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The structure of the center of the universal enveloping
algebra for the Lie superalgebra sl(m, 1)

Kazuko Konno *

1 Introduction

One of the fundamental tools in the representation theory of finite-dimensional Lie alge-
bras is the Harish-Chandra isomorphism. It gives an identification between the center of
" the universal enveloping algebra of a simple finite-dimensional Lie algebra and a certain
algebra of symmetric polynomials. It is natural to ask if the similar result holds for simple
finite-dimensional Lie superalgebras. Unfortunately the Harish-Chandra homomorphism
is not necessarily an isomorphism for Lie superalgebras. The lack of reflections attached
to roots of length zero causes the situation where the Harish-Chandra homomorphism is
not surjective. Thus for Lie superalgebras, the determination of the image of the Harish-
Chandra homomorphism is a real problem. There is a general result in this direction
obtained by F.A.Berezin [1] and V.G.Kac [5]. In this talk we shall give more explicit and
elementary description of the image of Harish-Chandra homomorphism for sl(m,1).
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2 Preliminaries

As for the elementary facts about Lie superalgebras we refer to [2].

Let g = go @ g1 be a finite-dimensional Lie superalgebra sl(m,1) (m > 2) over C. We
write §) for a Cartan subalgebra of go and Il = {ey,...,an} C h* for the set of simple
roots. IIV = {hy,..., hn} C b denotes the set of corresponding simple coroots. We denote
by A$*" and Aidd the sets of even and odd positive roots, respectively.
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The generators {e;, f;, hi| (1 <i < m)} is so chosen that én and fm are the only odd
generators. The defining relations are:

lei, fi] = 8i3hi,  [hiyh5) =0, [h,-,e,-] = @€, [hi’fj] = —a;;fj,

where
2 i=j
aij=3-1 j=i4+lori—1,

0 otherwise.

Let (z|ly) = é(z,y)/2h" be the non-degenerate even invariant bilinear form on g, where
¢ is the Killing form and AY = m — 1 is the dual Coxeter number . We have a triangular
decomposition of g ‘
g=n_60 b ® ny,

where ny (resp. n_) is the suba,lgebfa. of g generated by e;,..., e, (resp. fi,..., fm)-
For a Lie superalgebra s, we write U(s) for its universal enveloping algebra. Let § be
the projection:

é:U(g) = (U(g)ny +n-U(g)) ® U(h) — U(h).
We define 4 : h — U(h) by | :
1) = h = (olh) 1,
where p := (Laeage @—Yseasa @)/2. Extend this to an algebra automorphlsm of U(bh).
Then the comp031te ~yoé 1nduces a homomorphism

L1 U(g)® —> U(b)_W-
Here the center of U (g) denotes |
U(g)* := {f € U(g)|[f,] = 0 for any < € g},

and U(H)" stands for the set of elements of U (b) fixed by the Weyl group W. This ¢ is
called the Harzsh Chandra homomorphism for g.

3 An “odd roots condition” for the image

Here we shall prove a key lemma. This is inspired by the proof of Lemma 3 in [3].

Lemma 1 Let g be a finite-dimensional simple Lie superalgebra and ¢ the Harish-Chandra
homomorphism. We denote by (-|) the non-degenerate even invariant bilinear form de-
fined in [2]. We write € for the algebra consisting of f € U(h)" with the property

- fA+p)=Ff(A-kB+p), VEk€EZ |
for any B € AN I and A € b* satisfying (B]8) = (BIA + p) = 0. Then the image of ¢

is contained in €.
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Proof. Let 8 € AS*NII and A € h* be such that (8|8) = (B|A+p) = 0. Let M(A) (resp.
M(A - B)) be the Verma module with the highest weight A (resp. A— ) and vy € M(A),
(resp. up—g € M(A — B)a—p) its highest weight vector.

For each z € U(g)® we write f, € P(h*) = S(h) = U(h) for the image ¢(z). Here S(h)
denotes the symmetric algebra over h which is canonically isomorphic to the algebra of
polynomial functions P(h*) over h*. As is well known, each z € U(g)? acts on vy and
up-p by f.(A+ p) and f.(A — B + p), respectively. Thus z acts on va_g € M(A)r_p
as f,(A + p)-multiplication also. Since vp_g is a smgular vector in M(A) we must have

M(A) D M(A — B). It follows that

J(A+p)=Ff:(A+p—B), VzeU(g).

This formula is valid for any M(A — kB) (k € Z) Hence we must have
f(A+p)=f.(A+p—kB), VEkeZ

Next we give an explicit description of this € in the case of sl(m,1). The only 31mple
odd root 8 of length zero is a,,. Any A+ p € h* orthogonal to f is of the form Zz_l a,e,,
where {e;}7, is the standard basis of the weight lattice of b:

COEN(E

g:h> |— =z €C.
O Tm41
Then the condition on f € € reads

m—1 m—1

(X @) = F(X (@i + b)), VkeZ

i=1 =1

Write A+ p € h* as 2;’;1 z,-s,-‘.‘ This identifies U(h)¥ with the space of éymmetfic poly-
nomials in 21, ..., 2m. Then f(21,...,2,) € U(h)" belongs to € if and only if

(1) f(Zl,...,Zm_l,O) =f(21+k,...,zm_1+k,0), Vke Z.
This condition is‘a,utomatica,lly satisfied if f (21,-- -, zm) is divisible by 2. Since f(z1,...,2m)
is symmetric, this implies that f(z1,...,2y) is divisible by 2; - - - zp,.
Noting that U(§)" = C[u,..., ptm] with
/"'j(’\) = Z Zig * 0 2y, (1 < .7 _<_m)a

1<iy <<ij<m

we have

@  €=pm-Cluinl @ (Clirs il NE).
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4 Image of the Harlsh-Chandra homomorphlsm

Theorem 2 Let g:= 5[(m 1) and ¢ its Harish- C’handm homomorphzsm Then the image
of v coincides with the algebra € of Lemma 1 .

The rest of this note will be devoted to the proof of this theorem. We use the following
well-known construction of elements of U(g)® via the supertrace of representations of g.

4.1 Supertraces as central elements

Let V=V, ®W bea superspace, i.e. a Zy-graded C vector space. T(V) el T"(V)
denotes its tensor algebra. We write S(V) = @52, S*(V) for the super symrnetnc algebra
of V, which is the quotient algebra of T'(V) by the ideal Z(V) generated by elements of
the form

) Ty —(— l)p(x)p(y)y ®z, (z,y € goorg),
where p(a) := i for a € g;. We write X5 for the image of X € T(V) in S(V) by the
projection

Q T(V) » TW)IW) = SO
S (V) can also be realiZed as the subspace of T'(V) spanned by elements bf the form

(X1®- ®Xk) =57 3 ()Xo ® - < ®Xow), Xi€goorg (1<i<k).
k' €6
oc€O;

Here the sign (+1) is determined by the super rule: transposition of elements X; and X
causes (—1)?X)?(Xi)_multiplication on the sign.

We now return to the general Lie superalgebra g = go @ g1. We write grlU(g) for
the graded algebra of U(g) with respect to the standard filtration. Just as in the Lie
algebra case, grlU(g) is isomorphic to the super symmetric algebra S (g). Furthermore the
choice of g-invariant pairing on g enables us to identify S(g) with S(g*). Since all of these
isomorphisms are g-equivariant, the composite of them gives rise to an isomorphism:

U(g)* = S(g*)°.

g-module

Thus we are reduced to construct elements in S(g*)®.
Let (1r V) be a ﬁmte—dlmenswnal representatlon of g. Thls gives a hnear form on

T*(g):
(4) Di(m) : THg) 3 (X1 ® -+ ® X)) > str(n(Xy) 0 --- 0 w(Xp)) E C,
which is obviously g-invariant. (Recall that g-invariance means
(I>k(1r)(ad®k(Y)(X1 ®---®X)) =0, VYeg. )
Restrlctlon of this to the subspace
5*(g) = Span{(X: ®--- ® X4)* | X; € go or g1 (1 < i < k)}
- gives a desired element ®(7) € [S*(g)*]? = S*(g*)? C S(g*)°.
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4.2 The i 1mage of supertraces under

To describe the image of ®x(7) € S(g*)? ~ U(g)? under ¢ we need to transport U (g)” —
UB)Y to ¢ : S(g*)® — S(h*)". The well-known decomposition: v

gU(9)° C U(h) © grU(g)ns
restricted to the degree k component projects to
S*(9)® C S*(h) @ (S(g)n4)s-

Here (S(g)ny)s is the image of S(g)n,. by the map (3). The identification S*(g) ~ S*(g*)
composed with the canonical isomorphism S*(g*) = S*(g)* sends this to

[S*(g))° C S*(b)* @ ((S(e)ms)°)"

This consideration combined with the definition of ¢ yields that . : § (g%)* — S(H)W
equals the composite

$(")° = [S(9)1* 3 @ +— &5y € [S(h)]" = S(H7)"

We apply this construction to the case when g = sl(m,1) and 7 is the sta.ndard
representatlon Then <I>k(7r) (k> 2) in (4) restricted to S* (()) is simply

SEB) 3 (X1 ® -+ ® Xi)S > str(X; -+ Xi) € C.

As an element of S(h*), this can be expressed in terms of the basis {eihi<i<m as

cr =P+ 8k (Z 81.)@,:,' k> 2.

=1

4.3 Proof bf Theorem 2

Lemma 1 implies
Ak |k 22)c cImeCC,

where {ci | k > 2)c denotes the algebra generated by {cx}x>2 over C. Our goal is to show
(ck|k22)c =¢C.

Lemma 3 We have the following decompoS;tibn
¢C= Hm * C[[ll,CQ, .. .,Cm] o) C[Cz, 2o ,Cm—l]-

Proof. We can rewrite (2) as

€ = pim - Clpa, €35 . - ,cm] @ (C[y1,62, ey Cme1] N QZ)
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Thus we have only to check that Clu,cs,...,cm-1] N € coincides with Cleg, ..., cmn-1].
Note that our form of f(21,...,2m) allows us to replace k € Z with £ € R in (1). Thus
for f € Clp1,¢z2...,¢n] to belong to € it is necessary and sufficient that

f(zl, .. .,Zm_l,O) = f(Zl +k,...;Zm-1 + £k, 0), Vk € R.
By differentiating this in k we have
C[ﬂ], e ,ﬂm—l] Ne€C {f € C[ﬂl,. .o ,[lm_1] lDf(Zl, e ,Zm_l,O) = 0},

where D := 37131 52 If we write f € Clu, ..., im-1] 38 g bipd (8 € Clez, ..., ema] C
¢), then .

n

Df(z;, . .,Zm_l,O) = Z (Dbj(zl, o .,zm_l,O)),u{(zl, N ,Zm_l,O)

=0

+3 bi(21y+ ey 2me1, 0)(m — 1)j - i (21, - . ., 2mo1, 0).

Jj=0
This is identically zero if and only if
bilz1,- - 2me1,0) =0, (1<7).

Hence the assertion follows. ‘ » » ' a

Lemma 4 We have _
| piim € (|7 2 2)c, (0<K).

Proof.
It is sufficient to show the following formula of symmetric polynomials:

(5)

151 oo ‘ ' 1 (c:)iz ( Cm+k )""‘“‘
= —_—e | — e < k.

2ip+3i3+-- +(m+k)zm+k =m+k

We consider ¢; as indeterminates.
Set v

(PO:=17 Pk = E 651®"'®€ik kZ]--

1< << <m

Let {€Y }1<i<m be the basis of § which is dual to {6,}1<,<m Then our 1dent1ﬁcat10n yields
e} =¢€; — Ly € and we have :

(6) o Bms ﬁ (Sj -3 65) E( -1y (f: i)j%#

j=1 i=1 j=0 =1

= Z (‘l)j‘P{’vom-j'

=0
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Next we note , - | : B o m
D (4 ten)— =—log([] (1 —¢&;t)).
n=1 - ‘ 7=1 .

The left hand side reads:

[ele} tn " s t'n
L plate) =3 Solosll—pt), (=01
Thus . ) L
? — €. ad
1 “h=1N vy &t“,
°8 ( 1 -t ) nz=;2 n

Exponentiating this and expanding it in ¢, we have

o) (£
_ i > v (_%)52 (__cz’)i", 0 < k).

P PN IR |
n=2 iz,...,inEZZo t2:13: o n
2i2+353+~--+(n)in=n

Using (6) the coefficient of t™**(0 < k) in the left hand side becomes:
m ) ) k
> D)™ omjor™ = (=1) " pm = (1) (———”l 1) s
=0 m—

and (5) follows. ~ O
Lemmas 3 and 4 show that € = (¢;|j > 2)c. Hence Theorem 2 is proved. This also

gives an explicit description of Im¢. Moreover we can deduce the Euler-Poincaré series of
Im¢ from Theorem 2 and Lemma 3.

Corollary 5 The Euler-Poincaré series P(t) of Im¢ for g = sl(m, 1) is given by:

m—1 oo m oo
Pity=1I > t¥+t ] 3 v
71=2 n=0 J=1 n=0
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