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GEOMETRIC CONSTRUCTION OF CRYSTAL BASFES(*)

Rt 52528 BEE 3c 2 (Geshihia Saito)

1. INTRODUCTION

1.1. G.Lusztig [L3] gave a realization of the quantized universal enveloping algebras
as the Grothendieck group of a category of perverse sheaves on the quiver variety.
Let (1,9) be a finite oriented graph (=quiver), where I is the set of vertices and
is the set of arrows. Let us assocna,te a complex vector space V; to each vertex i € I.
We set

EV,Q = T?Q Hom (V:)ut(‘r)) ‘/m(f))

and
XV - EVQ @ EVQ

They are finite-dimensional vector spaces with the action of the algebraic group Gy =

[Lier GL(V;). We regard Xy as the cotangent bundle of Ev,q. Lusztig [L3] realized a
half of the quantized universal enveloping algebra U7 (g) as the Grothendieck group
of Qva. Here Qv is a subcategory of the derived category Db(EVQ) of the bounded.
complex of constructible sheaves on Ey,q. The irreducible perverse sheaves in QVQ
form a base of U (g), which is called canonical basis.

In [L5] he asked the following problem.
Problem 1. If the underlying graph is of type A, D or E, then the singular support
of any canonical base is irreducible.

One of the purpose of this paper is to construct a counterexample of this problem
for type A.

1.2. Let G be a connected complex semisimple algebraic group, B a Borel subgroup
of G'and X = G/B the flag variety. Let Dx denote the sheaf of differential operators
on X. We denote the half sum of positive roots by p and the Weyl group by W.
For w € W, let M,, be the Verma module with highest weight —w(p) — p and L, its
simple quotient. By the Beilinson-Bernstein correspondence, M,, and L,, correspond
to regular holonomic Dx-modules 991, and £,, on X, respectively. The characteristic
varieties Ch(9M,,) and Ch(L,) are Lagrangian subvarieties of the cotangent bundle

(*) This is a joint work with Masaki Kashiwara.
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T*X. Each irreducible component of Ch(9,,)and Ch(£,,) is the closure of the conor-
mal bundle T% X of a Schubert cell X, = ByB/B for some y € W. Let M be the
abelian category consisting of regular holonoxmc systems on X whose characteristic
varieties are contained in [[,,ew T, X. Its Grothendieck group K(M) has two bases,
([Mu])wew and ([Lu])wew. For M € M let Ch(M) = T,ew mw(IM)[T%, X] be the
characteristic cycle. Here m,, () is the multiplicity of 2t along Tk _X. Then Ch
extends to an additive map from K (M) to the group of algebraic cycles of T*X. -
Let x be a Z-linear isomorphism from K (M) onto the group ring Z[W] defined
by x([9t,]) = w. Then there exists a unique basis {b(w)},ew of Z[W] such that
Ch(x~!(b(w))) = [Tk, X] (See [KL1] and [KT].). This basis is related to the Springer
representation of the Weyl group. Set a(w) = x([€.]) = Z,ew my(Lu)b(y). The
basis {a(w)}yew is related to the left cell representation of the Weyl group. There-
fore an explicit knowledge of m,(£,,) gives an explicit relation between the Springer
representation and the left cell representation. If Ch(£,) is an irreducible variety,
that is,

(1.2.1) my(Ly) = {1 ify =w,

0 otherwise,

then the Springer representation coincides with the left cell representation. Due to
Tanisaki, there is a counterexample of (1.2.1) in the case of B; (See [T]). In [KL2]
Kazhdan and Lusztig conjectured that Ch(£,) is irreducible for G = SL,(C). In this
paper, as a corollary of Problem 1, we shall show that there is a counterexample of
this conjecture in the case of G = SLg(C) and this conjecture is true for G = SL,(C)
with n < 7.

1.3. On the other hand, Kashiwara [K1] constructed the crystal base and the global
crystal base of U (g) and the highest weight integrable representations of U,(g) in
an algebraic way. Grojnowski and Lusztig [GL] showed that the global crystal base
coincides with the canonical base of Lusztig [L3].

In this paper, we shall construct the crystal base in a geometncal way. We deﬁne
the nilpotent subvariety of the cotangent bundle of the quiver varieties, following
Lusztig. The nilpotent variety is a Lagrangian subvariety. We shall deﬁne a crystal
structure on the set of its irreducible components, and we prove that it is isomorphic
to the crystal associated with U7 (g). |

1.4. Let us briefly summarize the contents of this manuscript. In section 2 and 3 we
give a review of the theory of crystal base [K1,2,3,4]. After recalling quiver varieties
in section 4, we define the crystal structure on the set of irreducible components of
the nilpotent varieties and prove that it coincides with the crystal base of U (g) in
section 5. In section 6, we recall the relation of the quantized universal enveloping
algebras and perverse sheaves on the quiver varieties. In section 7, we give a negative
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answer to Problem 1. In the last section, we give a counterexample of the irreducibil-
ity of the characteristic variety of the irreducible perverse sheaf with the Schubert

cell as its support in the case of SLs.
Proofs of the results announced in this manuscript appeard in [KSa).

2. PRELIMINARIES

2.1. Definition of U, (g). We shall give the definition of U,(g) associated with a
symmetrizable Kac- Moody Lie algebra g. We follow the notations in [K1 2,3 4]

Definition 2.1.1. Let us consider following data:

(1) a finite-dimensional Q-vector space t,
(2) an index set I (of simple roots),
(3) a llnearly independent subset {c;; ¢ € I} of t* and a subset {h, ;1 €1} of t,

(4) an inner product ( , ) on t* and
(5) a lattice P (a weight lattice) of t*.
These data are assumed to satisfy the following conditions:
(6) {(hi,c;)} is a generalized Cartan matrix
(i.e. (hi, ;) = 2, (hiya;) € Zgo for i # j and (hi, ;) = 0 & (hj, ;) = 0),
(7) (au a:) € 2Z>0a
(8)  (hi, A) = 2(ci, )/ (e, i) for any : € I and A € t*,
(9) o;€Pand h;e Pr={het;(h,P)€EL}. v
Then the Q(g)-algebra U,(g) is the algebra generated by e, fi(: € I) and ¢"(h € P*)
with the following defining relations:
(10) ¢* =1 for h = 0 and ¢"+* = qhqh'
(11) gheiq™ = qde; and gt fig™ = g9 f,
(12) [e 1] = Soglts — 1)/ (i — g77) where g; = g2 and 1, = gleseihiz,

(3) B (1rdeel™ = © (A =0
where i #jand b=1— (hi, ).
Here we used the notations [n]; = (¢F — ¢; ")/( ; — q, l), [n)it = e[kl e =
e*/[n];! and ™ = fr/[n)!. We understand e = f = 0 for n < 0. We set
Q = YierZai, Q4 = LierLyoa; and Q_ = —Q+ Let P, be the set of dominant
integral weights. ’

We denote by U (g) the Q(g)-subalgebra of U,(g) generated by f; (i €I).
As in [K], we define the Q(g)-algebra anti-automorphism * of U,(g) b

e* = e, fi* = fi and (¢")" =¢7"
Note that %2 = 1.
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2.2. Crystal base of U; (g). Next we shall define a crystal base of U;(g). See
[K1,2,3,4] for ditails.

Lemma 2.2.1. For any P € U, (g), there ezist unique Q, R € U; (@) such that

tQ —t7'R
lei Pl = ———
9 — q;
By this lemma, e;(P) = R defines an endomorphism e/ of U, (9)-
According to [K1] we have

T— _ (n) '
U (9) = ng?o fi" ' Kere,.
We define the endomorphisms é; and f; of U; (g) by

f(ffu) = f**u and
Ca(fMu) = £

for u € Kerej.

Definition 2.2.2. A pair (L, B) is called a crystal base of U7 (g) if it satisfies the
following conditions:

(2.3.1) L is a free sub-A-module of U (g) such that U (g) = Q(q) ®4 L.
(2.3.2) B is a base of the Q-vector space L/qL.
(2.3.3) &L C L and ;L C L for any i.
Therefore & and f; act on L/qL.
(2.3.4) &B C Bu{0} and f;B C B.

L= @ L,andB= || B,
vEQ - vEQ_
where L, = LN U;(g),, B, = BN (L,/qL,) and U (g), = {P €
v U7 (a); ¢"Pq* = ¢ P for any h € P*}.~
(2.3.6) For b € B such that b # 0, we have b = f;é;b.

We introduce the sub-A-module L(oo) of U (g) generated by fiy-++fiy -1 and
the subset B(co) of L(c0)/qL(o0) consisting of the non-zero vectors of the form

foro fu 1

Theorem 2.2.3. (L(c0), B(c0)) is a crystal base of U7 (g).
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3. CRYSTALS
3.1. Definition of Crystal.

Definition 3.1.1. A crystal B is a set endowed with
(3.1.1) maps wt: B — P, & : B — ZU{-o0}, ¢;: B— ZU{—00} and

(3.1.2) &:B— Bu{0}, fi: B— Bu{0}.
They are subject to the following axioms: ’
(C1) wilh) =eB) + (his wh(B).
(C2) If b€ B and ¢é;b € B then,
wt(&:b) = wt(b) + i, €i(€:0) = €:(b) — 1 and @;(€:0) = pi(b) + 1.
(C 2% If b€ B and f;b € B, then )
wt(fib) = wt(b) — cu, €i(fid) = &:(b) + 1 and p;(f:d) = i(b) — 1.
(C 3) For b,b' € B and i € I, ¥/ = &b if and only if b= fib'.
(C 4) For b € B, if ¢;(b) = —o0, then éb= f;b=0.
For two crystals B; and B;, a morphism 3 from B; to B, is a map B,u{o} -
B, U {0} that satisfies the following conditions:
(3.1.3) ¥(0) = 0,
(3.1.4) If b € By and 9%(b) € B,, then |
wi((b)) = wt(b), ei(b(b)) = €:(b), and @i(3(b))
(3.1.5) If b,0' € By and ¢ € I satisfy f;(b) = ¥’ and 9(b
have f;(¥(b)) = %(¥).

A morphism v : B; — By is called strict, if it commutes with all ; and fi.

A morphism % : By — B, is called an embedding, if ¥ induces an injective map
from B; U {0} to B, U {0}.

For two crystals B; and B,, we define its tensor product B; ® B, as follows:

Bi®@B; = {bhi®by; by € By and b, € By},
e ®by) = max (s,-(b;), s,-(bz)——wti(bl)),

Pl ®b) = max (ii(br) + whi(be), wilba)),
wt(b; ® by) = wt(by) + wt(b).

Here wt;(b) denotes (h;, wt(b)).
The action of é; and f; are defined by

s _ ) &b ®b, if @i(b1) > €i(b2)
el(bl ® b2) n { bl ® éibz lf 419,(b1) < E,’(bz)‘, .

= ¢i(b),
), ¥(V') € By, then we
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2 @by if wi(by) > eibs)
fih®b) = { b ® fiby i pi(by) < €i(by).

Example 3.1.1. Fori € I, B; is the crystal defined as follows -
B; = {bi(n); n € Z},
wt(b;(n)) = na;,
¢i(bi(n)) = n, ei(bi(n)) = —n,
;i(bi(n)) = €(bi(n)) = —oo for i # j.
We define the action of & and f; by
| &(bi(n)) = bi(n + 1),
fi(bi(n)) = bi(n = 1),
&(bi(n)) = fi(bi(n)) =0 fori# ;.
We write b; for b;(0). B

| Example 3.1.2. For A € Py, B()) denotes the crystal associated with the crystal
base of the simple highest weight module with highest weight A. For b € B(}) we

set €;(b) = max {k > 0; &*b+# 0}, ¢;(b) =max{k>0; fikb # 0} and wt(b) is the
weight of b.

Example 3.1.3. B(co) is the crystal associated with the crystal base of U (g). For
b € B(oo) we set £;(b) = max {k > 0; &*b# 0} and ¢;(b) = &;(b) + (hi, wt(b)). We
denote u,, by the unique element with weight 0.

3.2. We have L(co)* = L(o0) and * induces an endomorphism of L(o0)/qL(00).

Theorem 3.2.1.
B(o0)* = B(o0).

We define the operators &, f& of Uq‘ (g) by
(3.2.2) & = x&*, and fr = *fi *.
Theorem 3.2.2. (1) For any i, there exists a unique strict embedding of crystals
U; : B(oo) — B(c0) ® B;

that sends U 10 Uoo ® b;. e
(2) If Oi(b) = V' ® f'b; (n 20), then &;(b”) =mn, e(V")=0and b= f; "V.
(3) Im ¥; = {b® fi"b; ; b€ B(c0), &i(b*) =0, n >0}.

In fact the above properties characterize B(oo) as seen in the following proposition.
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Proposition 3.2.3. Let B bea crystal and bo an element of B with wezght 0. Assume
the following conditions. o

(1) Wt(B) CQ-.

(2) bo is a unique element of B with weight 0.

(3) €i(bo) = 0 for every i.

(4) &:(b) € Z for any b and 1.

(5) For every 1, there ezxists a strict embedding V;: B — B ® B;.

(6) ¥;(B) C B x {F"bi;n > 0}.

(7) For any b € B such that b # by, there e:msts i such that U;(b) = V' ® £ b; with

n>0 .

Then B is isomorphic to B(o0).

4. QUIVERS AND ASSOCIATED VARIETIES ([L5,6] AND [N 1;2])

4.1. Definition of quiver. We shall recall the formulation due to Lusztig [L5,6].

Suppose a finite graph is given. In this graph, two different vertices may be joined
by several edges, but any vertex is not joined with itself by any edges. Let I be the set
of vertices of our graph, and let H be the set of pairs of an edge and its orientation.
The precise definition is as follows.

Definition 4.1.1. Suppose that following data (1) ~ (5)>a,re given:

(1) a finite set I,

(2) a finite set H,

(3) a map H — I denoted 7+ out(7),
(4) a map H — I denoted 7 — in(7) and

(5) an involution 7 +— 7 of H.

We assume that they satisfy the following conditions;

(4.1.1) in(7) = out(r), out(7) = in(7) gnd

(4.1.2) out(7) # in(7) for all 7 € H.
An orientation of the graph is a choice of a subset @ C H such that
- QU = Hand QN0 = 4. |
We call a quiver a graph With an orientation. _
- To agraph (I, H) we associate a root system w1th simple roots {a,},e 1 and 51mple
~ coroots {h;};er with
(hir @) = (e, 05) = {?—,ﬂ{r € H ; out(r) =1, in(r) =5}, z ;j’
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We denote by g the corresponding Kac-Moody Lie algebra and U, (g) the correspond-
ing quantized universal enveloping algebra.

4.2. Let V be the family of I-graded complex vector spaces V = @;¢cr Vi. We set
dimV = —¥;/(dimV)a; € Q. For v € Q_, let V, be the family of I-graded
complex vector spaces V with dimV = v.

Let us define the complex vector spaces Eyq and Xv by

EV,Q = T?Q Hom (%ut(‘r), VEn(T)),
Xy = EB Hom (Vout(r), Vin(r))-

In the sequel, a pomt of EVQ or Xy will be denoted as B = (B,). Here B, is in
Hom (Vut('r)y V;n(r))

We define the symplectic form w on Xv by
(4.2.1) w(B,B') = > e(r)tr(B:B;),

‘ ‘ T€H

where e(r) = 1 if 7 € Q, &(7) = —1 if 7 € Q. We sometimes identify Xy and the
cotangent bundle of Eyq via w. .

The group Gv = [I;e; GL(Vi) acts on Ey,q and Xv by

Gydg= (9:) :+ (Br)m (gin(f)Bfg‘;—:c(f))’

where g; € GL(V;) for each ¢ € I.

The Lie algebra of Gy is gy = @;c; End(V;). We denote an element of gy by
A = (A))ier with A; € End (V;). The infinitesimal action of A € gy on Xv at B € Xv
is given by [A, B]. Let p : Xy — gy be the moment map associated with the Gy-
action on the symplectlc vector space Xy. Its i-th component y; : Xy — End (V}) is

given by
pi(B)= > &(r)B:B;.
T€H

i=out(r)
For a non-negative integer n, we set | v
S, ={o=(1,72, - ,T); T € H,in(r1) = out(rs),- -+ ,in(7Tn-1) = out(r,)},

and set & = U,>0G,. For 0 = (11,79, -+ ,7), We set out(o) = out(r),in(o) =
in(r,). For B € Xv we set B, = B, -+ B, @ Vour(rs) = Vin(rn)- H n = 0, we
understand that &, = {1} and B, is the identity. An element B of Xy is called
nilpotent if there exists a positive integer n such that B, = 0 for any o € G,.

Definition 4.2.1. We set
Xov = {B € Xv; p(B) =0}
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and
Av = {B € Xv; u(B) =0 and B is nilpotent}.

It is clear that Ay is a Gv-stable closed subvariety of Xv. It is known that .Av 1s
a Lagrangian variety [L5].

5. LAGRANGIAN CONSTRUCTION OF CRYSTAL BASIE
5.1. Foreachv € Q_, let us take V(v) € V, and set X(v) = Xy(,,), XQ(V) = Xov(y)
and A(v) = Ay(,). For v, v' and 7 in Q_ with v = v/ + 7, we consider the diagram
(5.1) Xo(7) x Xo(v') 2 X5(7,1') <2 Xo(v). S
Here X}(7,v') is the variety of (B, $,¢') where B € Xo(v) and ¢ = (&), ¢ = (9%)
give an exact sequence
(5.2) | 0-—>V(‘)-§—‘>V( A V), -0

such that Im @ is stable by B. Hence B induces B : V(V) — V( ) and B': V(V') —
V(v'). We define g,(B, 6, ) = (B, B') and ¢:(B, 4, ) = |

The following lemma is easily proved.

Lemma 5.1.1. Under the above notations the following two. conditions are equiva-
lent. - :

(a) B is nilpotent.
(b) Both B' and B are nilpotent.

By this lémrna,, the diagram (5.1) induces the diagram
(5.3) A(D) x A(V') &= A(7,0") L5 A(v).

Here A'(7,) = g5 (A(v)) = 7' (A() x A(u')-)'.
For 2 € I and p € Zyo we consider

Xo(v)ip = {B € Xo(v); &:(B) = p},

where

ei(B) = dim Coker( & V(¥)out(r) 1B, V(z/))

Tiin(r)=i

It is clear that Xo(v);, is a locally closed subvariety of Xo(v).
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5.2. In this and the next subsections, we assume that v = ¥ — cq; for c € Z>o. We
set V=V(v) and V = V().

Let us consider the special case of (5.1). Note that Xo(—ce;) = {0}.
(5.4) | Xo(7) & Xo(7) x Xo(—ca;) < X{(7, —ca;) =2 Xo(v).
Lemma 5.2.1. Let p € Zyo. Then we have

@y (Xo(P)ip) = @7 (Xo(¥)i,pte)-
Definition 5.2.2. Weset
| X5, —ca)p = @7 (Xo(P)ip) = @5 (Xo(v)i,pte)-

Suppose p = 0. Then we have following diagram
(5.5) Xo(7) D Xo(P)s0 - X3(7, ~cas)o -2 Xo(v)ie C Xo(v).
Note that Xo(7);0 is an open subvariety of Xo(7).

Lemma 5.2.3. (1) w,: X(’,(z‘/, —ca;)o — Xo(v)i. is a principal fiber bundle with
GL(C®) x [1;e1 GL(V(9);) as fiber.

2) wy : X§(P, —cai)o — Xo(P)io is a smooth map whose fiber is a connected
0 , L
rational variety of dimension 3¢} (dim V(V)j) —c(a;, 7).

Now we denote by B(oo;v) the set of irreducible components of A(v). For A €
B(co;v), we define €;(A) = ¢;(B) by taking a generic point B of A . For | € Z3¢, we
set B(oo; v);,1 the set of all elements of B(oo;v) such that ;(A) = 1.

The preceding lemma implies the following proposition.

Proposition 5.2.4.
B(00; 7)i0 & B(0o; V)i
Definition 5.2.5. Suppose that A € B(oo 7)o corresponds to A € B(oo;v), by
this isomorphism. Then we define maps f; : B(oo 7)o — B(oo;v). and &™*
B(oo;v), — B(o0; 7)o by 4
fi(A)=
évimax (A) — A
Furthermore we define the maps ,
& : || B(oo;v) — | | B(oo; ¥) U {0} and
f; |_| B(oo;v) — UB(oo; v)
as follows. If ¢ > 0 then we define

zc—1

; : B(oo; V), —— Zh B(oo; 7)o i, B(ooj v + @)1,
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and €;(A)=0for A € B(oé; v)o. We define f; by
‘ s c+1

f;- : B(oo; y)c -i'm:x—) B(oo; 17)0 -‘-f'—> B(oo; V- a,-)c.,.l.

Then the maps €™ (resp. f,c) which is constructed in the definition may be

considered as the c-th power of é; (resp. ;). Let us define a map wt : | |, B(oo; v)— P
by wt(A) = v € P for A € B(oo;v). We set @;(A) = €;(A) + (hi, wt(A)).

Theorem 5.2.6. | |, B(oo; v) is a crystal in the sense of Definition 3.1.1.
Lemma 5.2.7. If A € B(oo;v) satisfies €;(A) = 0 for every i, then v = 0.
5.3. We shall use the diagram (5.1.1) in the opposite way to (5.4).

(5.6) Xo(7) & Xo(—caq) X Xo(P) & Xb(—cay, 7) =2 Xo(v).
We define for B € Xo(v)
eX(B) = dmKer(V(1): £ @  V(¥)inen)-

Tiout{r)=:

For A € B(oo;v) we define €}(A) as € (.B) by taking a generic point B of A. We set

Xo(v)? = {B € Xo(v); €i(B) = p},

B(oo; v)} = {A € B(oo;v); &"(A) = p}.
We choose an isomorphlsm between V(v); and its dual for every i. Then *: B *B
gives an automorphism of Xo(v) and A(v) is invariant by this automorphism. This
induces an automorphism * : B(co;v) — B(oo;v). Since A(v) is Gy(y)-invariant,
this does not depend of the choice of isomorphisms V(v)* ~ V(v). The diagrams
(5.4) and (5.6) are transformed by *. We have

ex(A) = e:(A%).

We define
éln«max —_ % O é-z_max o *,
é,‘*'= *OA8~,'0*, ‘
J;i* = *0 fi 0 *,

FA) = (A7),
Note that &* and f;" may be deﬁned as € and f; using (5.6) mstead of (5.4). We
have
AL B(o0; v)°*> B(o0; 7)°
Proposition 5.3.1. Let A be an irreducible component of A(v). We set ¢ = eX(A)
and A = é*™** A. Then we have o '
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(1)

ei(A) = max (g;(A), c — (e, 7).
(2) fOT L :Ié j: '
e (&(A)) =<,
& (6(4)) = (A).

(3) Assume €;(A) > 0. Then we have

(AN = 4 € if ei(A) 2 ¢ — (e, 7),
(&) {c-— 1 if eld) < o (o, D)
and : _ _
gxmaz( s — é'(A)a ZfE,(A) 2c— (aia '7),
' (&(A) {l_\, ZfE,(A) < c—(ai, 17).

We recall that B(oco) is the crystal base of U, (g).
Theorem 5.3.2. We have an isomorphism of crystals

| | B(oo; v) = B(oo) .
VEQ - '
We denote by Ay € [,eq_ B(oo; v) the corresponding element to b € B(co) under
this isomorphism. The following proposition is proved by Lusztig.

Proposition 5.3.3. A(v) is a Lagrangian subvariety of Xo(v).
By this result, any A, 1n B(oo; v) is an irreducible Lagrangian subvariety of Xo(v).

6. REVIEW OF THE THEORY OF CANONICAL BASE

6.1. Canonical base. Let us recall the results on Lusztig on canonical bases. We
write D(X) for the bounded derived category of complexes of sheaves of C-vector
spaces on the associated complex variety with an algebraic variety X over C. Objects
of D(X) are referred to as complexes. We shall use the notations of [BBD]; in
particular, [d] denotes a shift by [d] degrees, and for a morphism f of algebraic
varieties, f* denotes the inverse image functor, f; denotes direct image with compact
support, etc.

We fix an orientation Q of quiver. Let v € Q_ and let S, be the set of all pairs
(i, a) where i = (41,22, -+ ,im) is a sequence of elements of [ and a = (a1,a2, -+ ,am)
is a sequence of non-negative integers such that 3, aja;, = —v. Now let V € V, and
let (i,a) € S,. A flag of type (i,a) is, by definition, a sequence ¢ = (V = V° D
V15 ... D5 V™ =0) of I-graded subspace of V such that, for any [ = 1,2,--- ,m,
the I-graded vector space V!=1/V !'is zero in degrees # 7, and has dimension a; in
degree 7;. We define a variety F;, of all pairs (B, ¢) such that B € Ey,g and ¢ is a

-~

B-stable flag of type (i,a). The group Gy acts on F;, in natural way. We denote by
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Tia: .7:', 2 — Eygq the natural projection. We note that m; , is a Gy-equivariant proper
morphism. We set Lise = (7ia)i(1) € D(Ev,e). Here 1 € D(F;,) is the constant
sheaf on F;,. By the decomposition theorem [BBD], L; ..q is a semisimple complex.

Let Py be the set of isomorphism class of simple perverse sheaves L on Eyg
such that L[d] appears as direct summand of L;,.q for some (i,a) € S, and some
d € Z. We write Qv,q for the subcategory of D(Ev.q) consisting of all complexes that
are isomorphic to finite direct sums of complexes of the form L[d] for various simple
perverse sheaves L € Pygq and various d € Z. Any complex in Qvgq is semisimple
and Gy-equivariant. '

Take V €V,,V' €V,,V €V; for v =1+ 7 in Q_). We consider the diagram

(6,1) ) EV,‘Q X EVI,Q (pl EI P2)EII Pa) EV,Q )

Here E’ is the variety of (B, ¢, ¢') where B € Eygq and 0 — V NG VAN 77 —0is
a B-stable exact sequence of I-graded vector spaces, and E” is the variety of (B, C)
where B € Eyq and C is a B-stable I-graded subspace of V with diimC = #. The
morphisms p;, p, and p; are defined by P1(B ¢, ¢') = (Bly, Blv+), p2(B, ¢, ¢’)
(B,Im ($)) and p3(B,C) = B. Note that p; is smooth w1th connected fiber, P2 is a
principal Gys x Gy-bundle, and p;3 is proper.

Let L' € Quig and L € Qp . Consider the exterior tenser product LRI Then
there is (p2)bpl(L®L') € 'D(E”) such that (p;)* (pg)bpl(LEL’) =~ pj(LRL'). We define
L'« L € Qvga by (p3)i(p2)vp}(LRL')[d; — d3] where d; is the fiber dimension of p;
(¢ =1,2). Let Kv,q be the Grothendieck group of Qv,a. We considered as a Z[g, ¢™'}-
module by ¢(L) = L[1], ¢"*(L) = L[-1]. Then Kq = G,eq_ Kv(),a has a structure
~ of an associative graded Z[g, ¢ ']-algebra by the operation *. We denote by F; €
Kv(-ai),a the element attached to 1 € D(Ey(_ay),0)-

Theorem 6.1.1. [L3] There is a unique Q(q)-algebra isomorphism
Lo :U;(g) »Ka_ ® Qq)
Z[qu—l]

such that Fg(f,) =

Let us identify L € Py g with L®1 € Ka ®Z[q 11 Q(q). We set B = FQ (Uvev PVQ)
and call it the canonical basis of U7 (g). By [GL] B and B(oco) are canonically
identified. For b € B(co) the corresponding perverse sheaf is denoted by Ly q.

6.2. Let Y be a smooth algebraic variety. For any L € D(Y'), we denote by SS(L)
the singular support (or the characteristic variety) of L. It is known that SS(L) is a
closed Lagrangian subvariety of T*Y (See [KS]).

We recall that T*FEyq is identified with Xy. By the Fourier transform method, we
have

Theorem 6.2.1. [L5] SS(Ls,a) does not depend on the choice of Q.
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We say 7 € I is sink (resp. source) of § if there is no arrow ¢ — j (resp. j — ) in

Q.

Theorem 6.2.2. (1) For any L € Py the singular support SS(L) is a union of
irreducible components of Ay.
(2) For any b € B(o0) and i € I, we have

(6.2) : Ay C SS(Lb,Q) C AU U Ay.
ei(b)>e:(b)

Note that if there is a bijection s : B(co) — B(co) such that SS(Lyq) D A,y for
any b € B(co), then s must be the identity (¢f. Problem in [L5]). In fact, by the
decreasing induction on €;(b), (6.2) implies s(b) = b.

The following problem is also asked by Lusztlg [L5].

Problem 1. If the underlying graph is of type A, D E, then the smgula,r support of
any L € Pygq is irreducible.

 Furthermore he noted that the next conjecture [KL2] follows from Problem 1 for
type A (see §8.1). In fact it is easy to see that they are equivalent.

Conjecture 2. Let X be the flag manifold for SL(n) and let X,, be the Schubert
variety of SL(n) which corresponds to the element w of the Weyl group W. Then
the singular support of "Cy,, is irreducible.

In the next section we construct a counterexample of Problem 1 for a graph of type
A.
7. COUNTEREXAMPLE TO PROBLEM 1

7.1. In this and the next section we assume that the underlying graph is of type A.

Let us take v € Q_ and V € V,. Let Oq be a Gy-orbit in Eyvq. As the underlying
graph is of type A, Evgq has finitely many Gy-orbits. By [L3] we know that there
is one-to-one correspondence between Gy-orbits O in Eyq between the crystal basis
b € B(o) of Uy (g) of weight v by Ay = T Ev,q. For b € B(o0), we denote by Oyq
the corresponding Gy-orbit. The next theorem is due to Lusztig (See [L3].).

Theorem 7.1.1. Let b € B(co). Then we have
Lya="Co,,
where Co,,, is the constant sheaf on Oyq and ™ is the minimal extension functor.

Note that SS(L;q) depends only on b € B(co) and not on Q (cf. Theorem 6.2.1).
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7.2. In the rest of the section, we shall present a counterexample of Problem 1 when
the underlying graph is of type As. Let us take a graph of type As and its orientation

1 as follows;

2 3 - 41-5
017703 40.

~~~~~~~~~~~~

T1

1
O ¢

~~~~~~~~

f1 f2f2f2f2f2 fiue,. Then the followmg points By and Bo of Evgq are in Opq
and Obr,g, respectively. .

, 1000
1000 0100
(BO)*I:(O ’010)’(}30)’2= 0000
| 0001

1 00 0\ 00

0100 10

(BO)T"’=0010’(BO)T‘=OO’

0000 , 01
| 1000
' 0010 10100
(Bf")ﬂz(oc)()l)’(B"’)n: 0000}
0000

1000 (00

0100 00

(Bé)Tsz 00007('8(’))14= 1 0

0000 0 1

Now we can state a counterexample of Conjecture 1.

Theorem 7.2.1.
S5("Co4q) D Ay U Ay.

Remark 1. In fact, a,lthough we don’t glve a proof (relymg on Lemmas 8.2.1 and
8.2.2), they coincide. ’

8. RELATION WITH SCHUBERT CELLS

8.1. We consider the Dynkin diagram of type A,,.; and take its orientation Qg as

follows:
1, 2 Ton—2  2n—1
Qo; 0+ o0 P i B

Let vy = 227 —va(i) oy where va(i) =1 (for 1<i<n),=2n—i(forn <i<
2n—1) and let V€ V,,. : '

Let us set

E{',d = {B € Evy,q,; Br is injective for 1 < ¢ < n—1 and surjective n < < 2n—2}.
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It is clear that Ee,d is Gy-invariant.

Let G be GL(n,C), B a Borel subgroup of G, W the Weyl group of G and X = G/B
the flag variety. Weset X,, = BwB/B (w € W). Then X = ||,ew Xu gives a cellular
decomposition of X.

The decomposition of X x X to G-orbits is given by X x X = |, ew Yo with
Y, = G- ({eB} x X,,). Then, the following two conditions are equivalent:

(8.1.1) SS("Cyx,) is an irreducible variety.

(8.1.2) SS("Cy,) is an irreducible variety.
We have a G-equivariant isomorphism

EY [ TI GL(Vu;) ~ X x X.
‘ J#n
Therefore there is a one-to-one correspondence between G-orbits of X x X and Gy,,-

orbits of E{‘,d. Let us denote by O, q, the Gy,-orbit of EEQ, corresponding to Y.
Then we have '

(8.1) The irreducibility of SS("Cx, ) is equivalent to that of SS("Co,, 4, )-

8.2. For an orientation Q we say that ¢ € I is sink (resp. source) of Q if there is no
arrow ¢ — j (resp. j — ¢) in .

Lemma 8.2.1. (1) Let b € B(oo). If SS(Lia) D Ay, then €;(b) < &;(¥) for any
i € 1.
(2) If €i(b) = €i(b'), then the condition SS(Lyg) D Ay is equivalent to

SS(Lgmexp,0) D Agmex .

For an orientation 2, let s;Q (: € I) be the orientation obtained from 2 by reversing
each arrow that ends or starts at 1.

We define a map S; : {b € B(0);ei(b) = 0} — {b € B(o0); e;(b) = 0} by
Si(b) = ﬁp:(b)é’{max b. Then S; is bijective. Note that wt(S;(b)) = s;(wt(d)) (see [S]).
Here s; is the simple reflection.

Lemma 8.2.2. Assume that b,b’ € B(oo) has the same weight and thati € I salisfies

€:(0) = &;(b') = 0. Then the following two conditions are equivalent,

(1) SS(L[,’Q) D) Abr,
(2) SS(Lsi).s0) D Asie)-
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8.3. Only by using Lemma 8.2.1 and 8.2.2 we can show
Proposition 8.3.1. Conjecture 2 is true for1 <n < 7.

In fact we used a computer to check this.
There is a counterexample in the n = 8 case derived by the counterexample in
Theorem 7.2.1.

Example 8.3.1. Let

W = 8$1535284535554535251565756555453 and

w' = $153545355545357.

Here {s;};cs are the standard generators of symmetric group. Then we have

SS(ICOW’QO ) = Téw,no Evaq, U Téw',no Eva,.

This singularity is also realized by a partial flag manifold as follows. Let X’ be the
set of flags {F;} of C® with 0 =Fy C F; C F; C F53 C Fy = C® and dim F; = 25 (
j=1,2,3). Set Z =X'x X' = {(F, F’) € X’ X X’} Let Z; be the SL(8) orbit of
Z given by the following table of dim Grf Gr .

Nl 1 2 3 4
1|1 0o 1 o0
2 0o 1 o 1
31 0 1 0
410 1 0 1

and Z; is given by
i

O O O N |
oS NOO O N
o O N O_,CD
N O O O |

1
2
3
4

Then Y, (resp. Y,) is the inverse image of Z; (resp. Z,) by the canonical morphism
X x X — X’ x X'. Hence the characteristic variety of the intersection cohomology
sheaf of Z; contains the conormal bundle of Z,. The singularity of Z, at Z, is the
same as the one of the counterexample in Theorem 7.2.1.
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