Title

Associated variety, Kostant-Sekiguchi correspondence, and locally free U(n)-action on Harish-Chandra modules

Author(s)

GYOJA, Akihiko; YAMASHITA, Hiroshi

Citation

数理解析研究所講究録 (1997), 1008: 1-20

Issue Date

1997-08

URL

http://hdl.handle.net/2433/61494

Right

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
Associated variety, Kostant-Sekiguchi correspondence, and locally free $U(n)$-action on Harish-Chandra modules

Dedicated to Professor Takeshi Hirai on his sixtieth birthday

京都大学総合人間学部 行者明彦 (Akihiko GYOJA)
北海道大学理学研究科 山下 博 (Hiroshi YAMASHITA)

Introduction.

Let \mathfrak{g} be a complex semisimple Lie algebra, and let $\mathfrak{g} = \mathfrak{t} + \mathfrak{p}$ be the symmetric decomposition of \mathfrak{g} defined by an involutive automorphism θ of \mathfrak{g}. By a Harish-Chandra module associated to the pair $(\mathfrak{g}, \mathfrak{t})$, we mean a $U(\mathfrak{g})$-module X of finite length on which the subalgebra $U(\mathfrak{t})$ acts locally finitely. Here $U(\mathfrak{g})$ denotes the universal enveloping algebra of a complex Lie algebra \mathfrak{g}.

The main purpose of this paper is to give for each irreducible Harish-Chandra module X a family of nilpotent Lie subalgebras $\mathfrak{n}(\mathcal{O})$ of \mathfrak{g} whose enveloping algebras $U(\mathfrak{n}(\mathcal{O}))$ act on X locally freely. The Lie subalgebras $\mathfrak{n}(\mathcal{O})$ are parametrized by the nilpotent K_C^{ad}-orbits \mathcal{O} contained in the associated variety $\mathcal{V}(X) \subset \mathfrak{p}$ of X, where K_C^{ad} denotes the analytic subgroup of adjoint group $G_C^{ad} = \text{Int}(\mathfrak{g})$ of \mathfrak{g} corresponding to the Lie subalgebra \mathfrak{t}. We construct $\mathfrak{n}(\mathcal{O})$ from a K_C^{ad}-orbit \mathcal{O} through the Cayley transformation of normal \mathfrak{sl}_2-triples that gives the Kostant-Sekiguchi correspondence of nilpotent orbits ([8]).

The Harish-Chandra modules are essentially related to infinite-dimensional representations of a real semisimple Lie group as follows. Let \mathfrak{g}_0 be any real form of \mathfrak{g}, and let G be a connected linear Lie group with Lie algebra \mathfrak{g}_0. We can and do choose an involution θ of \mathfrak{g} such that the real form \mathfrak{g}_0 is θ-stable and that $\mathfrak{t}_0 := \mathfrak{t} \cap \mathfrak{g}_0$ coincides with the Lie algebra of a maximal compact subgroup K of G ([3, Ch.III, §4]). By fundamental results of Harish-Chandra ([2], see also [11, Ch. 3]), any admissible Hilbert representation (π, H) of G of finite length yields a Harish-Chandra module X by passing to the K-finite part of H through differentiation. The irreducibility is preserved by the assignment $H \rightarrow X$. Accordingly, we may say that the present work reveals some new algebraic aspects of representations of the group G.

We now explain the results of this article in more detail.

(A) For a nonzero nilpotent K_C^{ad}-orbit \mathcal{O} in \mathfrak{p}, take a normal \mathfrak{sl}_2-triple $(X, H, Y) \subset \mathfrak{g}$ with $X \in \mathcal{O}$ (see 1.6), and define its Cayley transform (X', H', Y') as in (1.2). Making use of the l-eigenspaces $\mathfrak{g}(l) \ (l = 1, 2, \ldots)$ of \mathfrak{g} with respect to $\text{ad}(H')$, we can construct a

*Supported in part by Grant-in-Aid for Scientific Research (C) (2) 08640001, The Ministry of Education, Science, Sports and Culture, Japan.
nilpotent Lie subalgebra $\mathfrak{n}(\mathcal{O}) = (\mathfrak{g}^1_{1}(1) \oplus \mathfrak{g}^3_{3}(1)) \oplus (\oplus_{l \geq 2} \mathfrak{g}(l))$ of \mathfrak{g} with $\mathfrak{g}^1_{1}(1) \oplus \mathfrak{g}^3_{3}(1) \subset \mathfrak{g}(1)$ (see 1.4 and 1.6 for the precise definition of subspaces $\mathfrak{g}^a_l(l)$ of $\mathfrak{g}(l)$) such that:

(i) $\dim \mathfrak{n}(\mathcal{O}) = \dim \mathcal{O}$,

(ii) the Killing form B of \mathfrak{g} is nondegenerate on $\text{ad}(X) \mathfrak{k} \times \mathfrak{n}(\mathcal{O})$.

(See Theorem 1.2 and Lemma 3.1.) Up to $K_{\mathcal{O}}^{ad}$-conjugacy, the Lie subalgebra $\mathfrak{n}(\mathcal{O})$ is independent of the choice of an \mathfrak{sl}_2-triple (X, H, Y). In addition, the ideal $\oplus_{l \geq 2} \mathfrak{g}(l)$ of $\mathfrak{n}(\mathcal{O})$ becomes stable under the complex conjugation of \mathfrak{g} with respect to the real form \mathfrak{g}_0, if we construct $\mathfrak{n}(\mathcal{O})$ from a strictly normal \mathfrak{sl}_2-triple (Proposition 3.1). We can describe concretely the Lie subalgebras $\mathfrak{n}(\mathcal{O})$ associated to the holomorphic nilpotent orbits \mathcal{O} in \mathfrak{p} (Theorem 3.6), when \mathfrak{g}_0 is a noncompact real simple Lie algebra of hermitian type. As we indicate below, the above two properties (i) and (ii) are crucial to establish the local freeness of the $U(\mathfrak{n}(\mathcal{O}))$-action on Harish-Chandra modules.

(B) Now let X be an irreducible Harish-Chandra module. Through the natural increasing filtration $U_k(\mathfrak{g})$ ($k = 0, 1, \ldots$) of $U(\mathfrak{g})$, we attach to each nonzero vector $v \in X$ a graded module $M = \text{gr}(X; v) := \oplus_{k=0}^{\infty} U_k(\mathfrak{g})v/U_{k-1}(\mathfrak{g})v$ over the symmetric algebra $S(\mathfrak{g}) \simeq \oplus_{k=0}^{\infty} U_k(\mathfrak{g})/U_{k-1}(\mathfrak{g})$ of \mathfrak{g}, where $U_1(\mathfrak{g}) = \{0\}$. The associated variety $\mathcal{V}(X)$ of X is then defined to be the set of the common zeros of elements in the annihilator Ann$_{S(\mathfrak{g})}(\mathfrak{M})$ of \mathfrak{M}. Here, $\mathcal{V}(X)$ is independent of the choice of a vector v, and we identify $S(\mathfrak{g})$ with the ring of polynomial functions on \mathfrak{g} through the Killing form B.

As seen by Vogan [10], the variety $\mathcal{V}(X)$ associated to X is a union of finitely many nilpotent $K_{\mathcal{O}}^{ad}$-orbits in \mathfrak{p} (cf. Lemma 2.2). If \mathcal{O} is a $K_{\mathcal{O}}^{ad}$-orbit contained in $\mathcal{V}(X)$, the above properties (i) and (ii) imply that the natural projection $p : \mathfrak{g} \rightarrow \mathfrak{g}/\mathfrak{n}(\mathcal{O})^\perp$ induces a linear isomorphism from the tangent space $\text{ad}(X) \mathfrak{t}$ of \mathcal{O} at X onto $\mathfrak{g}/\mathfrak{n}(\mathcal{O})^\perp$, where $\mathfrak{n}(\mathcal{O})^\perp$ is the orthogonal of $\mathfrak{n}(\mathcal{O})$ in \mathfrak{g} with respect to B. This allows us to deduce that $M = \text{gr}(X; v)$ is a torsion free $S(\mathfrak{n}(\mathcal{O}))$-module for every nonzero $v \in X$. As a consequence, we establish the main result of this article as follows.

Theorem. (Theorem 3.2) Let X be an irreducible Harish-Chandra module. The enveloping algebra $U(\mathfrak{n}(\mathcal{O}))$ of nilpotent Lie subalgebra $\mathfrak{n}(\mathcal{O})$ acts on X locally freely for every nilpotent $K_{\mathcal{O}}^{ad}$-orbit $\mathcal{O} \subset \mathfrak{p}$ contained in the associated variety $\mathcal{V}(X)$ of X.

We remark that, by the Hilbert-Serre theorem, X is a torsion free $U(\mathfrak{n})$-module for a Lie subalgebra \mathfrak{n} of \mathfrak{g} only if $\dim \mathfrak{n} \leq \dim \mathcal{V}(X)$.

Bearing this remark in mind, we derive two interesting conclusions of the above theorem. First, we find that the nilpotent Lie subalgebra $\mathfrak{n}(\mathcal{O}_{\text{max}})$ associated to a maximal $K_{\mathcal{O}}^{ad}$-orbit \mathcal{O}_{max} in $\mathcal{V}(X)$ realizes a maximal Lie subalgebra of \mathfrak{g} among those having locally free action on X (Theorem 3.3). Second, let $\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}_m$ be a complexified Iwasawa decomposition of \mathfrak{g}_0. Then it can be shown that an irreducible Harish-Chandra
module X is large i.e., $\dim V(X) = \dim n_m$, if and only if X is a torsion free $U(n_m)$-module (Theorem 3.4).

(C) The organization of this paper is as follows.

In section 1, we first study certain fine structure on finite-dimensional $SL(2, C)$-modules equipped with involutive linear transformations (see Proposition 1.2 and Theorem 1.1). The properties (i) and (ii) stated in (A) for the nilpotent Lie subalgebra $n(\mathcal{O})$ of g are shown by applying Theorem 1.1 to the adjoint representation of $s := CX + CH + CY \simeq sl(2, C)$ on g.

Section 2 is devoted to giving a simple criterion for X to be a torsion free $U(n)$-module. More precisely the matters are discussed in much more general situation, where g is an arbitrary complex Lie algebra, \mathfrak{t} and n are any two Lie subalgebras of g, and X is a locally $U(\mathfrak{t})$-finite, irreducible $U(g)$-module. Our criterion (Theorem 2.1) is given by means of the Lie subalgebras \mathfrak{t}, n and the associated variety $V(X)$ of X.

In section 3, the main result of this paper, Theorem 3.2, is established by using Theorems 1.2 and 2.1. Then we deduce two important consequences (Theorems 3.3 and 3.4) of Theorem 3.2. In addition, the Lie subalgebras $n(\mathcal{O})$ associated to the holomorphic nilpotent $K_{\mathcal{O}}^{ad}$-orbits \mathcal{O} are described explicitly in 3.3.

An enlarged version of this article, with complete proofs, will appear elsewhere.

1. $SL(2, C)$-modules with involution $\tilde{\sigma}$.

In this section, we begin with investigating in 1.1 - 1.5 certain fine structure on finite-dimensional $SL(2, C)$-modules V equipped with an involutive linear transformation $\tilde{\sigma} \in GL(V)$, compatible with a nontrivial involution σ of $SL(2, C)$. The results are summarized as Proposition 1.2 and Theorem 1.1.

We then apply the results to Lie algebra case in 1.6, where $V = g$ is a complex semisimple Lie algebra with an involution $\tilde{\sigma} = \sigma$, and $SL(2, C)$ acts on g through the adjoint representation of a σ-stable, simple Lie subalgebra $s \simeq sl(2, C)$ of g. This gives us a new kind of decomposition of g (Theorem 1.2(3)), which is, in a sense, comparable with the (complexified) generalized Iwasawa decompositions of g. The nilpotent Lie subalgebra n of g appearing in this decomposition will play an essential role in §3 for studying locally free $U(n)$-action on Harish-Chandra modules.

1.1. sl_2-triples and Cayley transformation. Let $s = CX + CH + CY \simeq sl(2, C)$ be a three-dimensional, complex simple Lie algebra with commutation relation:

\begin{align*}
[H, X] &= 2X, \\
[H, Y] &= -2Y, \\
[X, Y] &= H.
\end{align*}
We denote by $S \simeq SL(2, C)$ the simply connected Lie group with Lie algebra \mathfrak{s}. Setting

\begin{align*}
X' &= \frac{i}{2}(H - X + Y), \quad H' = X + Y, \quad Y' = -\frac{i}{2}(H + X - Y),
\end{align*}

one gets another $\mathfrak{s}l_2$-triple (X', H', Y') in \mathfrak{s} which satisfies the same relation (1.1). If we identify \mathfrak{s} with $\mathfrak{s}(2, C)$ by

\begin{align*}
X &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},
\end{align*}

then

\begin{align*}
X' &= \frac{i}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \quad H' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y' = \frac{i}{2} \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}
\end{align*}

is a basis of the real form $\mathfrak{su}(1,1)$ of \mathfrak{s}, and the Cayley transformation:

\begin{align*}
\tilde{c} : \mathfrak{s} \ni Z &\mapsto \text{Ad}(c)Z = cZc^{-1} \in \mathfrak{s} \quad \text{with} \quad c = \frac{1}{1+i} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} \in SL(2, C)
\end{align*}

sends the $\mathfrak{s}l_2$-triple (X, H, Y) to (X', H', Y'). Note that the center of S contains a unique nontrivial element $\epsilon = \exp(\pi i H')$ corresponding to the matrix \(\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \).

Now let σ be the involutive automorphism of \mathfrak{s} defined by

\begin{align*}
\sigma X &= -X, \quad \sigma H = H, \quad \sigma Y = -Y.
\end{align*}

It then follows that $\sigma X' = -Y', \sigma Y' = -X'$ and $\sigma H' = -H'$. Extend σ to an automorphism of S through the exponential map, which we denote again by σ. Let

\begin{align*}
w := \exp \frac{\pi}{2}(X' - Y') = \exp X' \cdot \exp(-Y') \cdot \exp X'
\end{align*}

be an element of S corresponding to the matrix \(\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \) which represents the nontrivial element of the Weyl group of \mathfrak{s} with respect to Cartan subalgebra CH'.

Direct computation in $S \simeq SL(2, C)$ immediately gives the following lemma.

Lemma 1.1. One has the equalities:

1. $\sigma(w) = w$, \quad $w^2 = \epsilon$,
2. $\sigma(s) = ws w^{-1}$ (s $\in S$), and σ equals Ad(w) on \mathfrak{s},
3. $\text{Ad}(\exp(-i Y'))X = iX'/2$.

1.2. Irreducible S-modules. For each nonnegative integer d, let (τ_d, V_d) be an irreducible S-module of dimension $d+1$. The Lie algebra s acts on V_d through differentiation. Take a nonzero highest weight vector $v^{(d)}_d \in V_d$ such that

\begin{equation}
\tau_d(H')v^{(d)}_d = dv^{(d)}_d, \quad \tau_d(X')v^{(d)}_d = 0
\end{equation}

and set

\begin{equation}
v^{(d)}_{d-2j} = \frac{1}{j!} \tau_d(Y')^j v^{(d)}_d \quad (j = 0, 1, \ldots, d).
\end{equation}

Then the vectors $v^{(d)}_{d-2j}$ $(0 \leq j \leq d)$ form a basis of V_d for which the action of X', H', Y' is described respectively as

\begin{equation}
\begin{cases}
\tau_d(X')v^{(d)}_{d-2j} = (d+1-j)v^{(d)}_{d-2(j-1)}; \\
\tau_d(H')v^{(d)}_{d-2j} = (d-2j)v^{(d)}_{d-2j}; \\
\tau_d(Y')v^{(d)}_{d-2j} = (j+1)v^{(d)}_{d-2(j+1)},
\end{cases}
\end{equation}

where $v^{(d)}_{-2} = v^{(d)}_{d+2} = 0$. We note that the element $w \in S$ in (1.5) acts on V_d as

\begin{equation}
\tau_d(w)v^{(d)}_{d-2j} = ((d)-1)d^{-j}v^{(d)}_{d-2j} \quad (j = 0, 1, \ldots, d).
\end{equation}

1.3. Extension $\tilde{\sigma}$ and S-homomorphism J. Let (τ, V) be any finite-dimensional S-module (and so s-module). A map $\tilde{\sigma} : V \rightarrow V$ is called an extension of σ to V if it is an involutive linear isomorphism on V satisfying

\begin{equation}
\tilde{\sigma} \tau(Z) \tilde{\sigma}^{-1} = \tau(\sigma Z) \quad (Z \in s).
\end{equation}

The totality of such extensions will be denoted by E_V. If $V = V_d$ is irreducible, $\tilde{\sigma} := i\tau(w)$ for $d \in 2\mathbb{Z} + 1; \tilde{\sigma} := \tau(w)$ for $d \in 2\mathbb{Z}$, gives an extension of σ to V, by Lemma 1.1(2).

In 1.6 we will meet extension $\tilde{\sigma}$ arising from an involutive automorphism of a semisimple Lie algebra $g = V$, where s is a Lie subalgebra of g acting on V through the adjoint representation.

Let F_V denote the set of all S-homomorphisms J on V such that $J^2 = \tau(\varepsilon)$, where $\varepsilon = \varepsilon$ is, as in Lemma 1.1, the nontrivial central element of S. Then,

Proposition 1.1. The assignment $\tilde{\sigma} \mapsto J := \tilde{\sigma} \tau(w)$ gives a bijective correspondence from E_V onto F_V.

It should be noticed that

\begin{equation}
J \tilde{\sigma} = \tilde{\sigma} J = \tau(w),
\end{equation}

since $\tilde{\sigma}$ is involutive and it commutes with $\tau(w)$.

We fix once and for all an extension $\tilde{\sigma}$ of σ to V, and the corresponding S-homomorphism $J = \tilde{\sigma} \tau(w)$.
1.4. The subspace U. For an S-module (τ, V) with $\tilde{\sigma} \in E_V$ and the corresponding $J \in F_V$ in 1.3, let

$$V = V(\tilde{\sigma}, +1) \oplus V(\tilde{\sigma}, -1) \quad \text{with} \quad V(\tilde{\sigma}, \pm 1) := \{v \in V | \tilde{\sigma}v = \pm v\}$$

be the eigenspace decomposition of V with respect to $\tilde{\sigma}$. The semisimple element $H' \in s$ gives a weight space decomposition of V:

$$V = \bigoplus_{l \in \mathbb{Z}} V(l) \quad \text{with} \quad V(l) := \{v \in V | \tau(H')v = lv\}.$$

We decompose the S-module V into irreducibles as

$$V = \bigoplus_{d \geq 0} [m_d] \cdot V_d \quad \text{with} \quad [m_d] \cdot V \simeq V_d \oplus \cdots \oplus V_d(m_d\text{-copies}),$$

where m_d denotes the multiplicity of simple S-module V_d (see 1.2) in V. Put

$$V^{(\kappa)} := \bigoplus_{d \in I(\kappa)} [m_d] \cdot V_d \subset V,$$

for $\kappa = 0, 1, 2, 3$. Then $V^{(\kappa)}$ is the S-submodule of V generated by all the maximal weight vectors in V with weight $\lambda \equiv \kappa \pmod{4}$. Clearly it holds that

$$V = \bigoplus_{\kappa=0}^{3} V^{(\kappa)} \quad \text{as} \quad S\text{-modules},$$

and that

$$V^{(\kappa)} = \bigoplus_{l \in \mathbb{Z}} V^{(\kappa)}(l) \quad \text{with} \quad V^{(\kappa)}(l) := V^{(\kappa)} \cap V(l),$$

gives the weight space decomposition of $V^{(\kappa)}$, where $V^{(\kappa)}(l) = \{0\}$ if $\kappa - l \not\in 2\mathbb{Z}$. It should be remarked that any S-submodule W of V decomposes as

$$W = \bigoplus_{\kappa=0}^{3} W \cap V^{(\kappa)},$$

since each irreducible constituent of W with highest weight $d \in I(\kappa)$ is contained in $V^{(\kappa)}$.

Using the S-homomorphism J on V such that $J^4 = \tau(\epsilon)^2 = \tau(1) = id_V$, we obtain another decomposition of the S-representation (τ, V) as

$$V = \bigoplus_{\eta=0}^{3} V(\eta) \quad \text{with} \quad V(\eta) := \{v \in V | JVv = i^\eta v\}.$$

Denote by $V(\eta)(l) := V(l) \cap V(\eta)$ the l-weight subspace of $V(\eta)$. We observe that $V(\eta)(l) = \{0\}$ if $\eta - l \not\in 2\mathbb{Z}$, because $J^2 = \tau(\epsilon) = \exp(\pi i \tau(H'))$ acts on $V(l)$ by the scalar $(-1)^l$.

Summarizing the above discussion, we immediately deduce the following lemma on the compatibility of two decompositions (1.16) and (1.19).
Lemma 1.2. (τ, V) admits the decomposition:

\[(1.20) \quad V = \bigoplus_{\kappa,\eta=0}^{3} V_{\eta}^\kappa \quad \text{with} \quad V_{\eta}^\kappa := V^{(\kappa)} \cap V(\eta)\]

as S-modules, and V_{η}^κ equals $\{0\}$ if $\kappa - \eta \notin 2\mathbb{Z}$.

This lemma shows that the even part $V^{\text{even}} := \bigoplus_{l \in 2\mathbb{Z}} V(l)$ and the odd part $V^{\text{odd}} := \bigoplus_{l \in 2\mathbb{Z}+1} V(l)$ of V decompose respectively as

\[(1.21) \quad \begin{cases} V^{\text{even}} = V^{(0)} \oplus V^{(2)} = V_{0}^{0} \oplus V_{2}^{0} \oplus V_{0}^{2} \oplus V_{2}^{2}, \\ V^{\text{odd}} = V^{(1)} \oplus V^{(3)} = V_{1}^{1} \oplus V_{3}^{1} \oplus V_{1}^{3} \oplus V_{3}^{3}. \end{cases}\]

We note that the involution $\tilde{\sigma}$ acts on V in the following way.

Lemma 1.3. For $\kappa, \eta = 0, 1, 2, 3$, and $l \in \mathbb{Z}$, let $V_{\eta}^\kappa(l) := V_{\eta}^\kappa \cap V(l)$ denote the l-weight subspace of V_{η}^κ. Then it holds that

\[(1.22) \quad \tilde{\sigma} V_{\eta}^\kappa = V_{\eta}^\kappa, \quad \tilde{\sigma} V(l) = V(-l), \quad \text{and so} \quad \tilde{\sigma} V_{\eta}^\kappa(l) = V_{\eta}^\kappa(-l).\]

We now introduce a subspace U of V defined as follows:

\[(1.23) \quad U := (V_{1}^{1}(1) \oplus V_{3}^{3}(1)) \oplus (\bigoplus_{l \geq 2} V(l)).\]

This subspace U will provide us in §3 with a nilpotent Lie subalgebra \mathfrak{n} of a semisimple Lie algebra \mathfrak{g}, admitting locally free action on Harish-Chandra modules for \mathfrak{g}.

The following proposition is one of the essential ingredients to establish our main result on locally free $U(\mathfrak{n})$-action on Harish-Chandra modules.

Proposition 1.2. Let (τ, V) be a finite-dimensional S-module with $\tilde{\sigma}, J \in GL(V)$ in 1.3, and let U be the subspace of V defined above. Then V is expressed as a sum of three subspaces as

\[(1.24) \quad V = V(\tilde{\sigma}, +1) + \text{Ker} \tau(X) + U = \tilde{\sigma} U + \text{Ker} \tau(X) + U,\]

where $V(\tilde{\sigma}, +1)$ is the subspace of $\tilde{\sigma}$-fixed vectors as in (1.12), and $\text{Ker} \tau(X) = \{v \in V| \tau(X)v = 0\}$ denotes the kernel of $\tau(X)$.
1.5. S-modules with JS-invariant form. Let (τ, V) be, as in 1.3, a finite-dimensional S-module with extension $\tilde{\sigma} \in E_{V}$ and $J = \tilde{\sigma} \tau(w) \in F_{V}$. A bilinear form B on V is called J- and S-invariant, or JS-invariant for short, if it satisfies

\[(1.25) \quad B(Jv, Jv') = B(\tau(s)v, \tau(s)v') = B(v, v') \quad (s \in S),\]

or equivalently,

\[(1.26) \quad B(\tilde{\sigma}v, \tilde{\sigma}v') = B(v, v'), \quad \text{and} \quad B(\tau(Z)v, v') + B(v, \tau(Z)v') = 0 \quad (Z \in s)\]

for all $v, v' \in V$.

Now let us consider the subspaces $V(\tilde{\sigma}, \pm 1)$, $V(l)$ ($l \in Z$) and the S-submodules $V^{(\kappa)}, V_{(\eta)}$ ($\kappa, \eta = 0, 1, 2, 3$) of V defined in (1.12), (1.13), and (1.15), (1.19) respectively. If B is any JS-invariant bilinear form on V, these subspaces have the following orthogonality relations with respect to B:

\[(1.27) \quad V(\tilde{\sigma}, \pm 1) \perp V(\tilde{\sigma}, \mp 1), \quad V(l) \perp V(l') \quad \text{if} \ l + l' \neq 0,\]

\[(1.28) \quad V^{(\kappa)} \perp V^{(\kappa')} \quad \text{if} \ \kappa \neq \kappa', \quad V_{(\eta)} \perp V_{(\eta')} \quad \text{if} \ \eta + \eta' \neq 0 \quad \text{or} \quad 4,\]

which can be checked easily by the JS-invariance of B. (For the third relation one may use the fact that the Casimir element $H^2 + 2(X'Y' + Y'X')$ for s has distinct eigenvalues on each $V^{(\kappa)}$.) Here, for any subsets L_1 and L_2 of V, $L_1 \perp L_2$ stands for $B(v_1, v_2) = 0$ for every $v_1 \in L_1$ and $v_2 \in L_2$.

We now derive an important consequence of Proposition 1.2 for (τ, V) with JS-invariant form, as follows.

Theorem 1.1. Assume that the S-module (τ, V) admits a JS-invariant, nondegenerate symmetric bilinear form B on V. Then it holds that

1. $\dim U = \dim \tau(X)V(\tilde{\sigma}, +1) = \dim \tau(X)V(\tilde{\sigma}, -1) = (\dim \tau(X)V)/2$.
2. B is nondegenerate on $\tau(X)V(\tilde{\sigma}, +1) \times U$.
3. $V = (V(\tilde{\sigma}, +1) + \text{Ker} \tau(X)) \oplus U$ (direct sum).

Here $V(\tilde{\sigma}, \pm 1)$ and U are the subspaces of V defined by (1.12) and in (1.23), respectively.

Remark. Since $\tau(Y')V_{\eta}^{(\kappa)}(1) = V_{\eta}^{(\kappa)}(-1)$, it follows from (1.27) and (1.28) that

\[(1.29) \quad B(\tau(Y')v, v') = 0 \quad \text{for} \ v, v' \in U \cap V(1) = V_{1}^{1}(1) \oplus V_{3}^{3}(1).\]

This implies that $U \cap V(1)$ is a maximally totally isotropic subspace for the skew-symmetric bilinear form $V(1) \times V(1) \ni (v_1, v_2) \rightarrow B(\tau(Y')v_1, v_2) \in C$ on $V(1)$.
1.6. An application of Theorem 1.1. We finish this section by giving an application of Theorem 1.1 of particular importance, to the case where \(g = V \) is a semisimple Lie algebra and \((\tau, V) \) is the adjoint representation on \(g \) of a Lie subalgebra \(s \cong sl(2, \mathbb{C}) \subset g \).

To be more precise, let \(g \) be a complex semisimple Lie algebra, and \(\theta \) be an involutive automorphism of \(g \). We denote by \(g = \mathfrak{k} + \mathfrak{p} \) the eigenspace decomposition of \(g \) with respect to \(\theta \), where \(\mathfrak{k} := g(\theta, +1) \) and \(\mathfrak{p} := g(\theta, -1) \) are as in (1.12) with \(\bar{\theta} = \theta \).

Let \((X, H, Y)\) be an \(sl_2 \)-triple in \(g \) with commutation relation (1.1). Such a triple is called normal (cf. [6]) if \(\sigma = \theta \) acts on the elements \(X, H, \) and \(Y \) as in (1.4). Take an arbitrary normal \(sl_2 \)-triple \((X, H, Y)\) in \(g \), and set \(s := CX + CH + CY = CX' + CH' + CY' \approx sl(2, C) \). Here \((X', H', Y')\) is the Cayley transform of \((X, H, Y)\) defined by (1.2).

We consider \((\tau, V) = (\text{ad}|s, g)\), the adjoint representation of \(s \) on \(g \). Put \(J := \theta \text{Ad}(w) \), where \(w \) is defined by (1.5). Then it should be mentioned that the involution \(\theta \) on \(g \) is actually an extension of \(\theta \)'s \((= \theta \) restricted to \(s) \) to \(g \) in the sense of (1.10), and that the Killing form \(B \) of \(g \) gives a nondegenerate \(JS \)-invariant form on \(g \) (see 1.5 for the definition). Let

\[
(1.30) \quad n = n_s := (g_1^1(1) \oplus g_3^3(1)) \oplus (\oplus_{l \geq 2} g(l))
\]

denote the subspace \(U \) of \(g \) defined in (1.23) for \(V = g \). Then it is easily seen that \(n \) is a nilpotent Lie subalgebra of \(g \).

Applying Theorem 1.1 to the above setting, we now gain

Theorem 1.2. Let \(g = \mathfrak{k} + \mathfrak{p} \) be the symmetric decomposition of a complex semisimple Lie algebra \(g \) with respect to an involution \(\theta \) of \(g \), and let \((X, H, Y)\) be a normal \(sl_2 \)-triple in \(g \). Then one gets the following properties (1)-(3) for the nilpotent Lie subalgebra \(n = n_s \) of \(g \) in (1.30):

1. \(\dim n = \dim \text{ad}(X)\mathfrak{k} = \dim \text{ad}(X)\mathfrak{p} = (\dim \text{ad}(X)g)/2 \),
2. the Killing form \(B \) of \(g \) is nondegenerate on \(\text{ad}(X)\mathfrak{k} \times n \),
3. \(g = (\mathfrak{k} + z(X)) \oplus n \) as vector spaces.

Here \(z(X) := \text{Ker\,ad}(X) \) denotes the centralizer of \(X \) in \(g \).

Remarks. (1) Set \(\tilde{n} := \oplus_{l \geq 1} g(l) \), then \(\tilde{n} \) is a nilpotent Lie subalgebra of \(g \) containing \(n \) as its ideal. The Remark in 1.5 implies that our \(n \) is a polarizing subalgebra (see e.g., [1, p.28]) of \(\tilde{n} \) for the linear form:

\[
\xi_{Y'} : \tilde{n} \ni Z \mapsto B(Y', Z) \in C
\]
on \(\tilde{n} \), defined by the nilpotent element \(Y' \in g(-2) \) through the Killing form. In particular \(\xi_{Y'} \) gives a one-dimensional representation of \(n \).
(2) Let G_C be a complex semisimple Lie group with Lie algebra \mathfrak{g}, and $N_C = \exp n$ be the analytic subgroup of \mathfrak{g} with Lie algebra n. Then, the character $\xi Y'$ of n gives rise to an induced G_C-module $\text{Ind}^{G_C}_{N_C}(\exp \xi Y')$, called the generalized Gelfand-Graev representation of G_C associated to the nilpotent orbit $\text{Ad}(G_C)Y'$. ([4], see also [12, §1].)

2. Associated variety and a criterion for locally free $U(n)$-action.

Let \mathfrak{g} be any finite-dimensional complex Lie algebra, and $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}. We now consider two Lie subalgebras \mathfrak{t} and n of \mathfrak{g}. In this section we give a simple criterion (Theorem 2.1) for a locally $U(\mathfrak{t})$-finite, irreducible $U(\mathfrak{g})$-module X to be a torsion free $U(n)$-module. Our criterion is described by means of the Lie subalgebras \mathfrak{t}, n and the associated variety $\mathcal{V}(X)$ of X. It has, as we show in §3, an interesting application when X is a Harish-Chandra module for a semisimple Lie algebra \mathfrak{g}.

2.1. Associated variety for $U(\mathfrak{g})$-modules. First of all we introduce the associated variety for finitely generated $U(\mathfrak{g})$-modules which is one of the principal objects in the present article, and review after [10] some fundamental properties for this variety.

Denote by $(U_k(\mathfrak{g}))_{k=0,1,\ldots}$ the natural increasing filtration of $U(\mathfrak{g})$, where $U_k(\mathfrak{g})$ is the subspace of $U(\mathfrak{g})$ generated by elements $X_1 \cdots X_m$ $(m \leq k)$ with $X_j \in \mathfrak{g}$ $(1 \leq j \leq m)$. By the Poincaré-Birkhoff-Witt theorem, we can and do identify the associated graded ring

$$\text{gr} U(\mathfrak{g}) = \bigoplus_{k \geq 0} U_k(\mathfrak{g})/U_{k-1}(\mathfrak{g}) \quad (U_{-1}(\mathfrak{g}) := (0))$$

with the symmetric algebra $S(\mathfrak{g}) = \bigoplus_{k \geq 0} S^k(\mathfrak{g})$ of \mathfrak{g} in the canonical way. Here $S^k(\mathfrak{g})$ denotes the homogeneous component of $S(\mathfrak{g})$ of degree k.

Let X be a finitely generated $U(\mathfrak{g})$-module. Take a finite-dimensional subspace X_0 of X such that $X = U(\mathfrak{g})X_0$. Setting $X_k = U_k(\mathfrak{g})X_0$ $(k = 1, 2, \ldots)$, one gets an increasing filtration $(X_k)_k$ of X and correspondingly a finitely generated, graded $S(\mathfrak{g})$-module

$$\text{M} = \text{gr}(X; X_0) := \bigoplus_{k \geq 0} M_k \quad \text{with} \quad M_k = X_k/X_{k-1}. \quad (2.1)$$

The annihilator $\text{Ann}_{S(\mathfrak{g})}M := \{ D \in S(\mathfrak{g}) \mid Dv = 0 \ (\forall v \in M) \}$ of M is a graded ideal of $S(\mathfrak{g})$, and it defines an algebraic cone in the dual space \mathfrak{g}^* of \mathfrak{g}:

$$\mathcal{V}(M) := \{ \lambda \in \mathfrak{g}^* \mid D(\lambda) = 0 \ (\forall D \in \text{Ann}_{S(\mathfrak{g})}M) \}, \quad (2.2)$$

as the set of common zeros of elements of $\text{Ann}_{S(\mathfrak{g})}M$. Here $S(\mathfrak{g})$ is looked upon as the polynomial ring over \mathfrak{g}^* in the canonical way. It is then easily seen that the variety $\mathcal{V}(M)$
does not depend on the choice of a generating subspace \(X_0 \). So, hereafter we write \(\mathcal{V}(X) \) for this invariant \(\mathcal{V}(M) \) of \(X \).

Definition. (Cf. [10], see also [14]) For a finitely generated \(U(\mathfrak{g}) \)-module \(X \), the variety \(\mathcal{V}(X) \subset \mathfrak{g}^* \) and its dimension \(d(X) := \dim \mathcal{V}(X) \) are called respectively the *associated variety* and the *Gelfand-Kirillov dimension* of \(X \).

Remark. By the Hilbert-Serre theorem (cf. [14, Th.1.1]), the map \(k \mapsto \dim X_k \) coincides with a polynomial in \(k \) of degree \(d(X) \), for sufficiently large \(k \).

Let \(G_C^{ad} := \text{Int}(\mathfrak{g}) \) be the adjoint group of \(\mathfrak{g} \). We denote by \(I(\mathfrak{g}) \) the graded subalgebra of \(S(\mathfrak{g}) \) consisting of all \(G_C^{ad} \)-fixed elements in \(S(\mathfrak{g}) \). Then \(I(\mathfrak{g}) \) has a unique maximal graded ideal \(I(\mathfrak{g})_+ := \oplus_{k>0} I(\mathfrak{g}) \cap S^k(\mathfrak{g}) \).

By making use of the Schur lemma [11, Lemma 0.5.2] for irreducible \(U(\mathfrak{g}) \)-modules, one can deduce the following

Lemma 2.1. (Cf. [10, Cor.5.4]) Suppose that \(X \) is a \(U(\mathfrak{g}) \)-module of finite length. Then its associated variety \(\mathcal{V}(X) \) is contained in the cone \(N^* \) defined by \(I(\mathfrak{g})_+ \):

\[
N^* := \{ \lambda \in \mathfrak{g}^* | D(\lambda) = 0 \text{ } (\forall D \in I(\mathfrak{g})_+) \}.
\]

It should be noticed that, if \(\mathfrak{g} \) is semisimple, the cone \(N^* \) turns out to be the totality of nilpotent elements in \(\mathfrak{g} \) under the identification of \(\mathfrak{g}^* \) with \(\mathfrak{g} \) through the Killing form.

2.2. The variety \(\mathcal{V}(X) \) for \((\mathfrak{g}, \mathfrak{k}) \)-module \(X \).

Now let \(\mathfrak{k} \) be a Lie subalgebra of \(\mathfrak{g} \). A \(U(\mathfrak{g}) \)-module \(X \) is said to be locally \(U(\mathfrak{k}) \)-finite if the \(U(\mathfrak{k}) \)-submodule \(U(\mathfrak{k})v \) is finite-dimensional for every \(v \in X \). By a \((\mathfrak{g}, \mathfrak{k}) \)-module is meant a locally \(U(\mathfrak{k}) \)-finite, finitely generated \(U(\mathfrak{g}) \)-module. Hereafter we concentrate on such \((\mathfrak{g}, \mathfrak{k}) \)-modules.

Let \(\tilde{K}_C \) denote the connected, simply connected Lie group with Lie algebra \(\mathfrak{k} \). The natural inclusion \(i : \mathfrak{k} \hookrightarrow \mathfrak{g} \) gives rise to a Lie group homomorphism:

\[
\text{Ad} : \tilde{K}_C \ni k \mapsto \text{Ad}(k) \in G_C^{ad} \subset GL(\mathfrak{g}),
\]

from \(\tilde{K}_C \) into the group \(G_C^{ad} \) of all inner automorphisms of \(\mathfrak{g} \), in the canonical way. We notice that, since \(\tilde{K}_C \) is simply connected, any \((\mathfrak{g}, \mathfrak{k}) \)-module \(X \) admits a \(\tilde{K}_C \)-module structure compatible with the \(U(\mathfrak{g}) \)-action in the following sense:

\[
(\exp Z) \cdot v = \sum_{j=0}^{\infty} \frac{1}{j!} Z^j v \quad (Z \in \mathfrak{k}),
\]

\[
k \cdot (Dv) = (\text{Ad}(k)D) \cdot kv \quad (D \in U(\mathfrak{g}), k \in \tilde{K}_C),
\]
for every $v \in X$. Here the sum in (2.5) converges because $Z^j v$ stay in a finite-dimensional subspace $U(\mathfrak{t})v$ for all $j \geq 0$.

By making use of this K_C-action, it is an easy task to deduce the following lemma on an orbital structure of the associated variety of a $(\mathfrak{g}, \mathfrak{k})$-module.

Lemma 2.2. (Cf. [10, Cor.5.13]) Let X be a $(\mathfrak{g}, \mathfrak{k})$-module. Then the associated variety $\mathcal{V}(X)$ of X is a union of K_C^{ad}-orbits contained in the orthogonal $\mathfrak{k}^\perp := \{ \lambda \in \mathfrak{g}^* \mid \lambda(Z) = 0 \ (\forall Z \in \mathfrak{k}) \}$ of \mathfrak{k} in \mathfrak{g}^*. Here $K_C^{ad} := \text{Ad}(K_C) \subset G_C^{ad}$ denotes the analytic subgroup of G_C^{ad} with Lie algebra \mathfrak{k}, and it acts on \mathfrak{g}^* through the coadjoint representation.

2.3. A criterion for locally free $U(\mathfrak{n})$-action.

Let \mathfrak{k} and K_C^{ad} be as in 2.2. Take another Lie subalgebra \mathfrak{n} of \mathfrak{g} (not necessarily the one given by (1.30)). We are going to give a criterion for an irreducible $(\mathfrak{g}, \mathfrak{k})$-module to have locally free $U(\mathfrak{n})$-action.

To do this, let p^* be the surjective linear map from \mathfrak{g}^* to \mathfrak{n}^* defined by the restriction to \mathfrak{n} of each linear form on \mathfrak{g}. We say that an element $\lambda \in \mathfrak{g}^*$ satisfies the condition $(P_{\mathfrak{t}, \mathfrak{n}})$ if the projection p^* carries the subspace $\text{ad}^*(\mathfrak{k}) \lambda := \{ \text{ad}^*(Z) \lambda \mid Z \in \mathfrak{k} \}$ onto \mathfrak{n}^*, i.e.,

$$(P_{\mathfrak{t}, \mathfrak{n}}) \quad p^*(\text{ad}^*(\mathfrak{k}) \lambda) = \mathfrak{n}^*.$$

Here $\text{ad}^*(Z) \lambda := (d/dt)(\exp tZ \cdot \lambda)|_{t=0}$, and $\text{ad}^*(\mathfrak{k}) \lambda$ can be identified naturally with the tangent space of K_C^{ad}-orbit $K_C^{ad} \cdot \lambda$ at the point λ.

This condition $(P_{\mathfrak{t}, \mathfrak{n}})$ for λ has a geometric interpretation as follows.

Lemma 2.3. If $\lambda \in \mathfrak{g}^*$ fulfills the condition $(P_{\mathfrak{t}, \mathfrak{n}})$, then the image $p^*(K_C^{ad} \cdot \lambda)$ of K_C^{ad}-orbit $K_C^{ad} \cdot \lambda$ under p^* contains an open neighbourhood of $p^*(\lambda)$ in \mathfrak{n}^*.

This lemma allows us to deduce the following

Proposition 2.1. Let X be a cyclic $(\mathfrak{g}, \mathfrak{k})$-module generated by a vector $v_0 \in X : X = U(\mathfrak{g})v_0$. For a Lie subalgebra \mathfrak{n} of \mathfrak{g}, the annihilator $\text{Ann}_{U(\mathfrak{n})}(v_0)$ vanishes if there exists an element $\lambda \in \mathcal{V}(X)$ satisfying the condition $(P_{\mathfrak{t}, \mathfrak{n}})$.

By focusing our attention on irreducible modules X, we immediately deduce from Proposition 2.1 a criterion (sufficient condition) for X to admit locally free $U(\mathfrak{n})$-action.

Theorem 2.1. Let $\mathfrak{k}, \mathfrak{n}$ be two Lie subalgebras of \mathfrak{g}, and let X be an irreducible $(\mathfrak{g}, \mathfrak{k})$-module. Then, the action of the enveloping algebra $U(\mathfrak{n})$ on X is locally free, that is, X is a torsion free $U(\mathfrak{n})$-module, provided that the associated variety $\mathcal{V}(X)$ of X contains a point λ with the condition $(P_{\mathfrak{t}, \mathfrak{n}})$.

Remark. In view of the Remark in 2.1, one necessarily deduces

$$(2.7) \quad \dim \mathfrak{n} \leq d(X) = \dim \mathcal{V}(X),$$

if a finitely generated $U(\mathfrak{g})$-module X enjoys a locally free $U(\mathfrak{n})$-action.
3. Locally free $U(n(O))$-action on Harish-Chandra modules.

From now on, let \mathfrak{g} be a complex semisimple Lie algebra, and θ be an involutive automorphism of \mathfrak{g}. The associated symmetric decomposition of \mathfrak{g} is denoted by $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ with $\mathfrak{k} := \mathfrak{g}(\theta, +1)$ and $\mathfrak{p} := \mathfrak{g}(\theta, -1)$ as in 1.6. Then there exists a θ-stable real form \mathfrak{g}_0 of \mathfrak{g} such that the θ on \mathfrak{g}_0 gives a Cartan involution of \mathfrak{g}_0 (see [3, Ch.III, Lemma 4.1]). We fix once and for all such a real form \mathfrak{g}_0, and let $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ denote the corresponding Cartan decomposition of \mathfrak{g}_0, where $\mathfrak{k}_0 := \mathfrak{k} \cap \mathfrak{g}_0$ and $\mathfrak{p}_0 := \mathfrak{p} \cap \mathfrak{g}_0$.

By a Harish-Chandra module, we mean in this paper a $(\mathfrak{g}, \mathfrak{k})$-module X (see 2.2) of finite length, associated with the symmetric pair $(\mathfrak{g}, \mathfrak{k})$. For each irreducible Harish-Chandra module X, we construct in this section a family of nilpotent Lie subalgebras $n(O)$ of \mathfrak{g} for which X is locally free as a $U(n(O))$-module, by using the associated variety $\mathcal{V}(X)$ of X and the Cayley transformation of normal \mathfrak{sl}_2-triples. The Lie subalgebras $n(O)$ are parametrized by the K^C_{ad}-orbits O contained in $\mathcal{V}(X)$. We shall give in 3.3 a concrete description of Lie subalgebras $n(O)$ associated to holomorphic orbits O when the real form \mathfrak{g}_0 is a noncompact simple Lie algebra of hermitian type.

3.1. Lie subalgebras $n(O)$ associated with a nilpotent K^C_{ad}-orbit O.

We denote by \mathcal{N}_p the totality of nilpotent elements of \mathfrak{g} contained in \mathfrak{p}. By [6, Th.2], the variety \mathcal{N}_p is a union of finitely many K^C_{ad}-orbits, where K^C_{ad} is as in 2.2 the connected Lie subgroup of $G^C_{ad} = \text{Int}(\mathfrak{g})$ with Lie algebra \mathfrak{k}.

Let O be a K^C_{ad}-orbit in \mathcal{N}_p. We are attaching to O a K^C_{ad}-conjugacy class of nilpotent Lie subalgebras $n(O)$ of \mathfrak{g} in the following fashion.

Suppose that $O \neq \{0\}$, and take any element $X \in O$. A strengthened version of the Jacobson-Morozov theorem [6, Prop.4] assures that X can be embedded to a unique, up to K^C_{ad}-conjugacy, normal \mathfrak{sl}_2-triple (X, H, Y) in \mathfrak{g} (see 1.6), where $H \in \mathfrak{k}$ and $X, Y \in \mathfrak{p}$. Set $s := CX + CH + CY \subset \mathfrak{g}$ and define a nilpotent Lie subalgebra $n = n_s = (\mathfrak{g}^s_1(1) \oplus \mathfrak{g}^s_3(1)) \oplus (\oplus_{l \geq 2} \mathfrak{g}(l))$ just as in (1.30), through the Cayley transform (X', H', Y') of (X, H, Y) defined by (1.2). Then it is immediate to check that, up to K^C_{ad}-conjugacy, the Lie subalgebra n is uniquely determined by O, independent of the choice of an X in O and that of an \mathfrak{sl}_2-triple (X, H, Y). So we can and do write $n(O)$ for this n.

We attach $n(O) = \{0\}$ for the zero orbit $O = \{0\}$.

From Theorem 1.2(1), one immediately deduces

Lemma 3.1. It holds that $\dim n(O) = \dim O$.

Now let $\mathfrak{g} \ni Z \rightarrow \overline{Z} \in \mathfrak{g}$ be the complex conjugation of \mathfrak{g} with respect to the real
form \mathfrak{g}_0. Sekiguchi’s result [8] enables us to choose a nice representative $\mathfrak{n}(\mathcal{O})$ which is compatible with this conjugation except the $\mathfrak{g}(1)$-part.

To be more precise, take a normal \mathfrak{sl}_2-triple (X, H, Y) in \mathfrak{g} with $X \in \mathcal{O}$. By virtue of [8, Lemma 1.4], there exists a $k \in K_{ad}^d$ such that $(X_1, H_1, Y_1) := (k \cdot X, k \cdot H, k \cdot Y)$ is a strictly normal \mathfrak{sl}_2-triple in the following sense:

(3.1) $X_1 = Y_1, \ H_1 = -H_1$, or equivalently $X_1 + Y_1, i(X_1 - Y_1) \in \mathfrak{p}_0, \ iH_1 \in \mathfrak{k}$.

Then, as checked immediately, the Cayley transform (X'_1, H'_1, Y'_1) of (X_1, H_1, Y_1) (see (1.2)) lies in \mathfrak{g}_0.

Theorem 3.1. (Kostant-Sekiguchi, see [8, Th.1.9]) Under the above notation, the assignment

(3.2) $\mathcal{O} = K_{ad}^d \cdot X \leftrightarrow \mathcal{O}' := G_{ad}^d \cdot X'_1$

gives a bijection (Kostant-Sekiguchi correspondence) between the set of nilpotent K_{ad}^d-orbits in \mathfrak{p} and that of nilpotent G_{ad}^d-orbits in \mathfrak{g}_0. Here $G_{ad}^d \subset C_{ad}^d$ denotes the adjoint group of \mathfrak{g}_0.

As for our Lie subalgebra $\mathfrak{n}(\mathcal{O})$, one gains the following advantage by choosing a strictly normal \mathfrak{sl}_2-triple (X_1, H_1, Y_1).

Proposition 3.1. Let $\mathfrak{n}(\mathcal{O}) = (\mathfrak{g}_1(1) \oplus \mathfrak{g}_3^3(1)) \oplus (\oplus_{l \geq 2} \mathfrak{g}(l))$ be a Lie subalgebra of \mathfrak{g} constructed as above from a strictly normal \mathfrak{sl}_2-triple (X_1, H_1, Y_1). Then one has

$\overline{\mathfrak{g}(l)} = \mathfrak{g}(l) \quad (l \in \mathbb{Z}), \quad \mathfrak{g}(1) = \{\mathfrak{n}(\mathcal{O}) \cap \mathfrak{g}(1)\} \oplus \{\mathfrak{n}(\mathcal{O}) \cap \mathfrak{g}(1)\},$

where $\mathfrak{g}(l)$ denotes as in 1.6 the l-eigensubspace of \mathfrak{g} for $\text{ad}(H_1')$ with $H_1' = X_1 + Y_1 \in \mathfrak{p}_0$.

In particular, $\mathfrak{n}(\mathcal{O})$ is stable under the complex conjugation $\overline{\cdot}$ if and only if $\mathfrak{g}(1) = \{0\}$, i.e., \mathcal{O} is an even nilpotent orbit in \mathfrak{p}.

3.2. Main result. By virtue of Lemmas 2.1 and 2.2 one finds that the associated variety $\mathcal{V}(\mathbf{X})$ of each Harish-Chandra module \mathbf{X} is a K_{ad}^d-stable algebraic cone in \mathcal{N}_p, by identifying the dual space \mathfrak{g}^* with \mathfrak{g} itself through the Killing form B of \mathfrak{g}.

We are now in a position to give the following theorem which establishes locally free $U(\mathfrak{n}(\mathcal{O}))$-action on Harish-Chandra modules.

Theorem 3.2. Let \mathbf{X} be an irreducible Harish-Chandra module. The action of enveloping algebra $U(\mathfrak{n}(\mathcal{O}))$ of $\mathfrak{n}(\mathcal{O})$ on \mathbf{X} is locally free for every nilpotent K_{ad}^d-orbit $\mathcal{O} \subset \mathfrak{p}$ contained in the associated variety $\mathcal{V}(\mathbf{X})$ of \mathbf{X}. Here $\mathfrak{n}(\mathcal{O})$ is the nilpotent Lie subalgebra of \mathfrak{g} constructed in 3.1.
This is the main result of this paper.

We now deduce two important consequences of the above main result.

First, Theorem 3.2 together with the Remark in 2.3 allows us to derive the following theorem by concentrating our attention on a K_C^{ad}-orbit of $\mathcal{V}(X)$ of maximal dimension:

Theorem 3.3. Let X be as in Theorem 3.2, and let O_{max} be a nilpotent K_C^{ad}-orbit in $\mathcal{V}(X)$ of maximal dimension, that is, $\dim O_{\text{max}} = \dim \mathcal{V}(X)$. Then the corresponding $n(O_{\text{max}})$ is maximal (with respect to the inclusion relation) among the Lie subalgebras n of \mathfrak{g} having locally free $U(n)$-action on X.

Second, a Harish-Chandra module X is called large if its associated variety $\mathcal{V}(X)$ contains an open K_C^{ad}-orbit in N_p, or $\dim \mathcal{V}(X) = \dim N_p$. Our main result yields the following characterization of irreducible large Harish-Chandra modules.

Theorem 3.4. Let $n_{m,0}$ be a maximal nilpotent Lie subalgebra of real form \mathfrak{g}_0 appearing in an Iwasawa decomposition of \mathfrak{g}_0. An irreducible Harish-Chandra module X is large if and only if X is a locally free $U(n_m)$-module. Here we write n_m for the complexification of $n_{m,0}$ in \mathfrak{g}.

Remark. The largeness of an irreducible Harish-Chandra module X is characterized also by the existence of Whittaker vectors for X. See for example [5, Th.K] and [7, Cor.2.2].

3.3. Lie subalgebras $n(O_t)$ for holomorphic orbits O_t.

Now suppose that $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ is a noncompact real simple Lie algebra of hermitian type. We denote by ω the unique (up to sign) \mathfrak{k}_0-invariant complex structure on \mathfrak{p}_0. Extending ω to \mathfrak{p} by complex linearity, one gets a triangular decomposition

$$g = p_- \oplus \mathfrak{k} \oplus p_+ \quad \text{with} \quad p_\pm := \{ Z \in \mathfrak{p} \mid \omega Z = \pm iZ\},$$

of \mathfrak{g} such that

$$[\mathfrak{k}, p_\pm] \subset p_\pm, \quad [p_+, p_-] \subset \mathfrak{k}, \quad [p_+, p_+] = [p_-, p_-] = \{0\}.$$

It then follows that the subspaces p_\pm are included in the nilpotent variety N_p of \mathfrak{p}, since $(\text{ad } Z)^3 = 0$ for every $Z \in p_\pm$. A K_C^{ad}-orbit O contained in p_+ is called holomorphic, as p_+ is naturally identified with the holomorphic tangent space at the origin of the hermitian symmetric space G/K with $\mathfrak{g}_0 = \text{Lie}(G)$ and $\mathfrak{k}_0 = \text{Lie}(K)$.

We end this article by describing the nilpotent Lie subalgebras $n(O)$ of \mathfrak{g} associated with holomorphic K_C^{ad}-orbits O.

3.3.1. In order to do this, we prepare after [12, 3.1] and [13, 9.1] refined structure theorems for \mathfrak{g}, originally due to Harish-Chandra and Moore. Now let t_0 be a compact Cartan subalgebra of \mathfrak{g}_0 which is contained in t_0. We denote by Δ the root system of \mathfrak{g} with respect to the complexification t of t_0. For $\gamma \in \Delta$, the corresponding root subspace is denoted by $\mathfrak{g}(t; \gamma)$. A root $\gamma \in \Delta$ is called compact (resp. noncompact) if $\mathfrak{g}(t; \gamma) \subset \mathfrak{k}$ (resp. $\mathfrak{g}(t; \gamma) \subset \mathfrak{p}$), and Δ_c (resp. Δ_n) stands for the set of all compact (resp. noncompact) roots. To each $\gamma \in \Delta$ we can and do attach a nonzero vector $X_\gamma \in \mathfrak{g}(t; \gamma)$ satisfying

$$X_\gamma - X_{-\gamma}, \quad i(X_\gamma + X_{-\gamma}) \in t_0 + ip_0, \quad [X_\gamma, X_{-\gamma}] = H_\gamma.$$

Here H_γ is the element of it_0 corresponding to the coroot $\gamma^\vee := 2\gamma/(\gamma, \gamma)$ through the identification $t^* = t$ by the Killing form B.

Take a positive system Δ^+ of Δ compatible with the decomposition (3.3):

$$\mathfrak{p}_\pm = \bigoplus_{\gamma \in \Delta^+_n} \mathfrak{g}(t; \pm \gamma) \quad \text{with} \quad \Delta^+_n := \Delta^+ \cap \Delta_n,$$

and fix a lexicographic order on it^*_0 which yields Δ^+. Using this order we define a fundamental sequence $(\gamma_1, \gamma_2, \ldots, \gamma_r)$ of strongly orthogonal (i.e., $\gamma_i \pm \gamma_j \notin \Delta \cup \{0\}$ for $i \neq j$) noncompact positive roots in such a way that γ_k is the maximal element of Δ^+, which is strongly orthogonal to $\gamma_{k+1}, \ldots, \gamma_r$.

Now, put $t^- := \sum_{k=1}^r CH_{\gamma_k} \subset t$, and denote by $\pi(\gamma) \in (t^-)^*$ the restriction to t^- of a linear form $\gamma \in t^*$. For integers k, m with $1 \leq m < k \leq r$, we define subsets P_{km}, P_k, P_0 of Δ^+_n and subsets C_{km}, C_k, C_0 of Δ^+_c respectively by

$$P_{km} := \{\gamma \in \Delta^+_n| \pi(\gamma) = \frac{\pi(\gamma_k) + \pi(\gamma_m)}{2}\},$$

$$C_{km} := \{\gamma \in \Delta^+_c| \pi(\gamma) = \frac{\pi(\gamma_k) - \pi(\gamma_m)}{2}\},$$

$$P_k := \{\gamma \in \Delta^+_n| \pi(\gamma) = \frac{\pi(\gamma_k)}{2}\}, \quad C_k := \{\gamma \in \Delta^+_c| \pi(\gamma) = \frac{\pi(\gamma_k)}{2}\},$$

$$P_0 := \{\gamma_1, \gamma_2, \ldots, \gamma_r\}, \quad C_0 := \{\gamma \in \Delta^+_c| \pi(\gamma) = 0\}.$$

Then, by Harish-Chandra the subsets Δ^+_n and Δ^+_c are expressed as

$$\Delta^+_n = (\bigcup_{1 \leq k \leq r} P_k) \cup P_0 \cup (\bigcup_{1 \leq m < k \leq r} P_{km}),$$

$$\Delta^+_c = C_0 \cup (\bigcup_{1 \leq k \leq r} C_k) \cup (\bigcup_{1 \leq m < k \leq r} C_{km}),$$

(3.12)

where the unions are disjoint.
We set $H_k := X_{\gamma_k} + X_{-\gamma_k} \in \mathfrak{p}_0$ for $1 \leq k \leq r$. Then

\[
(3.13) \quad a_{p,0} := \sum_{k=1}^{r} RH_k
\]

turns out to be a maximal abelian subspace of \mathfrak{p}_0. Let Ψ denote the root system of \mathfrak{g}_0 with respect to $a_{p,0}$, and for each k let $\psi_k \in a_{p,0}^*$ be the linear form on $a_{p,0}$ defined by $\psi_k(H_m) = 2\delta_{km}$ ($m = 1, \ldots, r$; with Kronecker's δ_{km}). Moore’s restricted root theorem describes Ψ as follows.

Theorem 3.5. (Moore) The elements ψ_k ($1 \leq k \leq r$) form a basis of $a_{p,0}^*$, and there exist only two possibilities for the root system Ψ:

\[
\Psi = \{ \pm(\frac{\psi_k - \psi_m}{2}) | 1 \leq m < k \leq r \} \cup \{ \pm(\frac{\psi_k + \psi_m}{2}) | 1 \leq m \leq k \leq r \},
\]

if the subsets P_k and C_k are empty for every k, or otherwise

\[
\Psi = \{ \pm(\frac{\psi_k - \psi_m}{2}) | 1 \leq m < k \leq r \} \cup \{ \pm(\frac{\psi_k + \psi_m}{2}) | 1 \leq m \leq k \leq r \} \cup \{ \pm \frac{\psi_k}{2} | 1 \leq k \leq r \}.
\]

The former possibility occurs exactly when the corresponding hermitian symmetric space is analytically equivalent to a tube domain.

3.3.2. For each restricted root $\psi \in \Psi$, let $\mathfrak{g}(a_p; \psi)$ denote the complexified root subspace of \mathfrak{g} corresponding to ψ. We can now write down a basis of each $\mathfrak{g}(a_p; \psi)$ by means of the vectors $X_\gamma \in \mathfrak{g}(t; \gamma)$ ($\gamma \in \Delta$) defined in (3.5), as follows.

Proposition 3.2. (Hashizume, cf [13, Lemmas 9.1 and 9.2]) (1) For $1 \leq m < k \leq r$, the vectors

\[
(3.14) \quad E^\pm_\gamma := X_\gamma + [X_{-\gamma_k}, X_\gamma] \pm [X_{-\gamma_m}, X_\gamma] + [X_{-\gamma_m}, [X_{-\gamma_k}, X_\gamma]]
\]

form a basis of the root subspace $\mathfrak{g}(a_p; (\psi_k \pm \psi_m)/2)$, where γ runs over the elements of P_{km} in (3.6).

(2) The element

\[
(3.15) \quad E_k := i(H_{\gamma_k} - X_{\gamma_k} + X_{-\gamma_k})/2
\]

lies in $\mathfrak{g}(a_p; \psi_k)$ and it holds that $\dim \mathfrak{g}(a_p; \psi_k) = 1$ for every $1 \leq k \leq r$.

(3) The subspace $\mathfrak{g}(a_p; \psi_k/2)$ has a basis:

\[
(3.16) \quad E^\pm_k := X_\gamma + [X_{-\gamma_k}, X_\gamma] \quad (\gamma \in P_k \cup C_k)
\]

for every $1 \leq k \leq r$, where P_k and C_k are as in (3.8).
3.3.3. Set $X(t) := \sum_{t < k \leq r} X_{\gamma_k} \in \mathfrak{p}_+ (X(r) := 0)$ for $0 \leq t \leq r$, and let $\mathcal{O}_t \subset \mathfrak{p}_+$ be the holomorphic K_C^{ad}-orbit through $X(t)$. The following well-known proposition parametrizes such K_C^{ad}-orbits in N_p.

Proposition 3.3. The subspace \mathfrak{p}_+ splits into a disjoint union of $r + 1$ number of K_C^{ad}-orbits $\mathcal{O}_t (0 \leq t \leq r)$: $\mathfrak{p}_+ = \bigsqcup_{0 \leq t \leq r} \mathcal{O}_t$, and the closure $\overline{\mathcal{O}}_t$ of orbit \mathcal{O}_t is equal to $\bigcup_{s \geq t} \mathcal{O}_s$ for every t.

Suggested by this proposition, we want to describe the nilpotent Lie subalgebra $\mathfrak{n}(\mathcal{O}_t)$ in terms of root vectors E^+_γ, E_k and E^+_γ in Proposition 3.2, for every $0 \leq t \leq r$.

This is achieved in the following way. Put

\[(3.17) \quad H(t) := \sum_{t < k \leq r} H_{\gamma_k}, \quad Y(t) := \sum_{t < k \leq r} X_{-\gamma_k}.\]

Then it follows from (3.5) together with the strong orthogonality of γ_k's that $(X(t), H(t), Y(t))$ is a strictly normal $\mathfrak{s}\mathfrak{l}_2$-triple in \mathfrak{g}. We denote by $(X'(t), H'(t), Y'(t))$ the Cayley transform of $(X(t), H(t), Y(t))$ defined in (1.2). Noting that $H'(t) = \sum_{t < k \leq r} H_k$, one deduces from Theorem 3.5 the following.

Lemma 3.2. The Lie algebra \mathfrak{g} decomposes into a direct sum of the eigensubspaces for $\text{ad} H'(t)$ as:

\[(3.18) \quad \mathfrak{g} = \mathfrak{g}(-2) \oplus \mathfrak{g}(-1) \oplus \mathfrak{g}(0) \oplus \mathfrak{g}(1) \oplus \mathfrak{g}(2),\]

where

\[\mathfrak{g}(\pm 2) = \bigoplus_{t < m \leq k \leq r} \mathfrak{g}(a_{p}; \pm (\psi_k + \psi_m)/2),\]

\[\mathfrak{g}(\pm 1) = \bigoplus_{1 \leq m \leq t < k \leq r} \left(\mathfrak{g}(a_{p}; \pm (\psi_k + \psi_m)/2) \oplus \mathfrak{g}(a_{p}; \pm (\psi_k - \psi_m)/2) \right) \bigoplus_{t < k \leq r} \mathfrak{g}(a_{p}; \pm \psi_k/2),\]

\[\mathfrak{g}(0) = \mathfrak{z}(a) \oplus \bigoplus_{1 \leq m \leq t \leq k \leq r} \left(\mathfrak{g}(a_{p}; \psi_k + \psi_m/2) \oplus \mathfrak{g}(a_{p}; \psi_k - \psi_m/2) \right),\]

and $\mathfrak{z}(a)$ denotes the centralizer of a in \mathfrak{g}. In particular, $\mathfrak{g}_\eta(l) = \{0\}$ for all η and l.

By utilizing Proposition 3.2 and Lemma 3.2, we obtain the following complete description of Lie subalgebra $\mathfrak{n}(\mathcal{O}_t)$ associated to the orbit \mathcal{O}_t.
Theorem 3.6. Let $\mathcal{O}_t = K_C^{ad} \cdot X(t)$ with $0 \leq t \leq r$ be a holomorphic K_C^{ad}-orbit in p_+, and let $n(\mathcal{O}_t)$ be the Lie subalgebra of g constructed as in 3.1 from the Cayley transform of $(X(t), H(t), Y(t))$. Then $n(\mathcal{O}_t)$ is expressed as

\begin{equation}
\mathfrak{n}(\mathcal{O}_t) = \mathfrak{g}_1^1(1) \oplus \mathfrak{g}(2),
\end{equation}

with $\mathfrak{g}(2)$ as in Lemma 3.2, and $\mathfrak{g}_1^1(1)$ is the subspace of $\mathfrak{g}(1)$ having a basis:

\begin{equation}
E_\gamma^+ - E_\gamma^- \quad (\gamma \in P_{km}; 1 \leq m \leq t < k \leq r), \quad E_\gamma^1 \quad (\gamma \in C_k; t < k \leq r).
\end{equation}

Here E_γ^\pm and E_γ^1 are as in Proposition 3.2.

Theorem 3.2 coupled with Theorem 3.6 implies that the (at most) two-step nilpotent Lie subalgebras $n(\mathcal{O}_t)$ enjoy locally free action on the Harish-Chandra module of a holomorphic discrete series for every t, because its associated variety coincides with the whole p_+ (cf. [15]). More generally, the associated variety of any irreducible highest weight Harish-Chandra module X is contained in p_+, and so X admits locally free $U(n(\mathcal{O}_t))$-action for some t's specified according as the rank of X.

References

Akihiko GYOJA
Division of Mathematics
Faculty of Integrated Human Studies
Kyoto University
Kyoto 606-01, Japan
E-mail: gyoja@math.h.kyoto-u.ac.jp

Hiroshi YAMASHITA
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060, Japan
E-mail: yamasita@math.hokudai.ac.jp