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Associated variety, Kostant-Sekiguchi correspondence, and
locally free U(n)-action on Harish-Chandra modules
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Introduction.

Let g be a complex semisimple Lie algebra, and let g = € + p be the symmetric
decomposition of g defined by an involutive automorphism 6 of g. By a Harish-Chandra
module associated to the pair (g9,¥), we mean a U(g)-module X of finite length on which
the subalgebra U(¥) acts locally finitely. Here U(q) denotes the universal enveloping
algebra of a complex Lie algebra q.

The main purpose of this paper is to give for each irreducible Harlsh—Chandra module
X a family of nilpotent Lie subalgebras n(Q) of g whose enveloping algebras U(n(0O))
act on X locally freely. The Lie subalgebras n(O) are parametrized by the nilpotent
Kg-orbits O contained in the associated variety V(X) C p of X, where K ad denotes the
analytic subgroup of adjoint group G& = Int(g) of g corresponding to the Lie subalgebra
. We construct n(Q) from a K&*-orbit @ through the Cayley transformation of normal
sly-triples that gives the Kostant-Sekiguchi correspondence of nilpotent orbits ([8]).

The Harish-Chandra modules are essentially related to infinite-dimensional represen-
tations of a real semisimple Lie group as follows. Let gy be any real form of g, and let G
be a connected linear Lie group with Lie algebra g,. We can and do choose an involution
0 of g such that the real form g, is f-stable and that & := €N g, coincides with the Lie
algebra of a maximal compact subgroup K of G ([3, Ch.II1, §4]). By fundamental results
of Harish-Chandra ([2], see also [11, Ch. 3]), any admissible Hilbert representation (r, H)
of G of finite length yields a Harish-Chandra module X by passing to the K-finite part
of H through differentiation. The irreducibility is preserved by the assignment H — X.
Accordingly, we may say that the present work reveals some new algebraic aspects of
representations of the group G.

We now explain the results of this article in more detail.

(A) For anonzero nilpotent K&-orbit O in p, take a normal 5[2-tr1ple (X,H,Y) C
g with X € O (see 1.6), and define its Cayley transform (X', H',Y”") as in (1.2). Makmg |
use of the [-eigenspaces g(I) (I = 1,2,...) of g with respect to ad(H’), we can construct a
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nilpotent Lie subalgebra n(0) = (g1(1)@g3(1)) ®(®1=28(1)) of g with g{(1)®g3(1) C (1)
(see 1.4 and 1.6 for the precise deﬁmtlon of subspaces g,,(l) of g()) such that:

(i) dimn(©) = dim O, :

(ii) the Killing form B of g is nondegenerate on ad(X )¢ x n(O).
(See Theorem 1.2 and Lemma 31) Up to K&-conjugacy, the Lie subalgebra n(0O) is
independent of the choice of an sly-triple (X, H,Y). In addition, the ideal @;>29(l) of
n(O) becomes stable under the complex conjugation of g with respect to the real form g,
if we construct n(Q) from a strictly normal slp-triple (Proposition 3.1). We can describe
concretely the Lie subalgebras n() associated to the holomorphic nilpotent orbits O in
p (Theorem 3.6), when g, is a noncompact real simple Lie algebra of hermitian type. As
we indicate below, the above two properties (i) and (ii) are crucial to establish the local
freeness of the U(n(O))-action on Harish-Chandra modules.
- (B) Now let X be an irreducible Harish-Chandra module. Through the natural
increasing filtlation Ux(g) (k= 0,1,...) of U(g), we attach to each nonzero vector v € X
a graded module M = gr(X;v) := @2 Uk(8)v/Uk-1(g)v over the symmetric algebra
S(g) ~ &2 ,Uk(g)/Uk-1(g) of g, where U_;(g) := {0}. The associated variety V(X)
of X is then defined to be the set of the common zeros of elements in the annihilator
Anngg (M) of M. Here, V(X) is independent of the choice of a vector v, and we identify
S(g) with the ring of polynomial functions on g through the Killing form B.

As seen by Vogan [10], the variety V(X) associated to X is a union of finitely many
nilpotent K&#-orbits in p (cf. Lemma 2.2). If O is a K&-orbit contained in V(X),
the above properties (i) and (ii) imply that the natural projection p : g — g/n(O)*
induces a linear isomorphism from the tangent space ad(X )¢ of O at X onto g/n(O)%,
where n(Q)? is the orthogonal of n(0) in g with respect to B. This allows us to deduce
that M = gr(X;v) is a torsion free S(n(O))-module for every nonzero v € X. As a
consequence, we establish the main result of this article as follows.

Theorem. (Theorem 3.2) Let X be an irreducible Harish-Chandra module. The
enveloping algebra U(n(QO)) of mlpotent Lie subalgebm n(O) acts on X locally freely for
every nilpotent K32 -orbit O C p contained in the associated variety V(X) of X.

We remark that, by the Hilbert-Serre theorem, X is a torsion free U(n)-module for a
Lie subalgebra n of g only if dimn < dim V(X). :

Bearing this remark in mind, we derive two interesting conclusions of the above the-
orem. First, we find that the nilpotent Lie subalgebra n(O,:) associated to a maximal
Kgd-orbit Omaz in V(X) realizes a maximal Lie subalgebra of g among those having
locally free action on X (Theorem 3.3). Second, let g = €+ a + n,, be a complexified
Iwasawa decomposition of g,. Then it can be shown that an irreducible Harish-Chandra



module X is large ie., dimV(X) = dimn,y, if and only if X is a torsion free U(nm)-
module (Theorem 3.4).

(C) The organization of this paper is as follows.

In section 1, we first study certain fine structure on finite-dimensional SL(2 C)-
modules equipped with involutive linear transformations (see Proposition 1.2 and The-
orem 1.1). The properties (i) and (ii) stated in (A) for the nilpotent Lie subalge-
bra n(0) of g are shown by applying Theorem 1.1 to the adjoint representation of
s:=CX+CH+CY ~5sl(2,C) on g. '

Section 2 is devoted to giving a simple criterion for X to be a torsion free U (n)-
module. More precisely the matters are discussed in much more general situation, where
g is an arbitrary complex Lie algebra, € and n are any two Lie subargebras of g, and X
is a locally U (&)-finte, irreducible U(g)-module. Our criterion (Theorem 2.1) is given by
means of the Lie subalgebras €, n and the associated variety V(X) of X.

In section 3, the main result of this paper, Theorem 3.2, is established by using
Theorems 1.2 and 2.1. Then we deduce two important consequences (Theorems 3.3 and
3.4) of Theorem 3.2. In addition, the Lie subalgebras n(0) associated to the holomorphlc
nilpotent Kg%-orbits O are described explicitly in 3.3.

An enlarged version of this article, with complete proofs, will appear elsewhere.

1. SL(2,C)-modules with involution &.

In this section, we begin with investigating in 1.1 - 1.5 certain fine structure on
finite-dimensional SL(2, C)-modules V equipped with an involutive linear transforma-
tion & € GL(V), compatible with a nontrivial involution o of SL(2,C). The results are
summarized as Proposition 1.2 and Theorem 1.1. '

We then apply the results to Lie algebra case in 1.6, where V = g is a complex
semisimple Lie algebra with an involution & = 6§, and SL(2,C) acts on g through the
adjoint representation of a 6-stable, simple Lie subalgebra s ~ sl(2, C) of g. This gives
us a new kind of decomposition of g (Theorem 1.2(3)), which is, in a sense, comparable
with the (complexified) generalized Iwasawa decompositions of g. The nilpotent Lie
subalgebra n of g appearing in this decomposition will play an essential role in §3 for
studying locally free U(n)-action on Harish-Chandra modules.

1.1. sly-triples and Cayley transformation. Let s = CX + CH + CY =~
sl(2, C) be a three-dimensional, complex simple Lie algebra with commutation relation:

(1.1) [H,X]=2X, [HY]=-2Y, [X,Y]=H.



We denote by S ~ SL(2,C) the simply connected Lie group with Lie algebra s. Setting

(1.2) X’:—;-(H—X+Y), H =X+Y, Y’:—%(H+X—Y),

one gets another sly-triple (X', H',Y”) in s which satisfies the same relation (1.1). If we
identify s with sl(2, C) by

01\ 1
=(60) #=( %) 7=(0)
i1 -1 (0 1 Cif-1 -1
= — —_ Y:—
X2<1—1)’H<10’ 2\ 1 1

is a basis of the real form su(1,1) of s, and the Cayley transformation:

then

: 1 1 —
. — -1 : —
(1.3) ¢:53Z+— Ad(c)Z =cZc €s with C—l—i-i(l Z_)ESL(2,C)

sends the slp-triple (X, H,Y) to (X', H',Y"). Note that the center of S contains a unique

-1 0
nontrivial element £ = exp(wiH') corresponding to the matrix | 0 1 )

Now let o be the involutive automorphism of s defined by
(1.4) cX =-X, oH=H, oY=-Y

It then follows that o X' = —-Y’,0Y’ = — X' and o H' = —H'. Extend ¢ to an automor-
phism of S through the exponential map, which we denote again by o. Let

(1.5) w = exp g(X’ ~Y')=exp X' -exp(—Y’) -exp X’

i 0 '
be an element of S corresponding to the matrix (0 ) ) which represents the nontrivial
—1i

element of the Weyl group of s with respect to Cartan subalgebra CH'.
Direct computation in S ~ SL(2, C) immediately gives the following lemma.

Lemma 1.1. One has the equalities:

(1) o(w) =w, w?=c¢,
(2) o(s) =wsw™ (s €8), and o equals Ad(w) on s,

(3) Ad(exp(—iY"))X = iX'/2.



1.2. Irreducible S-modules. For each nonnegative integer d, let (74, V) be an
irreducible S-module of dimension d + 1. The Lie algebra s acts on V; through differen-
tiation. Take a nonzero highest weight vector Ufid) € V; such that

(1.6) ra(H' Y = dv(d) (X' )vg =0
and set | ]
(17) é ), = 7Td(y,)j’vt(id) (] = 0, 1, e ,d)

Then the vectors vd 23 (0 < j < d) form a basis of V for which the action of X', H', Y’
is described respectively as :

d d
Td(Xl)vt(i )23 (d +1- )U¢(i )2(3 1)
d d
(18) Ta(H')v§ 0, = (d — wmg,
) d .
Td(Y’)vl(i )23 (J+ 1)vd—-2(g+1)a

where v'%) = v,(j_?z = (0. We note that the element w € S in (1.5) acts on Vd as

19 ra(wp P = (—1)* D, 0 (G=0,1,...,d).

1.3. Extension ¢ and S-homomorphism J. Let (7, V) be any finite-dimensional
S-module (and so s-module). A map ¢ : V — V is called an extension of o to V if it is
an involutive linear isomorphism on V satisfying

(1.10) 61(Z2)67  =1(cZ) (Z €s).

The totality of such extensions will be denoted by Ey. If V = Vj is irreducible, & := i(w)
ford € 2Z +1; 5 := 7(w) for d € 2Z, gives an extension of ¢ to V, by Lemma 1.1(2).
In 1.6 we will meet extension ¢ arising from an involutive automorphism of a semisim- -
ple Lie algebra g = V, where s is a Lie subalgebra of g acting on V' through the adjoint
representation. =
Let Fy denote the set of all S-homomorphisms J on V such that J? = 7(€), where
w? =€ is, as in Lemma 1.1, the nontrivial central element of S. Then,

Proposition 1.1. The assignment & — J := & 7(w) gives a bijective corrcspondehce
from Ey onto Fy.

It should be noticed that
(1.11) ‘ Jo=0dJ=r1(w),

since & is involutive and it commutes with 7(w).

- We fix once and for all an extension ¢ of o to V, and the correspondlng S homomorphlsm
J =a71(w).



1.4. The subspace U. For an S-module (7, V) with ¢ € Ev and the correspond-
ing J € Fy in 1.3, let

(112)  V=V(@E+)eV(E,-1) with V(F,£1):={ve V| o=}

be the eigenspace decomposition of V' with respect to o. The semisimple element H' € s
gives a weight space decomposition of V:

(1.13) V=@V with V(I):={ve V| r(H")v = lv}.
leZ

We decompose the S-module V into irreducibles as

(1.14) V=@I[my Va with [mg - V=Vi® & V4 (mg-copies),
d>0

where my denotes the multiplicity of simple S-module Vé (see 1.2) in V. Put

(1.15) Ve .= @ md-VacV, IK)={x+4n|n=0,1,.. 3
del(x) o

for k =0,1,2,3. Then V(® is the S-submodule of V generated by all the maximal weight
vectors in V with weight A = x (mod4). Clearly it holds that

3
(1.16) V=@V® asS-modules,
k=0
and that .
(1.17) VR =@VE@) with VO :=v®nv(),
leZ .

gives the weight space decomposition of V) where VW() = {0} if k =1 & 2Z. It
should be remarked that any S-submodule W of V' decomposes as

3
(1.18) w=@pwnv®,
k=0
since each irreducible constituent of W with highest weight d € I(k) is contained in V),
Using the S-homomorphism J on V such that J* = 7(¢)? = 7(1) = idy, we obtain
another decomposition of the S-representation (7,V’) as

3
(1.19) V=PV, with Vy :={veV|Jv=1i}
n=0
Denote by Vi, (l) := V(I) NV the l-weight subspace of V(). We observe that V{;(l) =
{0} if n — I & 22, because J* = 7(e) = exp(mi 7(H')) acts on V(I) by the scalar (-1
Summarizing the above discussion, we immediately deduce the following lemma on
the compatibility of two decompositions (1.16) and (1.19).



Lemma 1.2. (7,V) admits the decomposition:
, i _ o
(1.20) » V=@ Vy with VF:=v®ny,
x,n=0 )
as S-modules, and V,* equals {0} if s — n¢g27Z.

This lemma shows that the even part V"™ := @07V (l) and the odd part Vo4 :=
®ie2z+1V (1) of V' decompose respectively as '

(1.21) { vem=vOeVv® =VgeVy =eyeViels,

Vel =yW e Ve =VyeVy=VeVie eV

We note that the involution & acts on V in the following way.

Lemma 1.3. For k,n = 0,1,2,3, and | € Z, let V}(l) := VN V(l) denote the
l-weight subspace of V,*. Then it holds that

(1.22) cVy=Vy, aV()=V(=l), andso V()= Vo (=0).
We now introduce a subspace U of V' defined as follows:
(1.23) U= (D) e V(1) & (@ ().

This subspace U will provide us in §3 with a nilpotent Lie subalgebra n of a semisimple
Lie algebra g, admitting locally free action on Harish-Chandra modules for g.

The following proposition is one of the essential ingredients to establish our main
result on locally free U(n)-action on Harish-Chandra modules.

Proposition 1.2. Let (,V) be a finite-dimensional S-module with 5,J € GL(V)
in 1.3, and let U be the subspace of V defined above. Then V is expressed as a sum of

three subspaces as
(1.24) : V=V(G,+1)+Kerr(X) + U=06U+Kerr(X) + U,

where V(G,+1) is the subspace of &-fized vectors as in (1.12), and Kerr(X) = {v €
V| 7(X)v = 0} denotes the kernel of 7(X).



1.5. S-modules with JS-invariant form. Let (7,V) be, as in 1.3, a finite-
dimensional S-module with extension ¢ € Ey and J = 6 7(w) € Fy. A bilinear form B
on V is called J- and S-invariant, or JS-invariant for short, if it satisfies

(1.25) - B(Jv, Jv') = B(r(s)v,7(s)v') = B(v,v") (s€S),
or equivalently,
(1.26) B(6v,5v') = B(v,v'), and B(1(Z)v,v')+ B(v,7(Z)W') =0 (Z€s) °

for all v,v' € V. ;

Now let us consider the subspaces V(G,+1), V(I) (I € Z) and the S-submodules
V® Vi (k,m =0,1,2,3) of V defined in (1.12), (1.13), and (1.15), (1.19) respectively.
If B is any JS-invariant bilinear form on V/, these subspaces have the following orthog-
onality relations with respect to B:

(1.27) V(5,+1) LV(5,F1), V() LV{T) ifl+1 #0,

(1.28) VO L VE) if k£ K, Vi L Vi ifn+n #0or4,

which can be checked easily by the JS-invariance of B. (For the third relation one may
use the fact that the Casimir element H? +2(X'Y’+Y'X’) for s has distinct eigenvalues
on each V(¥).) Here, for any subsets L; and Ly of V, L; L Ly stands for B(vi,vz) =0
for every v; € Ly and v, € Lo.

We now derive an important consequence of Proposition 1.2 for (7,V) with JS-
invariant form, as follows.

Theorem 1.1. Assume that the S-module (1, V) admits a JS-invariant, nondegen-
erate symmetric bilinear form B on V. Then it holds that

(1) dimU = dim 7(X)V (7, +1) = dim 7(X)V (5, —1) = (dim 7(X)V)/2.

(2) B is nondegenerate on T(X)V(6,+1) x U.

(3) V= (V(G,+1) +Kerm(X))® U (direct sum).
Here V(5,%£1) and U are the subspaces of V deﬁhed by (1.12) and in (1.23), respectively.

i

Remark. Since 7(Y')V;*(1) = V,*(=1), it follows from (1.27) and (1.28) that

n

(1.29) | B(r(Y')v,v) =0 for v, e UNV(1)=V}(1) @ V(1)

This implies that U N V(1) is a maximally totally isotropic subspace for the skew-
symmetric bilinear form V(1) x V(1) 3 (v, vs) — B(7(Y')v1,v2) € C on V(1).



1.6. = An application of Theorem 1.1. We finish this section by giving an ap-
plication of Theorem 1.1 of particular importance, to the case where g = V is a
semisimple Lie algebra and (7, V') is the adjoint representation on g of a Lie subalgebra
s~sl(2,C) Cg. :

To be more precise, let g be a complex semisimple Lie algebra, and 8 be an involutive
automorphism of g. We denote by g = & + p the eigenspace decomposition of g with
respect to 0, where ¢ := g(6,+1) and p := g(d, —1) are as in (1.12) with & = 4.

Let (X, H,Y) be an sly-triple in g with commutation relation (1.1). Such a triple
is called normal (cf. [6]) if o = @ acts on the elements X, H, and Y as in (1.4). Take
an arbitrary normal sly-triple (X, H,Y) in g, and set s . =CX + CH+CY =CX' +
CH' + CY' ~ sl(2,C). Here (X', H',Y") is the Cayley transform of (X, H, Y) defined
by (1.2).

We consider (7, V) = (ad|s, g), the adjoint representation of s on g. Put J := 6§ Ad(w),
where w is defined by (1.5). Then it should be mentioned that the involution & on g is
actually an extension of 8|s (= @ restricted to s) to g in the sense of (1.10), and that
the Killing form B of g gives a nondegenerate JS-invariant form on g (seé 1.5 for the -
definition). Let

(1.30) | n=n,:= (g;(1) @ g3(1)) & (S1>28(0))
denote the subspace U of g deﬁned in (1.23) for V = g. Then it is easily seen that n is

a nilpotent Lie subalgebra of g.
Applying Theorem 1.1 to the above setting, we now gain

Theorem 1.2. Let g = €+p be the symmetric decomposition of a complex semisim-
ple Lie algebra g with respéct to an involution 6 of g, and let (X, H,Y) be a normal
sly-triple in g. Then one gets the followmg properties (1)-(3) for the mlpotent Lie subal-
gebran =1, of g in (1.30):

(1) dimn = dim ad(X)t = dim ad(X)p = (dim ad(X)g)/2,

(2) the Killing form B of g is nondegenerate on ad(X)E x n,

(3) g = (E+3(X)) @ n as vector spaces.

Here 3(X) := Kerad(X) denotes the centralizer of X in g.

Remarks. (1) Set fi := @;>19(!), then n is a nilpotent Lie subalgebra of g containing
n as its ideal. The Remark in 1.5 implies that our n is a polarizing subalgebra (see e.g.,
[1, p-28]) of n for the linear form:

& 83 Z— B(Y',Z)eC

on fi, defined by the nilpotent element Y’ € g(—2) through the Killing form. In particular
&y gives a one-dimensional representation of n.
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(2) Let G¢ be a complex semisimple Lie group with Lie algebra g, and Ng = expn be
the analytic subgroup of g with Lie algebra n. Then, the character &y of n gives rise to an
induced G¢-module Indgg(exp &y+), called the generalized Gelfand-Graev representation
of G¢ associated to the nilpotent orbit Ad(Gc)Y’. ([4], see also [12, §1].)

2. Associated variety and a criterion for locally free U(n)-action.

Let g be any finite-dimensional complex Lie algebra, and U(g) be the universal en-
veloping algebra of g. We now consider two Lie subalgebras ¢ and n of g. In this section
we give a simple criterion (Theorem 2.1) for a locally U (¥)-finite, irreducible U(g)-module
X to be a torsion free U(n)-module. Our criterion is described by means of the Lie subal-
gebras £, n and the associated variety V(X) of X. It has, as we show in §3, an interesting
application when X is a Harish-Chandra module for a semisimple Lie algebra g.

2.1. Associated variety for U(g)-modules. First of all we introduce the asso-
ciated variety for finitely generated U(g)-modules which is one of the principal objecfs
in the present article, and review after [10] some fundamental properties for this variety.

Denote by (Ux(8))k=0,1,.. the natural increasing filtration of U(g), where Ui(g) is the
subspace of U(g) generated by elements X; - -+ X;n (m < k) with X; € g (1 < j < m).
By the Poincaré-Birkhoff-Witt theorem, we can and do identify the associated graded
ring

“grU(g) @Uk )/Ur-1(8) (U-a(g) == (0))

k>0

with the symmetric algebra S(g) = @0 5¥(g) of g in the canonical way. Here Sk(g)
denotes the homogeneous component of S(g) of degree k.

Let X be a finitely generated U(g)-module. Take a ﬁn1te-d1men31onal subspace X of
X such that X = U(g)Xo. Setting Xz = Ux(g)Xo (k = 1,2,...), one gets an increasing
filtration (Xj)z of X and correspondingly a finitely generated, graded 5(g)-module

(2.1) M= gr(X, Xo) = @Mk with M; = Xk/Xk_l.
k>0

The annihilator Anngg)M := {D € S(g)| Dv =0 (Vv € M)} of M is a graded ideal
of S(g), and it defines an algebraic cone in the dual space g* of g: '

(2.2) ' VM) :={ eg'| DX =0(VD e Anns(g)M)},

as the set of common zeros of elements of Anng»)M. Here S(g) is looked upon as the
polynomial ring over g* in the canonical way. It is then easily seen that the variety V(M)
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does not depend on the choice of a generating subspace Xo. So, hereafter we write V(X)
for this invariant V(M) of X.

Definition. (Cf. [10], see also [14]) For a finitely génerate?ij U(g)-module X, the
variety V(X) C g¢* and its dimension d(X) := dimV(X) are called respectively the
assocwted vamety and the Gelfand-Kirillov dimension of X.

Remark. By the Hilbert-Serre theorem (cf. [14, Th.1.1]), the map k — dim Xy
coincides with a polynomial in k of degree d(X), for sufficiently large k.

Let G¥ := Int(g) be the adjoint group of g. We denote by [ (g) the graded subalgebra
of S(g) consisting of all G¥-fixed elements in S(g). Then I (g) has a unique maximal
graded ideal I(g), = ®r>0l(g) N S*(g).

By making use of the Schur lemma [11, Lemma 0.5.2] for irreducible U(g)-modules,
one can deduce the following | -

Lemma 2.1. (Cf. [10, Cor.5.4]) Suppose that X is a U(g)-module of finite length.
Then its associated variety V(X) is contained in the cone N* defined by 1(g)+ :

(2.3) N*:={reg| D)) =0 (¥D € I(g)4)}-

It should be noticed that, if g is semisimple, the cone A'* turns out to be the totality
of nilpotent elements in g under the identification of g* with g through the Killing form.

2.2. The variety V(X) for (g, ¥)-module X. Now let € be a Lie subalgebra of
g. A U(g)-module X is said to be locally U(¢)-finite if the U(€)-submodule U (B)v is
finite-dimensional for every v € X. By a (g,¥)-module is meant a locally U(€)-finite,
finitely generated U(g)-module. Hereafter we concentrate on such (g, £)-modules.

Let Ko denote the connected, simply connected Lie group with Lie algebra £. The
natural inclusion i : ¥ < g gives rise to a Lie group homomorphism:

(2.4) | Ad: K¢k Ad(k) € G¥ C GL(g),

from K¢ into the group G of all inner automorphisms of g, in the canonical way. We
notice that, since K¢ is simply connected, any (g, 8)-module X admits a Kc-module
structure compatible with the U(g)-action in the followmg sense:

(2.5) (expZ) v = Z Z"v (Z € t),

.10

(2.6) k- (Dv) = (Ad(k)D) kv (D eU(g),k € K¢),
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for every v € X. Here the sum in (2.5) converges because Z7v stay in a finite-dimensional
subspace U(¥)v for all j > 0.

By making use of this Kc-action, it is an easy task to deduce the following lemma
on an orbital structure of the associated variety of a (g, )-module.

Lemma 2.2. (Cf. [10, Cor.5.13]) Let X be a (g,t)-module. Then the associated
variety V(X) of X is a union of K&-orbits contained in the orthogonal tt={\ e
g*| M(2) =0 (VZ € ©)} of € in g*. Here K& := Ad(K¢) C G¥ denotes the analytic
subgroup of G% with Lie algebra ¢, and it acts on g* through the coadjoint representation.

2.3. A criterion for locally free U(n)-action. Let ¢ and K& be as in 2.2. Take
another Lie subalgebra n of g (not necessarily the one given by (1.30)). We are going to
give a criterion for an irreducible (g, €)-module to have locally free U(n)-action.

To do this, let p* be the surjective linear map from g* to n* defined by the restriction
to n of each linear form on g.” We say that an element A € g* satisfies the condition (Pen)
if the projection p* carries the subspace ad* (&) := {ad*(2))\| Z € £} onto n*, ie,

(Pen) p*(ad*(¥)A) = n".
Here ad*(Z)\ := (d/dt)(exptZ -\)|s=0, and ad* (€)X can be identified naturally with the
tangent space of K3-orbit K& -\ at the point \.

This condition (Pn) for A has a geometric interpretation as follows.

Lemma 2.3. If X\ € g* fulfills the condition (Pry), then the image p*(K& -)) of
K& -orbit K& -\ under p* contains an open neighbourhood of p*(\) inn*.

This lemma allows us to deduce the following

Proposition 2.1. Let X be a cyclic (g,¥)-module generated by a vector vy € X:
X = U(g)vo. For a Lie subalgebra n of g, the annihilator Anny(vo) vanishes if there
ezists an element A € V(X) satisfying the condition (Pey)-

By focusing our attention on irreducible modules X, we immediately deduce from
Proposition 2.1 a criterion (sufficient condition) for X to admit locally free U(n)-action.

Theorem 2.1. Let¥,n be two Lie subalgebras of g, and let X be an irreducible (g, €)-
module. Then, the action of the enveloping algebra U(n) on X is locally free, that is, X
is a torsion free U(n)-module, provided that the associated variety V(X) of X contains a
point \ with the condition (Pn).

Remark. In view of the Remark in 2.1, one necessarily deduces
(2.7) dimn < d(X) = dim V(X),
if a finitely generated U(g)-module X enjoys a locally free U(n)-action.



3. Locally free U(n(0))-action on Harish-Chandra modules.

From now on, let g be a complex semisimple Lie algebra, and 6 be an involutive
automorphism of g. The associated symmetric decomposition of g is denoted by g = £+p
with € := g(6,+1) and p := g(6, —1) as in 1.6. Then there exists a 9-stable real form g,
of g such that the 8 on g, gives a Cartan involution of g (see [3, Ch.III, Lemma 4.1)).
We fix once and for all such a real form g,, and let gy = €+, denote the corresponding
Cartan decomposition of g,, where € := £ M gg and po := p M Go-

By a Harish-Chandra module, we mean in this paper a (g,%)-module X (see 2.2) of
finite length, associated with the symmetric pair (g,%). For each irreducible Harish-
Chandra module X, we construct in this section a family of nilpotent Lie subalgebras
n(O) of g for which X is locally free as a U(n(0))-module, by using the associated variety
V(X) of X and the Cayley transformation of normal sly-triples. The Lie subalgebras n(O)
are parametrized by the K&-orbits O contained in V(X). We shall give in 3.3 a concrete
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description of Lie subalgebras n(0) associated to holomorphic orbits (’) when the real .

form g, is a noncompact simple Lie algebra of hermitian type.

3.1. Lie subalgebras n(Q) associated with a nilpotent Kgd-orbit 0. We
" denote by N, the totality of nilpotent elements of g contained in p. By [6, Th.2], the
variety N, is a union of finitely many Kg-orbits, where K& is as in 2.2 the connected
Lie subgroup of G = Int(g) with Lie algebra £. e

Let O be a K%-orbit in N,. We are attaching to O a K ad_conjugacy class of nilpotent
Lie subalgebras n(O) of g in the following fashion.

Suppose that @ # {0}, and take any element X & ©. A strengthened version

of the Jacobson-Morozov theorem [6, Prop.4] assures that X can be embedded to a |

unique, up to K&-conjugacy, normal sl-triple (X, H, Y) in g (see 1.6), where H € ¢

and X,Y € p. Set 5 := CX + CH + CY C g and define a nilpotent Lie subalgebra

n=n; = (g(1) ® g3(1)) ® (Bi>28())) just as in (1.30), through the Cayley transform

(X’ H'Y") of (X,H,Y) defined by (1.2). Then it is immediate to check that, up to
Kg-conjugacy, the Lie subalgebra n is uniquely determined by O, independent of the
choice of an X in O and that of an sly-triple (X, H,Y). So we can and do write n(O)
for this n. .

We attach n(©) = {0} for the zero orbit O = {0}.

From Theorem 1.2(1), one immediately deduces

‘Lemma 3.1. It holds that dimn(0) = dim O.

Now let g > Z — Z € g be the complex conjuga.tion‘of g with respect to the real



14

form g,. Sekiguchi’s result [8] enables us to choose a nice representative n(O) which is
compatible with this conjugation except the g(1)-part.

To be more precise, take a normal sly-triple (X,H,Y) in g with X € O. By virtue
of [8, Lemma 1.4], there exists a k € K& such that (X1, H1,Y1) := (k- X,k-H,k-Y)'is
a strictly normal sly-triple in the following sense: |

(3.1) X1 =Yy, H;=—H;, orequivalently X;+Y1,i(X; — Y1) €py, tH: €&

Then, as checked immediately, the Cayley transform (X1, H,Y]) of (X3, H1,Y1) (see
(1.2)) lies in g,. 4

Theorem 3.1. (Kostant-Sekiguchi, see [8, Th.1.9]) Under the above notation, the
assignment ‘

(3.2) O=K& X0 =G X] .

gives a bijection (Kostant-Sekiguchi correspondence) between the set of nilpotent K-
orbits in p and that of nilpotent G*-orbits in g,. Here G* C C&* denotes the adjoint
group of go.

As for our Lie subalgebra n(Q), one gains the following advantage by choosing a
strictly normal slp-triple (X, H1, Y1).

Proposition 3.1. Let n(O) = (g}(1) ® g3(1)) ® (Di>28(1)) be a Lie éubalgebm of 8
constructed as above from a strictly normal slp-triple (X, H,,Y;). Then one has

g(0) =g(l) (1€2), g(1)={nO)ng1)}e{n(0)Nns(1)},

where g(l) denotes as in 1.6 the l-eigensubspace of g for ad(H}) with H; = X; +Y1 € p,.
In particular, n(©) is stable under the complez conjugation - if and only if g(1) = {0},
i.e., O is an even nilpotent orbit in p.

3.2. Main result. By virtue of Lemmas 2.1 and 2.2 one finds that the associated
variety V(X) of each Harish-Chandra module X is a Kg¢-stable algebraic cone in N, by
identifying the dual space g* with g itself through the Killing form B of g.

We are now in a position to give the following theorem which establishes locally free
U(n(0))-action on Harish-Chandra modules. ‘

Theorem 3.2. Let X be an irreducible Harish-Chandra module. The action of en-
veloping algebra U(n(Q)) of n(O) on X is locally free for every nilpotent K& -orbit O C p
contained in the associated variety V(X) of X. Here n(Q) is the nilpotent Lie subalgebra
of g constructed in 3.1. ' B '
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This is the main result of this paper.

We now deduce two important consequences of the above main result.

First, Theorem 3.2 together with the Remark in 2.3 allows us to derive the following
theorem by concentrating our attention on a K&-orbit of V(X) of maximal dimension:

Theorem 3.3. Let X be as in Theorem 3.2, and let Opuy be a nilpotent K& -orbit -
in V(X). of mazimal dimension, that is, dim Ome, = dim V(X). Then the corresponding
W(Ohnaz) 15 mazimal (with respect to the inclusion relation) among the Lie subalgebras n
of g having locally free U(n)-action on X. |

Second, a Harish-Chandra module X is called large if its associated variety V(X)
contains an open K&¥-orbit in N, or dim V(X) = dimA,. Our main result yields the
following characterization of irreducible large Harish-Chandra modules.

Theorem 3.4. Let n, o be a mazimal nilpotent Lie subalgebra of real form g, ap-
pearing in an Iwasawa decomposition of gy. An irreducible Harish-Chandra module X
is large if and only if X is a locally free U(n,,)-module. Here we write n,, for the
complemﬁcatzon of mp in g.

Remark. The largeness of an irreducible Harish-Chandra module X is characterized
also by the existence of Whittaker vectors for X. See for example [5, Th.K] and [7,
Cor.2.2].

3.3. Lie subalgebras n(®,) for holomorphic orbits ©,. Now suppose that
go = & + py is a noncompact real simple Lie algebra of hermitian type. We denote by -
w the unique (up to sign) €y-invariant complex structure on p,. Extending w to p by
complex linearity, one gets a triangular decomposition

(3.3) g=p_Dtop, with p,:={Zep|wZ==iZ},
of g such that |

(3.4) [e,pi] Coe, [pyp ] CE [py,p,]=[p_,p]={0}

It then follows that the subspaces p,. are included in the nilpotent variety N, of p, since
(adZ)® = 0 for every Z € p,. A K3 -orbit O contained in p, is called holomorphic,
as p, is naturally identified with the holomorphic tangent space at the origin of the
hermitian symmetric space G/K with g, = Lie(G) and €, = Lie(K). ,
‘We end this article by describing the nilpotent Lie subalgebras n(O) of g associated
with holomorphic K&#-orbits O. ‘
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3.3.1. In order to do this, we prepare after [12, 3.1] and [13, 9.1] refined structure
theorems for g, originally due to Harish-Chandra and Moore. Now let ty be a compact
Cartan subalgebra of g, which is contained in &. We denote by A the root system
of g with respect to the complexification t of ty. For v € A, the corresponding root
subspace is denoted by g(t;). A root v € A is called compact (resp. noncompact) if
g(t;y) C € (resp. g(t;v) C p), and A, (resp. A,) stands for the set of all compact (resp.
noncompact) roots. To each 7y € A we can and do attach a nonzero vector X, € g(t;7)
satisfying
(3.5) Xy =Xy, i(Xy+X_y) €t+ipy, [X,,X_,]=H,.

Here H, is the element of it; corresponding to the coroot v := 2v/(y,~) through the
identification t* = t by the Killing form B.
Take a positive system A* of A compatible with the decomposition (3.3):

p. = P g(t;+y) with A} =AY NA,,

yeAT

and fix a lexicographic order on it} which yields A*. Using this order we define a
fundamental sequence (v1,72,...,7) of strongly orthogonal (i.e., v; £v; ¢ AU {0} for
i # j) noncompact positive roots in such a way that 7 is the maximal element of A*,
which is strongly orthogonal to i1, ..,7r. '

Now, put t~ :=Y";_; CH,, C t, and denote by w() € (t7)* the restriction to t~ of a
linear form v € t*. For integers k,m with 1 < m < k < r, we define subsets Py, Pr, Po
of A} and subsets Cip, Ck, Cy of A respectively by

(36) Pun 1= {y € A3 () = "0 T0m)y
G Cim = {y € 1] m(y) = "L =Tlm)y,
(68 Po=freallnm="1} o= fyeat|xly) = "0,
(3.9) Fo:={1,% -, w} Co:={ye€Af| n(y) =0}

Then, by Harish-Chandra the subsets A} and A} are expressed as

1<k<r 1<m<k<r
(3.11) Af=GU(U alUl U Cim),
1<k<r 1<m<k<r

(3.12)

where the unions are disjoint.
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We set Hy .= X, + X_,, €pyfor 1 <k <r. Then
(313) Apo = Z RHk
k=1

turns out to be a maximal abelian subspace of p,. Let ¥ denote the root system of g,
with respect to a,0, and for each k let ¢x € a;, be the linear form on a,¢ defined by
Ye(Hm) = 20km (m = 1,...,7; with Kronecker’s éxm). Moore’s restricted root theorem
describes ¥ as follows.

Theorem 3.5. (Moore) The elements iy (1 < k < 1) form a basis of a;,,, and there
exist only two possibilities for the root system W :

\p:{i(@n 1§m<k§r}u{i(¢k;¢m)| l<m<k<r}
if the subsets Py and Cy are empty for every k, or otherwise
v = {:t(””“;d’"‘)[ 15m<kgr}u{i(¢’“;¢m)| 1<m<k<r)

U{i%| 1<k<r)

The former possibility occurs exactly when the corresponding hermitian symmetric space
is analytically equivalent to o tube domain.

3.3.2.  For each restricted root ¢ € ¥, let g(ap; ) denote the complexified root
subspace of g corresponding to ¥. We can now write down a basis of each g(a,; %) by
means of the vectors X, € g(t;v) (v € A) defined in (3.5), as follows.

Proposition 3.2. (Hashizume, cf {13, Lemmas 9.1 and 9.2]) (1) For 1 <m <k <,
the vectors ' ‘

(3.14) B = Xy 4 (X, Xo) £ Xy Xy £ (X, (X, X,

form a basis of the root subspace g(a,; (Yr £ ¥m)/2), where v runs over the elements of
Pirm in (3.6). | :

(2) The element
(3.15) Fr=iHy,, — X\, +X_.)/2

lies in g(ap; ) and it holds that dim g(ap; ¥x) = 1 for every 1 <k <.
(3) The subspace g(ay,; ¥x/2) has a basis:

(3.16) E =X, +[X_,X,] (ve€ Py U Cy)

for every 1 < k < r, where Py, and C}, are as in (3.8).
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3.3.3. Set X (1) := Yycpar Xy € Py (X(r) :=0)for0 <t <7, andlet O, C p, bethe
holomorphic K&-orbit through X (t). The followmg well-known proposition parametrizes
such K; “d-orblts in N,.

Proposition 3.3. The subspace p_ splits into a disjoint union of r + 1 number of
K& -orbits Oy (0 < ¢t < 1): p, = lo<s<r Os, and the closure O, of orbit O is equal to
Us>:Os for every t.

Suggested by this proposition, we want to describe the nilpotent Lie subalgebra n((;)
in terms of root vectors E$, E; and E}7 in Proposition 3.2, for every 0 <t < r.
This is achieved in the following way. Put

(3.17) H(t):= > Hy, Y(@#):= Y X_.

t<k<r t<k<r
Then it follows from (3.5) together with the strong orthogonality of v;’s that (X (¢), H(t), Y (¢))
is a strictly normal slo-triple in g. We denote by (X'(t), H'(t),Y’(t)) the Cayley trans-
form of (X (t), H(t),Y (t)) defined in (1.2). Noting that H'(t) = 3;<x<, Hk, one deduces
from Theorem 3.5 the following

Lemma 3.2. The Lie algebra g decomposes into a direct sum of the eigensubspaces
forad H'(t) as

(3.18) g =9(-2) ®g(-1) ®9(0) ® (1) ® 9(2),
" B2 = gsrg,(a,,;i(‘”k;’”m»,
)= @ (sl ) o s(ei (250 ) @ (t;’e@g st )
50) = 3, (15,%3 (st 22 @ 0, 1"";"’"‘)))
® (lsgg (g(ap; Lt Um) g glay 2 ’”’"))) ,

and 34(a) denotes the centralizer of a in g. In particuiar, g‘:”(l) = {0} for alln and .

By utilizing Proposition 3.2 and Lemma 3.2, we obtain the following complete de-
scription of Lie subalgebra n(O;) associated to the orbit ;.
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Theorem 3.6. Let O, = K& X (t) with 0 < t < be a holomorphic K& -orbit inp.,,
and let n(O;) be the Lie subalgebra of g constructed as in 3.1 from the Cayley transform
of (X(t),H(t),Y(t)). Then n(O,) is expressed as

(3.19) | n(0) = gi(1) @ g(2),
with g(2) as in Lemma 3.2, and gi(1) is the subspace of g(1) having a basis:"

(3.20) Ef—E; (W€ Py; 1<m<t<k<r), Ei (y€eCrt<k<r).

Y 8l

Here Eé‘ and E% are as in Proposition 3.2.

Theorem 3.2 coupled with Theorem 3.6 implies that the (at most) two-step nilpo-
tent Lie subalgebras n(O;) enjoy locally free action on the Harish-Chandra module of
a holomorphic discrete series for every t, because its associated variety coincides with
the whole p, (cf. [15]). More generally, the associated variety of any irreducible high-
est weight Harish-Chandra module X is contained in p,, and so X admits locally free
U(n(O;))-action for some #’s specified according as the rank of X.
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