The structure of the center of the universal enveloping algebra for the Lie superalgebra $\mathfrak{sl}(m,1)$

Kazuko Konno *

1 Introduction

One of the fundamental tools in the representation theory of finite-dimensional Lie algebras is the Harish-Chandra isomorphism. It gives an identification between the center of the universal enveloping algebra of a simple finite-dimensional Lie algebra and a certain algebra of symmetric polynomials. It is natural to ask if the similar result holds for simple finite-dimensional Lie superalgebras. Unfortunately the Harish-Chandra homomorphism is not necessarily an isomorphism for Lie superalgebras. The lack of reflections attached to roots of length zero causes the situation where the Harish-Chandra homomorphism is not surjective. Thus for Lie superalgebras, the determination of the image of the Harish-Chandra homomorphism is a real problem. There is a general result in this direction obtained by F.A.Berezin [1] and V.G.Kac [5]. In this talk we shall give more explicit and elementary description of the image of Harish-Chandra homomorphism for $\mathfrak{sl}(m,1)$.

Acknowledgement

This is originally the master thesis of the author. She is grateful to her advisor Professor Minoru Wakimoto for helpful discussions and advices.

2 Preliminaries

As for the elementary facts about Lie superalgebras we refer to [2].

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a finite-dimensional Lie superalgebra $\mathfrak{sl}(m,1)$ $(m \geq 2)$ over C. We write \mathfrak{h} for a Cartan subalgebra of \mathfrak{g}_0 and $\Pi = \{\alpha_1, \ldots, \alpha_m\} \subset \mathfrak{h}^*$ for the set of simple roots. $\Pi^{\vee} = \{h_1, \ldots, h_m\} \subset \mathfrak{h}$ denotes the set of corresponding simple coroots. We denote by Δ_+^{even} and Δ_+^{odd} the sets of even and odd positive roots, respectively.

^{*}Graduate School of Mathematics, Kyushu University, 6-10-1 Hakosaki, Fukuoka 812-81, Japan E-mail address: yano@math.kyushu-u.ac.jp

The generators $\{e_i, f_i, h_i | (1 \le i \le m)\}$ is so chosen that e_m and f_m are the only odd generators. The defining relations are:

$$[e_i, f_j] = \delta_{i,j} h_i, \quad [h_i, h_j] = 0, \quad [h_i, e_j] = a_{i,j} e_j, \quad [h_i, f_j] = -a_{i,j} f_j,$$
 where
$$a_{ij} = \begin{cases} 2 & i = j, \\ -1 & j = i+1 \text{ or } i-1, \\ 0 & \text{otherwise.} \end{cases}$$

Let $(x|y) = \phi(x,y)/2h^{\vee}$ be the non-degenerate even invariant bilinear form on \mathfrak{g} , where ϕ is the Killing form and $h^{\vee} = m - 1$ is the dual Coxeter number. We have a triangular decomposition of \mathfrak{g}

$$g = n_- \oplus h \oplus n_+,$$

where \mathfrak{n}_+ (resp. \mathfrak{n}_-) is the subalgebra of \mathfrak{g} generated by e_1, \ldots, e_m (resp. f_1, \ldots, f_m). For a Lie superalgebra \mathfrak{s} , we write $U(\mathfrak{s})$ for its universal enveloping algebra. Let δ be the projection:

$$\delta: U(\mathfrak{g}) = (U(\mathfrak{g})\mathfrak{n}_+ + \mathfrak{n}_- U(\mathfrak{g})) \oplus U(\mathfrak{h}) \longrightarrow U(\mathfrak{h}).$$

We define $\gamma:\mathfrak{h}\to U(\mathfrak{h})$ by

$$\gamma(h) := h - (\rho|h) \cdot 1,$$

where $\rho := (\sum_{\alpha \in \Delta_+^{\text{even}}} \alpha - \sum_{\alpha \in \Delta_+^{\text{odd}}} \alpha)/2$. Extend this to an algebra automorphism of $U(\mathfrak{h})$. Then the composite $\gamma \circ \delta$ induces a homomorphism

$$\iota: U(\mathfrak{g})^{\mathfrak{g}} \longrightarrow U(\mathfrak{h})^{W}.$$

Here the center of $U(\mathfrak{g})$ denotes

$$U(\mathfrak{g})^{\mathfrak{g}}:=\{f\in U(\mathfrak{g})\,|\, [f,x]=0 \text{ for any } x\in\mathfrak{g}\},$$

and $U(\mathfrak{h})^W$ stands for the set of elements of $U(\mathfrak{h})$ fixed by the Weyl group W. This ι is called the *Harish-Chandra homomorphism* for \mathfrak{g} .

3 An "odd roots condition" for the image

Here we shall prove a key lemma. This is inspired by the proof of Lemma 3 in [3].

Lemma 1 Let \mathfrak{g} be a finite-dimensional simple Lie superalgebra and ι the Harish-Chandra homomorphism. We denote by $(\cdot|\cdot)$ the non-degenerate even invariant bilinear form defined in [2]. We write \mathfrak{C} for the algebra consisting of $f \in U(\mathfrak{h})^W$ with the property

$$f(\Lambda + \rho) = f(\Lambda - k\beta + \rho), \quad \forall k \in \mathbf{Z}$$

for any $\beta \in \Delta^{\text{odd}}_+ \cap \Pi$ and $\Lambda \in \mathfrak{h}^*$ satisfying $(\beta|\beta) = (\beta|\Lambda + \rho) = 0$. Then the image of ι is contained in \mathfrak{C} .

Proof. Let $\beta \in \Delta^{\text{odd}}_+ \cap \Pi$ and $\Lambda \in \mathfrak{h}^*$ be such that $(\beta|\beta) = (\beta|\Lambda + \rho) = 0$. Let $M(\Lambda)$ (resp. $M(\Lambda - \beta)$) be the Verma module with the highest weight Λ (resp. $\Lambda - \beta$) and $v_{\Lambda} \in M(\Lambda)_{\Lambda}$ (resp. $u_{\Lambda - \beta} \in M(\Lambda - \beta)_{\Lambda - \beta}$) its highest weight vector.

For each $z \in U(\mathfrak{g})^{\mathfrak{g}}$ we write $f_z \in P(\mathfrak{h}^*) = S(\mathfrak{h}) = U(\mathfrak{h})$ for the image $\iota(z)$. Here $S(\mathfrak{h})$ denotes the symmetric algebra over \mathfrak{h} which is canonically isomorphic to the algebra of polynomial functions $P(\mathfrak{h}^*)$ over \mathfrak{h}^* . As is well known, each $z \in U(\mathfrak{g})^{\mathfrak{g}}$ acts on v_{Λ} and $u_{\Lambda-\beta}$ by $f_z(\Lambda+\rho)$ and $f_z(\Lambda-\beta+\rho)$, respectively. Thus z acts on $v_{\Lambda-\beta} \in M(\Lambda)_{\Lambda-\beta}$ as $f_z(\Lambda+\rho)$ -multiplication also. Since $v_{\Lambda-\beta}$ is a singular vector in $M(\Lambda)$ we must have $M(\Lambda) \supset M(\Lambda-\beta)$. It follows that

$$f_z(\Lambda + \rho) = f_z(\Lambda + \rho - \beta), \quad \forall z \in U(\mathfrak{g})^{\mathfrak{g}}.$$

This formula is valid for any $M(\Lambda - k\beta)$ $(k \in \mathbb{Z})$. Hence we must have

$$f_z(\Lambda + \rho) = f_z(\Lambda + \rho - k\beta), \quad \forall k \in \mathbf{Z}.$$

Next we give an explicit description of this $\mathfrak C$ in the case of $\mathfrak{sl}(m,1)$. The only simple odd root β of length zero is α_m . Any $\Lambda + \rho \in \mathfrak{h}^*$ orthogonal to β is of the form $\sum_{i=1}^{m-1} a_i \varepsilon_i$, where $\{\varepsilon_i\}_{i=1}^m$ is the standard basis of the weight lattice of \mathfrak{h} :

$$\varepsilon_i : \mathfrak{h} \ni \begin{pmatrix} x_1 & 0 \\ 0 & \ddots & \\ 0 & x_{m+1} \end{pmatrix} \longmapsto x_i \in \mathbf{C}.$$

Then the condition on $f \in \mathfrak{C}$ reads

$$f\left(\sum_{i=1}^{m-1} a_i \varepsilon_i\right) = f\left(\sum_{i=1}^{m-1} (a_i + k) \varepsilon_i\right), \quad \forall k \in \mathbf{Z}.$$

Write $\lambda + \rho \in \mathfrak{h}^*$ as $\sum_{i=1}^m z_i \varepsilon_i$. This identifies $U(\mathfrak{h})^W$ with the space of symmetric polynomials in z_1, \ldots, z_m . Then $f(z_1, \ldots, z_m) \in U(\mathfrak{h})^W$ belongs to \mathfrak{C} if and only if

(1)
$$f(z_1,\ldots,z_{m-1},0)=f(z_1+k,\ldots,z_{m-1}+k,0), \quad \forall k \in \mathbf{Z}.$$

This condition is automatically satisfied if $f(z_1, \ldots, z_m)$ is divisible by z_m . Since $f(z_1, \ldots, z_m)$ is symmetric, this implies that $f(z_1, \ldots, z_m)$ is divisible by $z_1 \cdots z_m$.

Noting that $U(\mathfrak{h})^W = \mathbf{C}[\mu_1, \dots, \mu_m]$ with

$$\mu_j(\lambda) := \sum_{1 \leq i_1 < \dots < i_j \leq m} z_{i_1} \cdots z_{i_j}, \quad (1 \leq j \leq m),$$

we have

(2)
$$\mathfrak{C} = \mu_m \cdot \mathbf{C}[\mu_1, \dots, \mu_m] \oplus \left(\mathbf{C}[\mu_1, \dots, \mu_{m-1}] \cap \mathfrak{C} \right).$$

П

4 Image of the Harish-Chandra homomorphism

Theorem 2 Let $\mathfrak{g} := \mathfrak{sl}(m,1)$ and ι its Harish-Chandra homomorphism. Then the image of ι coincides with the algebra \mathfrak{C} of Lemma 1.

The rest of this note will be devoted to the proof of this theorem. We use the following well-known construction of elements of $U(\mathfrak{g})^{\mathfrak{g}}$ via the supertrace of representations of \mathfrak{g} .

4.1 Supertraces as central elements

Let $V = V_0 \oplus V_1$ be a superspace, i.e. a \mathbb{Z}_2 -graded C-vector space. $T(V) = \bigoplus_{k=0}^{\infty} T^k(V)$ denotes its tensor algebra. We write $S(V) = \bigoplus_{k=0}^{\infty} S^k(V)$ for the super symmetric algebra of V, which is the quotient algebra of T(V) by the ideal $\mathcal{I}(V)$ generated by elements of the form

$$x \otimes y - (-1)^{p(x)p(y)}y \otimes x$$
, $(x, y \in \mathfrak{g}_0 \text{ or } \mathfrak{g}_1)$,

where p(a) := i for $a \in \mathfrak{g}_i$. We write $X_{\mathcal{S}}$ for the image of $X \in T(V)$ in S(V) by the projection

(3)
$$T(V) \to T(V)/\mathcal{I}(V) = S(V).$$

S(V) can also be realized as the subspace of T(V) spanned by elements of the form

$$(X_1 \otimes \cdots \otimes X_k)^{\mathcal{S}} := \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_k} (\pm 1) X_{\sigma(1)} \otimes \cdots \otimes X_{\sigma(k)}, \quad X_i \in \mathfrak{g}_0 \text{ or } \mathfrak{g}_1 \ (1 \leq i \leq k).$$

Here the sign (± 1) is determined by the super rule: transposition of elements X_i and X_j causes $(-1)^{p(X_i)p(X_j)}$ -multiplication on the sign.

We now return to the general Lie superalgebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$. We write $\operatorname{gr} U(\mathfrak{g})$ for the graded algebra of $U(\mathfrak{g})$ with respect to the standard filtration. Just as in the Lie algebra case, $\operatorname{gr} U(\mathfrak{g})$ is isomorphic to the super symmetric algebra $S(\mathfrak{g})$. Furthermore the choice of \mathfrak{g} -invariant pairing on \mathfrak{g} enables us to identify $S(\mathfrak{g})$ with $S(\mathfrak{g}^*)$. Since all of these isomorphisms are \mathfrak{g} -equivariant, the composite of them gives rise to an isomorphism:

$$U(\mathfrak{g})^{\mathfrak{g}} \xrightarrow{\sim} S(\mathfrak{g}^*)^{\mathfrak{g}}.$$

Thus we are reduced to construct elements in $S(\mathfrak{g}^*)^{\mathfrak{g}}$.

Let (π, V) be a finite-dimensional representation of \mathfrak{g} . This gives a linear form on $T^k(\mathfrak{g})$:

(4)
$$\Phi_k(\pi): T^k(\mathfrak{g}) \ni (X_1 \otimes \cdots \otimes X_k) \longmapsto \operatorname{str}(\pi(X_1) \circ \cdots \circ \pi(X_k)) \in \mathbf{C},$$

which is obviously g-invariant. (Recall that g-invariance means

$$\Phi_k(\pi)(\operatorname{ad}^{\otimes k}(Y)(X_1\otimes\cdots\otimes X_k))=0,\quad \forall Y\in\mathfrak{g}.)$$

Restriction of this to the subspace

$$S^k(\mathfrak{g}) = \operatorname{Span}\{(X_1 \otimes \cdots \otimes X_k)^{\mathcal{S}} \mid X_i \in \mathfrak{g}_0 \text{ or } \mathfrak{g}_1 \ (1 \leq i \leq k)\}$$

gives a desired element $\Phi_k(\pi) \in [S^k(\mathfrak{g})^*]^{\mathfrak{g}} = S^k(\mathfrak{g}^*)^{\mathfrak{g}} \subset S(\mathfrak{g}^*)^{\mathfrak{g}}$.

4.2 The image of supertraces under ι

To describe the image of $\Phi_k(\pi) \in S(\mathfrak{g}^*)^{\mathfrak{g}} \simeq U(\mathfrak{g})^{\mathfrak{g}}$ under ι we need to transport $\iota : U(\mathfrak{g})^{\mathfrak{g}} \to U(\mathfrak{h})^W$ to $\iota : S(\mathfrak{g}^*)^{\mathfrak{g}} \to S(\mathfrak{h}^*)^W$. The well-known decomposition:

$$\operatorname{gr} U(\mathfrak{g})^{\mathfrak{g}} \subset U(\mathfrak{h}) \oplus \operatorname{gr} U(\mathfrak{g})\mathfrak{n}_+$$

restricted to the degree k component projects to

$$S^{k}(\mathfrak{g})^{\mathfrak{g}} \subset S^{k}(\mathfrak{h}) \oplus (S(\mathfrak{g})\mathfrak{n}_{+})_{\mathcal{S}}.$$

Here $(S(\mathfrak{g})\mathfrak{n}_+)_S$ is the image of $S(\mathfrak{g})\mathfrak{n}_+$ by the map (3). The identification $S^k(\mathfrak{g}) \simeq S^k(\mathfrak{g}^*)$ composed with the canonical isomorphism $S^k(\mathfrak{g}^*) = S^k(\mathfrak{g})^*$ sends this to

$$[S^k(\mathfrak{g})^*]^{\mathfrak{g}} \subset S^k(\mathfrak{h})^* \oplus \left((S(\mathfrak{g})\mathfrak{n}_+)^{\mathcal{S}} \right)^*.$$

This consideration combined with the definition of ι yields that $\iota: S(\mathfrak{g}^*)^{\mathfrak{g}} \to S(\mathfrak{h}^*)^W$ equals the composite

$$S(\mathfrak{g}^*)^{\mathfrak{g}} \stackrel{=}{\longrightarrow} [S(\mathfrak{g})^*]^{\mathfrak{g}} \ni \Phi \longmapsto \Phi|_{S(\mathfrak{h})} \in [S(\mathfrak{h})^*]^W \stackrel{=}{\longrightarrow} S(\mathfrak{h}^*)^W.$$

We apply this construction to the case when $\mathfrak{g} = \mathfrak{sl}(m,1)$ and π is the standard representation. Then $\Phi_k(\pi)$ $(k \geq 2)$ in (4) restricted to $S^k(\mathfrak{h})$ is simply

$$S^k(\mathfrak{h})\ni (X_1\otimes\cdots\otimes X_k)^{\mathcal{S}}\longmapsto \operatorname{str}(X_1\cdots X_k)\in \mathbf{C}.$$

As an element of $S(\mathfrak{h}^*)$, this can be expressed in terms of the basis $\{\varepsilon_i\}_{1\leq i\leq m}$ as

$$c_k := \varepsilon_1^{\otimes k} + \dots + \varepsilon_m^{\otimes k} - \left(\sum_{i=1}^m \varepsilon_i\right)^{\otimes k}, \quad k \geq 2.$$

4.3 Proof of Theorem 2

Lemma 1 implies

$$\langle c_k | k \geq 2 \rangle_{\mathbf{C}} \subset \operatorname{Im}\iota \subset \mathfrak{C},$$

where $\langle c_k | k \geq 2 \rangle_{\mathbf{C}}$ denotes the algebra generated by $\{c_k\}_{k\geq 2}$ over \mathbf{C} . Our goal is to show $\langle c_k | k \geq 2 \rangle_{\mathbf{C}} = \mathfrak{C}$.

Lemma 3 We have the following decomposition

$$\mathfrak{C} = \mu_m \cdot \mathbf{C}[\mu_1, c_2, \dots, c_m] \oplus \mathbf{C}[c_2, \dots, c_{m-1}].$$

Proof. We can rewrite (2) as

$$\mathfrak{C} = \mu_m \cdot \mathbf{C}[\mu_1, c_2, \dots, c_m] \oplus (\mathbf{C}[\mu_1, c_2, \dots, c_{m-1}] \cap \mathfrak{C}).$$

Thus we have only to check that $C[\mu_1, c_2, \ldots, c_{m-1}] \cap \mathfrak{C}$ coincides with $C[c_2, \ldots, c_{m-1}]$. Note that our form of $f(z_1, \ldots, z_m)$ allows us to replace $k \in \mathbb{Z}$ with $k \in \mathbb{R}$ in (1). Thus for $f \in C[\mu_1, c_2, \ldots, c_m]$ to belong to \mathfrak{C} it is necessary and sufficient that

$$f(z_1,\ldots,z_{m-1},0)=f(z_1+k,\ldots,z_{m-1}+k,0), \quad \forall k \in \mathbf{R}$$

By differentiating this in k we have

$$\mathbf{C}[\mu_1,\ldots,\mu_{m-1}]\cap\mathfrak{C}\subset\{f\in\mathbf{C}[\mu_1,\ldots,\mu_{m-1}]\,|\,Df(z_1,\ldots,z_{m-1},0)=0\},$$

where $D := \sum_{j=1}^{m-1} \frac{\partial}{\partial z_j}$. If we write $f \in \mathbb{C}[\mu_1, \dots, \mu_{m-1}]$ as $\sum_{j=0}^n b_j \mu_1^j$ $(b_j \in \mathbb{C}[c_2, \dots, c_{m-1}] \subset \mathfrak{C})$, then

$$Df(z_1, \dots, z_{m-1}, 0) = \sum_{j=0}^n \left(Db_j(z_1, \dots, z_{m-1}, 0) \right) \mu_1^j(z_1, \dots, z_{m-1}, 0)$$

$$+ \sum_{j=0}^n b_j(z_1, \dots, z_{m-1}, 0) (m-1) j \cdot \mu_1^{j-1}(z_1, \dots, z_{m-1}, 0).$$

This is identically zero if and only if

$$b_j(z_1,\ldots,z_{m-1},0)=0, \quad (1\leq j).$$

Hence the assertion follows.

Lemma 4 We have

$$\mu_1^k \mu_m \in \langle c_j | j \ge 2 \rangle_{\mathbf{C}}, \quad (0 \le k).$$

Proof.

It is sufficient to show the following formula of symmetric polynomials:

$$\left(\frac{\mu_1}{m-1}\right)^k \mu_m = \sum_{\substack{i_2, \dots, i_{m+k} \in \mathbb{Z}_{\geq 0} \\ 2i_2 + 3i_3 + \dots + (m+k)i_{m+k} = m+k}} \frac{1}{i_2! i_3! \cdots i_{m+k}!} \left(\frac{c_2}{2}\right)^{i_2} \cdots \left(\frac{c_{m+k}}{m+k}\right)^{i_{m+k}} \quad 0 \leq k.$$

We consider ε_i as indeterminates.

Set

$$\varphi_0 := 1, \qquad \varphi_k := \sum_{1 < i_1 < \dots < i_k < m} \varepsilon_{i_1} \otimes \dots \otimes \varepsilon_{i_k} \quad k \ge 1.$$

Let $\{\varepsilon_i^{\vee}\}_{1\leq i\leq m}$ be the basis of \mathfrak{h} which is dual to $\{\varepsilon_i\}_{1\leq i\leq m}$. Then our identification yields $\varepsilon_j^{\vee} = \varepsilon_j - \sum_{i=1}^m \varepsilon_i$ and we have

(6)
$$\mu_m = \prod_{j=1}^m \left(\varepsilon_j - \sum_{i=1}^m \varepsilon_i \right) = \sum_{j=0}^m (-1)^j \left(\sum_{i=1}^m \varepsilon_i \right)^j \varphi_{m-j}$$
$$= \sum_{j=0}^m (-1)^j \varphi_1^j \varphi_{m-j}.$$

Next we note

$$\sum_{n=1}^{\infty} \left(\varepsilon_1^n + \dots + \varepsilon_m^n\right) \frac{t^n}{n} = -\log \left(\prod_{j=1}^m \left(1 - \varepsilon_j t\right)\right).$$

The left hand side reads:

$$\sum_{n=1}^{\infty} \frac{t^n}{n} (c_n + \varphi_1^n) = \sum_{n=1}^{\infty} \frac{t^n}{n} c_n - \log(1 - \varphi_1 t), \quad (c_1 := 0).$$

Thus

$$\log\left(\frac{\prod_{j=1}^{m}\left(1-\varepsilon_{j}t\right)}{1-\varphi_{1}t}\right)=-\sum_{n=2}^{\infty}\frac{c_{n}}{n}t^{n}.$$

Exponentiating this and expanding it in t, we have

$$\left(\sum_{j=0}^{m} (-1)^{j} \varphi_{j} t^{j}\right) \left(\sum_{j=0}^{\infty} \varphi_{1}^{j} t^{j}\right)$$

$$= \sum_{n=2}^{\infty} \sum_{\substack{i_{2}, \dots, i_{n} \in \mathbb{Z}_{\geq 0} \\ 2i_{2} + 3i_{3} + \dots + (n)}} \frac{t^{n}}{i_{2}! i_{3}! \cdots i_{n}!} \left(-\frac{c_{2}}{2}\right)^{i_{2}} \cdots \left(-\frac{c_{n}}{n}\right)^{i_{n}}, \quad (0 \leq k).$$

Using (6) the coefficient of $t^{m+k} (0 \le k)$ in the left hand side becomes:

$$\sum_{j=0}^{m} (-1)^{m-j} \varphi_{m-j} \varphi_1^{k+j} = (-1)^m \varphi_1^k \mu_m = (-1)^{m+k} \left(\frac{\mu_1}{m-1} \right)^k \mu_m,$$

and (5) follows.

Lemmas 3 and 4 show that $\mathfrak{C} = \langle c_j | j \geq 2 \rangle_{\mathbf{C}}$. Hence Theorem 2 is proved. This also gives an explicit description of $\text{Im}\iota$. Moreover we can deduce the Euler-Poincaré series of $\text{Im}\iota$ from Theorem 2 and Lemma 3.

Corollary 5 The Euler-Poincaré series P(t) of Im l for $g = \mathfrak{sl}(m, 1)$ is given by:

$$P(t) = \prod_{j=2}^{m-1} \sum_{n=0}^{\infty} t^{nj} + t^m \prod_{j=1}^{m} \sum_{n=0}^{\infty} t^{nj}.$$

References

- [1] F.A. Berezin, *Introduction to superanalysis*, Mathematical Physics and Applied Mathematics, Vol. 9, Reidel, 1987.
- [2] V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-97.
- [3] _____, Characters of typical representations of classical Lie superalgebras, Commun. Alg. 5 (1977), 889-897.

- [4] _____, Representations of classical Lie superalgebras, in Lecture Notes in Math. 676, (Springer, Berlin, 1978), 596-626.
- [5] _____, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Natl. Acad. Sci. USA 81(1984), 645-647.
- [6] P.D. Jarvis and H.S. Green, Casimir invariants and characteristic identities for generators of the general linear, special linear and ortho/symplectic graded Lie algebras, J. Math. Phys. 20 (1979), 2115-2122.
- [7] D. Arnaudon, C. Chryssomalakos and L. Frappat, Classical and quantum $\mathfrak{sl}(1|2)$ superalgebras. Casimir operators and quantum chain Hamiltonians, J. Math. Phys. 36 (1995), 5262-5283.