition together with Lemma 2.1 might make the reader
suspect that a suitable choice of a solution v of (2.1) would kill f or g,
as the freedom of f and g is relatively small, i.e., just a constant series as
shown above. Unfortunately, Proposition 2.1 itself nullifies such a hope;
the arbitrariness of v is given by the addition of h that satisfies

(2.32) . (50'; - Aa% +.Am)h =0.

Proposition 2.1 applies also to (2.32), and in our current situation we find
(2.33) o h=&Seaa) '

with some constant series ¢. Then it is clear that du/0x is kept intact
under the addition of ~ to v in Lemma 2.1. Concerning (2.3), let us recall
that * P annihilates (Soqq)~!. Hence ! Pw is also kept intact by the addition
of h/2n%. Thus there remains a missing link between the construction of
v to be given below and the vanishing of f or g, although we believe it
to be true. Because of this trouble this report is still incomplete. Hence
here we content ourselves with describing how to construct a single-valued
solution v of (2.1). In what follows we always consider the problem near
x = Ao(t) (or, to be more precise, on a fixed neighborhood of z = Ag(t))
and we usually do not mention it. |
Let us start with a holomorphic solution wo(z,t) of the following
equation: ' A | AR

, 0 9

238) (e 202 - (- Do)~ up

_ 9o
~ fa’

It is obvious that this equation corresponds to the top degree part of
(2.1) as far as non-instanton terms are concerned. The unique existence
of holomorphic solution can be readily confirmed if we seek for wy by
expanding it as )5 ¢;j(t)(z — Ao(t))’; note that the crucial index in this
construction is j = —1 in view of the explicit form of (2.34). The fact
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that the crucial index is j = —1 also implies the existence of an analytic
solution x_1/2 =3 ;5 _; &(t)(z — Ao(t))’ of the following equation:

(235) (2(37 — 80)2% — (.’E - Ao)% - 1)X_1/2 = 0.

One important point to be noted here is that é_(t) can be an arbitrary an-
alytic function; we later use this freedom to construct the required single-
valued solution.

To proceed further we note that the differentiation of A with respect
to a enhances the degree of 7 when it is applied to instanton terms, just
in the same manner as in the case of differentiation with respect to ¢.
Hence the highest degree term in 7 in the right-hand side of (2.1) is not

Xo.a/ (2 = 20)?) but (772 /2 40)/(2(z — Xo)?), when \is expanded as

(236) A= do+n VP (Ao+nAypt ).

In order to compensate this ‘term, we seek for the solution v with the
followmg expansmn

(2.37) v—(wo-i-x 1/2)+77 _1/2(V0+77 Vi 0T Vi),

where ng /2 consists of (2k + 1)-instanton terms with 0 < k < j and,
Vi2j+1)72 consists of +2k-instanton terms with 0. < k < j+ 1. As A,
contains arbitrarily high-order poles at £ = Ag, we are to be prepared
for pole singularities in V;/5. To cope with instanton terms neatly, we
introduce a new variable 7, which is later set to be n¢, and we employ the
multiple-scale analysis to find v of the form (2.37) so that it may satlsfy
the following equation.

(2.38)
0 0 0 4 :
_ 1 r 9N 1 W9 1y 1/2,
(2o = X (7" g+ 8'57) =7 @ = Ny =07 wo + x-12) + V)
— n—1/2)‘a- ‘ ,
Here and in what follows, ¢’ denotes d¢(t,a)/6t. Since (2.38) is a linear

differential equation, the application of multiple-scale analysis is straight-
forward. However, we should also keep in mind the extra-requirement
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that V should be single-valued.. In order to be more explicit, let g =
go +n71/2g1/9 + n71g1 + - - - denote =12\, — Ao,a)- Then, by equating
the coefficients of like powers of 7 in (2.38), we find

Y
(2.39) 2(x — A0)2¢’5;Vo = go,

(2.40) 2z — )\0)2¢"6—TV1 /2 =4z = Xo)ho¢' 5-Vo + 9172,

and so on. As we have required that V, consists of (+1)-instanton terms,
(2.39) can be algebraically solved. Equation (2.40), however, determines
only (£2)-instanton terms of V9, leaving its O-instanton term undeter-
mined. Let this undetermined term be denoted by ¢1/2. Here we note two
peculiar features of (2.40); first, g;/o does not contain a 0-instanton term
by its definition, and, second, Ao(0Vy/O7) does not contain a O-instanton
term either, by the explicit form of go and V. These two facts combined
enable us to find the (+2)-instanton part of Vo in an algebraic manner
with its O-instanton part undetermined; if there were some 0-instanton
term in the right-hand side of (2.40), V; /3 should contain a linear term in
7. As 7 should be eventually set to be n¢, the appearance of such a term
should jeopardize the filtration of v assumed in (2.37). Note that the func-
tion x_1 /o is irrelevant (and hence cannot help us) at this level. Actually
X—1/2 becomes relevant later in constructing a single-valued ¢y /2.

Now, looking at the coefficients of ~/2 and 5! in (2.38), we find
the equations: ‘ ; ‘

| ) ., 0
(2.41) 2(xz — Ao)qu'-gvl —4ho(z - ,\Q_)¢'EV1 /2

0
+ 2(A(2) — 2(.’13 — AO)A1/2)¢,EVO

, 0 0
+ (2(.’17 - )\0)2'a—t - (.’B - )\0)5-5 - 1)V0
6 .

' 0
=g+ (4(1: — )\O)AOE - AO'B—E)('UO + X—1/2)a
o,

0
(242) 2(s _,—-Ao)2¢"5;V3/2 — 4(x — Ao)Ao¢'5;V1

+ 2(A5 — 2(x — AO)A1/2)¢'EV1/2
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) + 2(2A0A1/2 —2(x - Ao)Al)(ﬁ,%Vo .-

o 0
+ (2(1‘ — )\0)2& - (ZL' - /\0)'—93 — 1)V1/2

0 0
+( (.’E—)\())Ao +A08 ) 0

0 0 0
= g3/2 + (4(5'3 - /\O)Al/z ot 2A0 EY A1/2 )(Uo + X- 1/2)

Since V7 is supposed to consist of only odd instanton terms, (2.41) deter-
mines V; in an algebraic manner. At the level of (2.42), we encounter the
non-secularity condition: To find V3,5 without a term linearly dependent
on 7, we require the O-instanton term ¢, /2 contained in Vj/9 should be
chosen so that the following holds:

(2.43) (2(z — /\0)2% —(z— /\0)3% — 1)1/ cancels out the sum of
“all other 0-instanton terms in (2.42).

A lengthy computation using the results in Appendix of [AKT] shows that -
the explicit form of _the‘requirement (2.43) is as follows: ,

(2.44) (2(z — AO) — —(z— ,\0)—- —Dorz= Y filz— o),
j=>-3
with
(245) fos = 4aPaOe_y, ,_
A
(2.46) f_p = 12a(0) ©) aato i_1+al’?e_,,

(0)4,(0) (1/2) Odo (0)4©) By
(247) f—l = 2 (G, ) + 4a at 1+ 8 ™ ,

where a(J ) denotes the coefﬁc:1ent of exp(qun) in A;. If we expand ¢, /2 38
D i>_3 d i (t)(x — Ao(t))? and substitute it into (2. 44) we find

(2.48) 2d_5 = f_s,
o Do ., .
(2.49) - 6d_3w +d_g= f—2, |
,0d_3 o
(2.50) 92 4 0-d_y = f_q,

ot ot
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and other d; (j > 0) is determined recurswely by dx and fr (k < j, k' <j)
on the condition that d; (j < 0) is found. The fact that the coefficient of
d_1 in (2.50) is 0 implies the following two facts:

(2.51) there exists a non-trivial relation among f;’s (—3 < j < —1),
(2.52) if ¢y solves (2.44); then ¢;/9 + x1/2 also
solves (2.44), where Xl /2 has the form

(283)  Xjy 1 di®)(z — do) |
- and it satisfies (2.44) with all f; vanishing, namely,
3 L0 o .
(.2-54) 2z - Ao)za B (z = o) 5= — UX1/2‘=‘ 0.
Here we note that d_;(t) can be arbitrarily chosen. ‘The relation among
fi’s (=3 < j < —1) results from (2.48) ~ (2.50), and its explicit form is
as follows:

0fa aAO
Bt

(255) f_l.'_ 0)\0

(f—2—3 f— )

Substitution of (2.45) ~ (2 47) into (2.55) then entails

0 (0) (0) (1/2)3 0~ (0) (0)36_ .
(2.56) 280,( 1)+ 4a o é_1 +8aVa"%. 8t
- oA . o
(4a(0) (O%C_ ) +4 ato (()1/2) i1,
or equivalently, : | ‘ L
8c_
2. (0) (0) (0) (O) _ (0) (0)
( 57) ((1 )+4a _1 at | at(a )C._‘ |

Since ;
(2.58) a&‘”a‘ i = afo(6X3 +¢)~1/2

holds (cf. [AKT, Appendix]), we can find a multi-valued analytic solu- -
tion ¢_; of the equation (2.57). Note that the single-valuedness we are
concerned with is with respect to £ — A\g, not with respect to t.
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Let us now discuss how the function wg + x_1/2 thus constructed is
~ related to the relation (2.2). First let us expand S_; as follows:

(2.59) S_1=VA(x—X) + % T — )\‘0)2 ,

1 2)\2 3
(2\/—_ A3/2>( ~ o)+
with A = 6% +t. We also find |

| (Y= ddo  OXo
(2-60) . Wo + X-1/2 = C—1($ Xo) 7! | + (26_ 15 3&—)
| Bc_

(:U—-)\o) + -

Hence we obtain the following:y

85_1 . 8)\0 a\/z 4/\0>\0,a
(2.61) VA= + (,aa VA ‘)(?—Ao)'*‘

8a " Ba |

(2.62) i((’wo + X-1/2)5-1) = (25_1% - %%)\/Z+ 25—\/_15)‘0
+ 2{66‘1 VA + \2/}‘_2_(2"_1%}_‘{9 - %%9)
e (2;— 2;\/22)}(“7 Xo) +

On the other hand, it follows from the deﬁmtlon of Ao, Le. 2)\0—|~t}\o+a =0,
that , .
| 0o

2. : : A—— + X =0

( 63) 5 o =0.
Hence the constant term of (2.61) is 1dent1ca1 with that of (2 62). Using
(2.63) again, we deduce the following relation (2.64) from the coincidence
of the coefficient of (x — Ag) in (2.61) and that in (2.62):

NP, 1 12x2
(2.64) SATV2A, = aVA= + <\/Z- )t
One can readily verify that (2.64) is equivalent to (2.57) if aofBy # 0.
Thus we have verified that f_j, the coefficient of n' of f in (2.2), is of
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order (z — Ag)2. Proposition 2.1 implies that f_; = coS—_; holds for some
constant co. Since S_; has simple zero at £ = )g, this means co = 0.
Hence the top term of our solution, i.e., wg + x_1/2, satisfies the required
condition. Note also that each solution ¢_;(t) of (2.64) (or, equivalently
(2.57)) has the following form:

_ ¢a + 7-1
2\/Z

The concrete form (2.59) of S_; indicates that the arbitrary constant vy_;
corresponds to the top term of the arbitrary function h given by (2.33),
while the substantial part ¢,/(2v/A) coincides with

(2.65) C—1 with a complex number v_;.

8, [ o
(266) —a-a( ; S_ld.’E)/S_l, |

where s denotes a simple turning point of (SLi1). Here we have used the
fact
Ao 1

s

(See [KT1, Proposition 2.1].) This fact seems to be worth mentioning in
connection with Remark 3.2 to be given later.

The way how to construct a single-valued v satisfying (2.38) is now
evident; the non-secularity condition can be described in terms of linear
differential equation for ¢(2;41)/2, and, to find a single-valued ©(2j+1)/2>
we should choose an appropriate x(2j—1)/2, a null solution of the equation
for ¢(2j_1)72- Our hope is that the solution v of (2.38) thus constructed
should satisfy the relation

aSodd

0
(2.68) 9a = %(Usodd).

So far, however, we have been unable to confirm this.
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§3. Can we deform (SLyp) in a-variable? .
The principal aim of this section is to show that Ansatz 3.1 or Ansatz 3.2
below lets (SLy1) be deformed in a- variable.

Ansatz 3.1. There exists a smgle—valued solution v of (2.1) so that it
satisfies |

0Sodd
Oda

(3.1) = %(vsodd)-

Ansatz 3.2. There exists a smgle—valued solutlon v of (2.1) so that it
satisfies |

oQ | 3Q 93v
206 _ ¢ _ 2 oTvy
(3:2) 21 da Pu (by def. Q +277 N 8:5’3)'

Remark 3.1. If apfBy # 0 and if v is single-valued, then f and g in Lemma
2.1 are related in the following manner:

» 2
~ c
(3.3) =1
2
with ¢ being a constant series. | .
In fact, a straightforward computatlon shows

a(Sodd ,+ Seven) _
Oa

(3.4)

- (.'Usodd)d: - ('USeveri):c

1 ‘ 1
fo) - SO - = .
2Sodd ( dd :z:f ddfac) 2'U:z:a:

On the other hand, Proposition 2.1 asserts that f= cSodd holds for some
constant series c. Thus we obtain

0S

(3.5) s

: 1 o
= g(’l}s’) — —2-’03;3; + CSodd-
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Differentiating with respect to a the Riccati equation that S satisfies, we
also find

(3.6) n2Qq = 255, + Sza-
Substitut»ion of (3.5) into (3.6) then entailé
(3.7) | 7°Qq, = 25(Svgz + Szv — %vm) +25f
+ (Szzv + 2850z + Svm) — %vmz + [z |
= (25’2 —§—12Sm)>v,,; + (8% + 8)at — %v@; +25f +‘f,;

: 1
= 27]2Q’Um + ﬂszp - 5”:1::1::1: +25f + [z

=0%Qs — n’g +25f + f.
Hence we find |
(3.8) n’g =2Sf + fz.

- Substitution of f = cSyqq into (3.8) leads to the following:

S,
(39) 7729 = 2(Sodd - 2;1(:: )CSodd_+. CSodd,a: :
952
= 2CSodd2 = —‘Z:-—

This proves (3.3). Note also that the above reasoning (ih‘particular, (3.7))
shows that Ansatz 3.1 automatically entails Ansatz 3.2.

Remark 3.2. As the preceding remark implies, Ansatz 3.1 and Ansatz 3.2
are equivalent if agBy # 0. On the other hand, if agfy = 0 Ansatz 3.1 (and
hence Ansatz 3.2 also) can be validated as follows; when a3y = 0, we can
show E vanishes for pure solutions Ai1(t, a, 7; ag, ﬂo) Since we know

(3.10) - E=— - Soaadzx,
e ‘ C(Mo) .
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the following function V is single-valued:

(3.11) V= (E% /j Sodddx) /(Soad),

where s is a simple turning point of (SLy). On the other hand, it follows
from the deformation (in t) equation (1.3) for S,qq that

(3.12) —_ — A / Soddd;c =0,
and hence we find
0 0 o [*
(313) (5%' - A-a—m)(%/; SodddCL') = AaSOdd-
Therefore V satisfies (2.1), that is,
0 0
(3.14) (& ~Agy A )v A,
Furthermore it is trivial that
0Soada _ O
(3.15) 5 ‘a—w(vsodd)

holds. This means f in (2.2) actually vanishes for the single-valued solution
V of (2.1). Of course this observation does not bear any importance in
making the assertion (A.2); E vanishes identically in this situation, and
so it is trivially independent of a. However, this fact is important in the

discussion below, as this function V guarantees the deformation of (S Lr)
in a.

Proposition 3.1. Suppose that Ansatz 3.1 or Ansatz 3.2 is validated.
Let L, M and N respectively denote the following operators:

, 52
(3.16) L= 922 772Q,

- ] 0 1
(3.17) M = 5 A—a—x + 2A"”’ |
(3.18) N = 9 _ 'v—a— + 1’0,,,..

da or 2
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Then the following commutation relations hold:

(3.19) L, M] = —24,L,
(3.20) [L,N] = —2v,L,
(3.21) . [M,N]=0.

Proof. The relation (3.19) is well-known (, and actually its proof is essen-
tially the same as that given below to show (3.20)). As noted in Remark
3.1, Ansatz 3.1 automatically entails Ansatz 3.2. Hence we suppose that
Ansatz 3.2 is validated. A direct computation shows

32 Uzzz 2 2 aQ
(322) [L, N] 2’03;8 5 + 2 Qa, n ’Ug:—v—
tP
0L+ 1~ _22,

and hence Ansatz 3.2 implies (3.20). The verification of (3.21) is based
only on the fact that v satisfies the relation (2.1) (rather than on the whole
Ansatz);

| 0
(3.23) (M, V] = (=0t + Avs + Ag = 0As)
+ %(vt — Avy — Ag + VAg)s
=0
by (2.1).

Q.E.D.

Remark 3.3. Proposition 3.1 indicates a symmetry between ¢ and a. To
emphasize this aspect of the problem, it might be interesting to rewrite
our starting relation (2.1) and our goal (3.1) respectively by the following
ones: o »

@1 (i~ A3e) = (3 +a)

(3.1) a(vsodd) = %(Asodd).
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Note that (3.1') and (3.1) are equivalent under (2.1). Similarly the resem-
blance between (2.7) and (3.2) should be observed.

Remark 3.4. If we start our‘discuSsio’Vn with (2.3) (instead of (3.2)), then
we find the following (3.20) instead of (3.20):

(3.20') (L, N] = —2v,L + 2.

Furthermore the constraint on g given in (2.3) is then a consequence of
the Jacobi identity for L, M and N, namely [L [M, N]] + [M [N L]]
[N, [L, M]] = 0. |

Now Proposition 3.1 asserts that the followmg system N of differential
equations is in involution if we suppose Ansatz 3.1 or Ansatz 3.2:

(3.24) N :Ly=Myp=Ny=0.

In view of the close resemblance bteween A and the hitherto known couple
of differential equations Ly = M1 = 0, we can readily imagine that WKB
analysis of (3.24) may be possible. In fact, we find the following

Proposition 3.2. Suppose that Ansatz 3.1 is Vahdated Then the follow-
ing 1-form w is closed:

. ‘ 1 1
(3.25) w= Sdr+ (AS — §Az)dt + (vS — §vm)da.
Proof. Let us first show (3.1) entails
(3.26) g—i (vS) —vm
In fact, using Seven = —Sodd,z/ (QSodd), we find (3.27) below by (3.1):
a5 0 1
_ 50dd,2(VS0dd)s - (vSodd)sa
vS0ddz®  (VSoddz)zr 1
250aa® | 280aa 2%
v.'z;Sodd,w . USOdd,:L‘.'L‘ + 2Ua:Sodd,w
2_SO,dd S 2Sodd

Uy Sodd,:z:.+ ’USodd,a::c

= 0.
2544
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Since

(3.28) 5t = Bz

is well-known, what remains to be proved is

(3.29) (AS - —Aw) = K (’US — —’uz)

To show this, let us note that (2.1) and (3.1) entail

0 0
(330) ‘B—t(’USOdd) = A'é;

0
=.ASodd,a + AaSodd = B—a(ASodd)‘.

(vSodd) + AaSodd

Using the relaltion Seven = —Sodd,z/(25044), together with (1.3), (2.1) and
(3.1), we then find the following:

1
(3.31) gt (vS) — Vst ~ ——(AS) —Am
_ USodd,a:(ASodd):c B ('USodd,:c)t 1
250442 2564d 2
ASodd,m('USodd):c (ASodkd,a:)a 1
250442 - 25644 * 2Am
_ Amsodd,:c'U . Sodd,ac'Ut + (ASodd)m:'U . }-’U
25644 25040 2
» ASodd,.'L"U:c AaSodd,:z: + A('USodd):z:a:’ 1
25044 * 25644 * §Am
Sodd ¢ (Agv — vy — 2450 — Avg + Ag + 2Av;)
B 2S’odd |
Agzv 1 Avgy

— = Uzt + = A:z:a

2 2 - + -2
1 ‘ 1
= é(Am’U Avg)z — = Agz¥ + = A’U_m = 0.

Relations (3.26), (3.28) and (3.29) mean that w is a closed form.
I Q.E.D.
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These propositions show that the verification of Ansatz 3.1 gives us
at least locally, i.e., near x = Ao, a 2-dimensional moduli space for (SLy).
In particular, we have really found a new deformation equation of (SLy;)
for O0-parameter solution and pure 1:parameter solutions of (Pyp).

We end this report by presenting the following

Conjecture 3.1. Let us consider a pure solution Ay of (Py). Then the
following should hold.

(i) For J = II, Ansatz 3.1 should be validated with the function v con-
structed in Section 2.

(ii) For J = II, a suitably chosen v should be expressed in the form ( 3.11)
even when oy # 0.

(iii) For any J, deformation of (SLy) with respect to each parameter
contained in (Py) should be possible. In addition, all such deformations
together with the ordinary deformation with respect to t are compatible.
(iv) E;,; vanishes for any j > 1.
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