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Speaking about transitive frames in propositional languages
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Abstract

This is a report about comparative study of the propostional intutionis-
tic (non-modal) and classical modal languages interpreted in the standard
way in transitive frames. Talking about transitive frames, the intution-
isitc language displays some unﬁsual features: its expressive power be-
‘comes weaker than that of the modal language, the induced consequence
relation does not have a deduction theorem and etc. We develops a man-
ageable model theory for this consequence relation and its extensions
which also reveals some unexpected phenomena. The balance between
the intuitionistic and modal language is restore by adding to the former
one more implication. This report is an extended abstract of [7]-

1. Both modal and intuitionistic propositional languages may be re-
garded as talking about quasi-order F = (W, R), R a reflexive and transi-
tive relation on a set W. The primitive operators of the modal language

MUL are A, V, —, L and O. The primitive operators of the intuitionisitic
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language £ are same to the modal language without 0. They are inter-
preted on quasi-order in usual way. For instance, O, — of ML and — of

L are defined as follows if we denote truth-relation as f=;

the case of ML
= Op iff Yy € W.(zRy =y = ¢)
rEe—vY iff ¢ impliesz ¢
the case of £

sEe—Y iff Yye W(zRyAy o=y E )

The intuitionistic lanugage £ may be evaluated on the set UpW = {X C
W :Vz,y(x € X AzRy = y € X)} of cones (or upward closed sets). That
means, for any intuitionisitic formulas, if the truth-sets V(i) is defined
as the set {x € W : z |= ¢}, V(cp) € UpW holds. Intuitionistic formulas
cannot distinguish between points in the same cluster C(z) = {z} U {y €
W : xRy A yRz}, however,as far as only cones are concerned, the modal
and intuitionistic languages are of the same expressive power at both
functional (local) and axiomatic (global) levels.

Let fix a quasi-order 7 = (W, R), and suppose V is a valuation on
F and ¢(p1,...,pn) is any ML- and L-formula where variables occuring
in the list py, ..., p,. We define a n-ary operator ¢x(Xj,...,X,) as the

function gr(V(p1),...,V(pn)) = V(¢). ¢ is equal to @£ if ¢ is L-formula.
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If ¢ is ML-formula,

¢r if pr(X1,...,Xn) € UpW for all Xi,...,X, € UpW
PF =
Iy: otherwise.

Proposition 1 For any quasi-order F, {pr: ¢ € L} = {oF: v € ML}

Proof One direction (C) is easy by using Gédel translation. See [4]. For

the converse direction, see Lemmas 8.32 and 8.33 in [4]. !

A class C of quasi-order is said to be £- (or ML-) aziomatic if there is a
set T' of L- (respectively, ML-) formulas such that, for every quasi-order
F,FETif F € C. (F ET means that all formulas in I' are true at
all points in F under all possible valuations.) Since L-formulas do not
distinguish between points in one cluster, when comparing the axiomatic
power of modal and intuitionistic formulas we should consider skelton-
closed frame classes. Here, a class of frames is skelton-closed if with
every F contains also all the quasi-order whose skeltons are isomprphic
to the skelton of F. We define a skelton of quasi-order F = (W, R) as

F° = (W°, R°) where W° = {C(z) : z € W} and C(z)R°C(y) iff zRy.

Proposition 2 A skeleton-closed class C of quasi-orders is L-aziomatic

ioff it is ML-aziomatic.

‘Proof The deduction from the assumpotion a class is ML — axiomatic

to it is L-axiomatic, see [11]. The converse direction is easy. | w
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Example 3 The class of all partial orders without infinite strictly as-
cending chains is ML-aziomatic; it is ariomatizable by the Grzegorczyk
formula O(O(p — Op) — p) — p but not L-aziomatic; it is not skeleton-

closed.

Between ML and L, there is te> fact that the Godel translation T
embeds extensions of intuitionisitic logic Int into extensions of classical
modal logic S4. We denote the class of extensions of Int known as super-
intuitionistic or intermediate logics (si-logics, for short) as ExtInt, and
smallest si-logic containig a set of £L-formulas I' as Int +I". Each si-logic
contains Int, and is closed under modus ponens (MP) and substituition
(Subst). NExtS4 is the class of normal extensions of S4 which are sets of
M L-formulas containing S4 and closed under Subst, MP and necessita-
tion. S4p T _is the smallest normal extension of S4 to contain I' C ML.

Define a map p : NextS4 — ExtInt and 7,0 : ExtInt — NextS4 by

taking, for any M € NExtS4 and L € ExtInt,

pM {peL:Tye M},

7L = S40{T:p€ L},
oL = 7L 0(0(p — Op) — p) — p.
(Detailed properties the above mapings, for instance, see [4].)

O of S4 can be understand as denoting informal provability. As con-

trasted with S4, the fact O of GL denotes formal provability in Peano
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arithmetic is well known. Using T, we can get embedding of Int into
GL, where T () replaces every 0 in T () by Ot = ¢ ADO¢p. Visser [§]
described pGL and pK4 (K4 is the modal logic of all transitive frames)
in the form of natural deduction systems.

Ruitenburg [6], criticizing the BHK interpretation of Int for not ex-
plaining the logical connectives ih simpler terms, proposed to interpret
implication as “a proof of ¢ — % is a construction that uses the assump-
tion ¢ to produce a proof of ¥”. And he shows that his proof interpre-
tation gives rise not to Int but a weaker logic which is characterized by
the class of arbitrary transitive (not necessary reflexive) frames.

Our aims are to clarify how far the relation ship between £ and ME
considered above can be extended on the class of frames which relation is
traisitive, and to find a suitable non-modal propositional language which
could talk about traﬁsitive frames as fulenﬂy as L can talk about quasi-
orders. |

2. From now on by a (Kripke) frame we mean a pari F = (W, R) in
which R is a transitive relation on a set W # 0.A model of the language
L is a pair M = (F,V), where F is a frame and V maps propositional
variables into UpW. The truth-relation |= in M is same to the case for
Int. M = ¢, ¢ is true in M, means that « |= ¢ for every x € W, and
F = o, ¢ is valid in F, that ¢ is true in every model on F.

From this definition, T — L (where T is L — 1) is true at every final
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irreflexive point in any model holds. As for the expressive power, the

following propositions hold.
Proposition 4 For all frame F, {pr: ¢ € L} C {pF : o € ML}.

Proof Suppose translation T' which prefixes O to every subformula of

varphi of the form ¥ — x. To show proper inclusion holds, consider the

frame F = ({a,b},0) and OF—p. | n

Proposition 5 The class Q of all quasi-orders is ML-aziomatic but not

L-aziomatic.

Proof 7 € Qiff 7 = Op — p. On the other hand, every L-formula
p € Iﬁt (and even ¢ 61 Cl) is valid also in the frame ({a},0), as is
- easily shown by induction on the construction of ¢. So if Q would be
axiomatizable by a set of L-formulas I" then I' C Int and consequently

({a},0) € Q, which is a contradiction. o

Let us consider now the set V. = {p € £ : VF F = ¢}. According
to the completeness theorem of Visser [8], V coincideé with the set of
formulas derivable in the basic propositional logic BPL represented by
Visser in the form of a natural deduction system.

To compare V with the standard axiomatization of. Int, we just cite

here the following observation from [8].

Proposition 6 V is closed under substitution and modus ponens, and

contains all the azioms of Int in [{] except (p — (g — 7)) — ((p — q) —
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(p—r)).

Semantically the consequence relation i, in intuitionistic logic can
be defined as “T" by iff VMV:L‘((M,CD) ET = (M,z) E ¢)”,where M
ranges over intuitionistic models and z over points in M. As was shown
by Visser 8], the relation vy defined by “T' by iff YMVz((M,z)
I' = (M,z) | ¢)”,where M ranges over all transitive models, is the
consequence relation of his natural deduction system for V.

Now, considering (L,Fvy) as a deductive systém, we see that modus

ponens is nota derivable rule in it. Moreover,

Proposition 7 There erists no formula x(p,q) such that,for allT', ¢, 9,

Proof Assume on contrary. Take I' as {T — L},and derive the contra-

diction. )

3. The Kripke semantics we considered in the previous section is not
enough for dealing with extensions of V. An algebraic sematics for V was
introduced by Ardeshir and Ruitenburg [2]. The aim of this section is
to define a notion of a general frame for V and develop to some extent
duality theory for the algebraic and relational semantics.

We can get an impression how algebras for V may look like by rep-

resenting transitive frames F = (W, R) as the algebras of cones F* =
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(UpW,N,U, —,0, W) in which
X—>Y = {zeW:Vy zRyAye X >y € Y)} (1)

(the logical connectives A, V, —, L, T are interpreted in F*t by the
operations N, U, —, 0, W, respectively). Every such algebra is clearly
a bounded (i.e., with top and bottom) distributive lattice satisfying the

following equations (a < b means aAb= a):

a—bAc=(a—b)A(a— c);
bVec—a=(b—a)A(c— a);
a—a=Tanda< T —a;

(a—=b)A(b—c)<a—c

Let us take these properties as a definition and call a bounded distributive
lattice A = (A, A,V, —>,I 1, T) satisfying the equations above a V-algebra.
Our goal now is to show that all V-algebras are induced by frames, are
subalgebras of the corresponding algebras of coneé, to be more exact. To
this end we require the following lemma on the existence of prime filters

in V-algebras.

Lemma 8 Suppose A = (A,A,V,—, L1, T) is a V-algebra, V a prime

filter in A and let C and D be subsets of A such that
Vei, oo oyen €CVy,...;dy €D ey N...Nepw—dy1V...Vd, € V.

Then there exists a prime filter V' in A such that C C V', V' ND =10



150

and VRV', where
VRV' iffVa,be A (a—=beEVAaeV =>be V.

Theorem 9 All subalgebras of algebras of the form F*, F a transitive
frame, comprise (up to isomorphism) the variety (equational class) of

V -algebras.

Proof When we prove closeness of the operator — (defined by (1)), use

lemma 8. O

Following the standard model-theoretic terminology of modal logic, we
call a general V-frame any structure F = (W, R, P) where (W, R) is a
Kripke frame and P a set of R-cones containing @) and closed under N, U
and — defined by (1). If P = UpW, we call F a Kripke frame as before
and may not mention P explicitly. The dual of F, denoted by F*, is the

subalgebra of (W, R)* with domain P.

Theorem 10 A general V-frame F = (W, R, P) is isomorphic to (F¥)4

iff F is descriptive in the sense that
ezx=yiff VXEP(ze X SyeX);
e zRy if VX, YEP (ze X > YAye X =>y€Y);

o (W, P) is compact, i.e., for all X CP and Y C{W - X : X € P}, if

X U has the finite intersection property then N(X UY) # 0.

Proof Similar to the proof of Theorem 8.51 in [4]. 0
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B 1: V-frames
Example 11 Two examples of descriptive V-frames a'ré shown in Fig. 1.
The frame F = (W, R,P) on the left consists of two wrreflexive points
(represented by e ) which do not see each other; all the cones in the set P
of possible values, save W and 0, are indicated explicitly by curve lines.
Arrows in the second fmmé G define its accessibility relation. It may be of
interest to notice that although these frames are finite, they are not Kripke
frames (i.e., their sets of possible values do not contain all cones), which
contrasts with the standard case of frames for modal and intuitionistic

logics.

Although V and kv are characterized by the variety of V-algebras,
the connection between algebraic properties of this variety and the con-
sequence relation v is not as close 55 it is between, say, intuitionistic
logic and Heyting algebras. For instance, almost all non-pathological
propositional logics are protoalgebraic in the sense of Blok and Pigozzi
[3]. However, as we show below, this is not the case for v.

Roughly speaking, a consequence relation I is protoalgebraic if there is

a close connection between designated elements and congruences in ma-
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trices for . A syntactic definition looks like this. Say that two formulas
« and B are T-equivalent relative to b if, for every formula v and every
variable p occurring on v, “I' F v(a/p) iff T - v(8/p).” Formulas o and
B are T-interderivable relative to - if “T',a+ B iff T', B F «.” Finally, I is
called protoalgebraic if, for every set of formulas I, any two formulas are

I-interderivable relative to - whenever they are I'-equivalent relative to

.

Theorem 12 v is not protoalgebraic.

Proof We use the following algebraic characterization of protoalgebraic
consequence relations. Consider a matrix M = (A, D), ie., an algebra
A together with a subset D of the domain A of A. M is a matriz for a
consequence relation - if V(I') C D implies V(¢) € D whenever I' F ¢
and V is a valuation in A. By QD we denote the largest congruence
relation in A which respects D, i.e., such that (a,b) € QD implies a € D
iff b € D. Blok and Pigozzi [3] showed that a consequence relation | is
protoalgebraic iff D; C D; implies Q2D; C QD; whenever (A, D;) and
(A, D,) are matrices for . Consider now the matrices (F*,{T}) and
(F*,{T,a}), where F is the frame defined in Example 11. Clearly, both
of them are matrices for Fy. It is easily verified that Q{T} identifies only

a and L and Q{T,a} only T and a. Hence Q{T} € Q{T,a}, and so v

is not protoalgebraic. . O
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4. When we consider about the extensions of V, we encounter the
problem what kind of extensions are worth considering is. As we observed
in proposition 4, the class of quasi-order is not L-axiomatic, we cannot
introduce formula extension, like ExtInt, as a set of formulas L that
contains V and is closed under Subst and kv (that means ¢ € Lif T C L
and I vy o).

So we consider that extensions not of the logic V but of the conse-
quence relation Fy. The most general class of such extensions consists
of arbitrary finitary (i.e., if I' ¢ then A I ¢ for some finite A C T')
structural (i.e., closed under substitution) consequence relations contain-
ing Fv. Each of them can be lookéd at as the result of adding to kv a set
E of inference rules. Let -y + E denote the smallest finitary structural

consequence relation containing Fy and respecting the rules in =. For

PP (T—p)—T
T—p

tologies that are deduced by Frpc coincide with pGL (FPC stands for

. The tau-

instance, Fig=Fv + and Fppc=tv +
“formal propositional calculus”).

We say that a consequence relation |- is a V-consequence if it is finitary
and characterized by a class FR of general V-frames in the sense that
coincides with the relation =rg such that T’ g ¢ iff for any model M
based on a frame in 7R and any point z in M, (M,z) T = (M, z) |
@. The class {F :+ C =} of frames for I will be denoted by Fr I-.

The corresponding notions for V-algebras can be defined as follows.
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For a class AL of V-algebras we write I' =4, ¢ iff there exists a finite
subset I of I" such that the equation AT < ¢ is valid in all members of

AL. The class {A : C =4} of algebras for |- is denoted by Alg . Then,

Theorem 13 (i) A class bf V-algebras is of the form Alg + for a V-
consequence & iff it is a subvariety of the variety of all V-algebras.

(i1) A class of general V-frames is of the form Fr b= for a V-consequence
F iff it is closed under generated subframes, reductions, disjoint unions

and it as well as its complement are closed under the formation of biduals.

Proof (i) Let AL = AlgH, for a V-consequence . Then AL is the class
of V-algebras defined by the equations {AT < ¢ : T' F ¢, T'is finite}
a,nd‘ so AL is a variety. Conversely, given a variety AL contained in the
variety of V-algebras, one can easily check that Alg |=4¢ coincides with
AL.

(ii) The closure conditions for classes of the form Fr I aré clear. Con-
versely, assume that FR is a class of general V-frames closed under gen-
erated subframes, reductions, disjoint unions and it as well as its comple-
ment are closed under the formation of biduals. First we show that |=4¢
is finitary. To this end suppose that I £4r ¢, for every finite subset
I' of a set of formulas T. Take for each such I" a frame F € FR refut-
ing TV ‘l— ¢ and form the disjoint union G of all those 7. Then in view

of the compactness of the descriptive frame (G'), € F, it must refute
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' k. It follows that =r% is a V-consequence. So it remains to show
that 7R = Fr =rz. But this is obtained from (i) by using the results
on duality between general V-frames and V-algebras (see [5] for a similar

argument). \ m

- The consequence relations as the extensions of V are complete in the
sense that, for any finite set of formulas I' and formula ¢, if T ¥ ¢ then
there exists a Kripke frame F € Fr I such that T 7 . In contrast
with superintuitionisitic logics it is almost trivial to construct incomplete

V-consequeces.

Proposition 14 (i) The consequence relation =g, where G is the frame
defined in Example 11, is not complete.

(ii) Fv + (p — q) V (¢ — p) is not complete.

Proof Let o1 =(p = ¢)V(p—9) = p), v2=(@ — ) V(¢ — p)
One can easily show that a Kripke frame validates ¢ iff it validates ¢,
iff it is linear. However, G refutes o; but validates ¢y. The claims of the

proposition follow immediately. O

The class of all V-consequences order by inclusion forms a complete
lattice; we denote it by Ext Fv. There is an isomorphism between ExtInt

and NExtGrz via 0. So we conjecture that there exist an isomorphism

between Ext -y and NExtL, for some L € NExtK4. But,

Theorem 15 The lattice of V-consequences conating Fgpc is not iso-
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morphic to the lattice NExtGL.

5. From the semantical point of view, all the “peculiarities” of the
language £ interpretd on thransitive frames as wll as of the logic V and
its extensions we observed in the thress previous sections are explained
by the fact that being in an irrflexive world z; we can t‘alk about = using
A and V; — is for talking about successors x. A way of improving the
expressiveness power of L is to add the following one more implication

— to L;
tEp—¢iff Vye W((z=yVzRy)ANyE ¢ =y E¥).

The resulting “biarrow” language is denoted by L. But instead of Lo,
we can consider the modal language M L., which results from ML by re-
placing — with <. Because, using valuation V of propositional variables

in UpW, — (and O) can be defined via < and O (respectively, — and

T) as follows;

sEeoy it kO o),
cEOp ff 2T -

Before showing about the expressive powers, we introduce a caluculs.
Let U be the set of ML. ,-formulas that are Valid in all transitive frames
and let “T by ¢ iff YMVz (M,z) T = (M, z) | ¢)”. Clearly, the
deduction theorem holds for Fy and — (that is, “I',o Fy ¥ iff I' by ¢ —

"), and it is easy to check that -y is protoalgebraic.
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‘U can be considered as a normal modal logic on the intuitionistic basis.

This observation and completeness results of [10] provide a Hilbert-style

axiomatization for U and Fy.

Theorem 16 The calculus U in the language ML._, with modus ponens

and substitution as its inference rules and the axioms
1. those of Int,
2. 8(p — q) — (Op — Ogq), Op — OOp, p — Op,

8. Op— (qV (¢ — p))

is strongly complete with respect to the class of transitive frames, i.e.,

Pl"UQO 2ﬁF|“U P-

In the proof of theorem 16, to interpret ML., that axiomatized by U,
we use a notion of IM-frames from [10]. That is, descriptive IM-frames
‘.7: = (W,R_,R,P) is a strucutre such that ,<W’ R._,, P) is a descriptive
(quasi-ordered) frame for Int(— is interpreted via R..), P is closed under
the standard O interpreted via R, zRy iff VX € P(z € 0xX = y € X)
and R,oRoR._, =R.

Remark. Not every general frame for V can be regarded as an IM-
frame because it is not necessaarily closed under <. So, IM-frames for U
defined in the above will be called U-frames. Since R., is uniquely deter-

mined R, we may omit R., and denote these frames by F = (W, R, P).
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Now, NExtU of normal extensions of U, that is sets of ML -formulas
containing U and closed under MP and Subst (the closure under neces-

sitation is ensured by the axiom p — Op). Then, immediately, -

Theorem 17 Every logic in NExtU is characterized by a class of (de-
scriptive) U-frames. Conversely, everyl class of general U-frames deter-

mines a logic in NExtU.

Using the result on embeddings of intuit.ionisitic, modal logics into clas-
sical polymodal logics obtained in [9], [10], we can show that there is
a relationship between NExtU and NExtK4 is similar to that betweén
ExtInt and NExtS4 discussed in Section 1.

Let ML5 be the language with two necessity operators Oy and O (and
the implication —), and let 7" be the translation from ML., into ML,
prefixing O; to all subformulas and replacing < with —. Given logics L;
and L, in the unimodal languages ML, — O and MLy — Oj, respectively,
denote by L; ® L, their fusion, the smallest bimodal logic in ML, to con-
tain L; U Ly. By IntK we mean the minimal normal intuitionistic modal
logic in the language ML, (i.e., the smallest set of formulas containing
Int, the modal axiom of K and closed under modus ponens, substitution

and necessitation). As is shown in [9],

(i) the map

pM ={p e ML_ : T"(p) € M},
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is a lattice homomorphism from NExt(S4 ® K) onto NExtIntK (preserv-
ing the finite model property and decidability);
- (ii) each logic IntK @& I is embedded by T" into any logic M in the
interval
(S4®K) ® T'(T) € M C (Grz ® K) & mix @ T"(T),

where mix = 0;00;p « Op, and

(iii) the map

o(IntK & I') = (Grz ® K) © mix & T"(T)

is a lattice isomorphism from NExtIntK onto NExt(Grz ® K) © mix.
(As before, the operation @ means “take the union and close it undef the
- postulated inférence rules”.) |

If we consider now K4 as a bimodal logic in ML, by defining O;p =
¢ AQgp, then we may assume K4 to be in the class NExt(S4®K4). Since
this “bimodal” K4 is characterized by the class of frames of the form
(W,R’, R) and in view of Proposition 21 in [10], pK4 = U. Therefore,
U has the finite model property and p is a lattice homomorphism from

NExtK4 onto NExtU. The logic
Grz = K49 D(D(p — Dp) — p) — Op

is known to be determined by the class of finite Kripke frames without
proper (i.e., containing > 2 points) clusters (see e.g. [1]). U is char-

acterized by this class too. It follows that pGrz' is also U. And since
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mix € K4 and the “bimodal” Grz' is in' NExt(Grz ® K4), we finally

obtain
Theorem 18 The map o is an isomorphism from NExtU onto NExtGrz'.

It is not hard to see also that modulo clusters the languages ML., and

ML have the same functional power on the class of transitive frames.

Proposition 19 {¢r : ¢ € ML} = {pr: ¢ € ML}, where F ranges

over the class of all transitive frames.
Proof Similar to the proof of Proposition 1. O

To prove that the languages under consideration have the same ax-
iomatic power we require frame-based ML.,-formulas simulating canon-
ical formulas for K4 of [11]. Namely, with every finite rooted transitive
frame F = (W, R) without proper clusters—let ay, . . ., a, be all its points
and ag the roof—and a set D of antichains in‘f we associate a formul_a,
'y(}' ,D,1) Which is the irﬁplication (—) whose consequent is py and the

antecedent is the conjunction of all formulas of the form

Opo if —agRay,
Op; — pi if a;Ra;,
vij = (AT —p;) —pi if aiRa’ja
w = N (WTj—p)— Vp if d€D,
a;eW-I1 ased

YL o= ./\O(APj“"Pj)'—’—L,
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where

{pk g ¢ ajl} if, ajRaj

{Opj,pr : ax ¢ a,1} if‘ﬁajRa]-,

and
Xt={yeW:3z € X zRy}, X1 =XUXT,
X|={yeW:3z€ X yRz}, X]=XUX].

Given a frame G = (V,S), a partial map f from V onto W is called a

subreduction of G to F if, for all z,y € domf,
(R1) zSy implies f(z)Rf(y);
(R2) f(z)Rf(y) implies 3z € z1 f(z) = f(y).
A éubreduction f is said to be cofinal if domfT C domf].
Proposition 20 For any transitive frame G = (V,S), G & v(F,D, 1) iff

there is a cofinal subreduction of G to F satisfying the following (closed

domain) condition

(CDC) ~3z € domf —domf 3d € D f(xT) = d].

Proof (=) Suppose G refutes v(F, D, L) under some valuation (in UpV)
and = is the premise of v(F,D, L). Define a partial map from V onto W

by taking, for x € V,

a; fzfp,cET,cET

undefined otherwise

Ffla) =
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and show that it is a cofinal subreduction of G to F satisfying (CDC).
Notice first that f is a partial function. Indeéd, sincé F contains no
proper clusters, if a; # a; then either —a;Ra; or —a;Ra;; in the former
case p; € I'; and in the latter p; € [';.

Let Sy, f(z) = a; and f(y) = a;. Then (since the valuation is intu-
itionistic) = & p; from which p; ¢ I'; and so a; € a;], i.e., either a;Ra; or
a; = a;. Now, if a; = a; and —a;Ra; then Op; € T;, so z |= Op; and y = p;,
which is a contradiction. Thus, f satisfies (R1). To show that it satisfies
(R2) suppose f(x) = a; and a;Ra;. If a; # a;j then z |~ p;, = = 7;;, and
so there is y € z1 such that y = TI'; and y - pj, ie., f(y) = a;. And if
a; = a; thén, since = £~ p; and = |= Op; — p;, we have = [~ Op;, i.e., there
is y € z1 such that y [~ p;, and again f(y) = a;.

Since, by the definition, f(z) = ap whenever z j& v(F,D, L), the map
f is a surjection. The fact that f is coﬁnal is clearly ensured by the
conjunct v, and that it satisfies (CDC) by ~;.

(<) Let f be a cofinal subreduction of G to F satisfying (CDC). Define

a valuation in G by taking

cl=piff x ¢ f71(a;)].

By a straightforward inspection one can easily verify that under this val-

uation z [~ v(F,D, L) for every x € f~(ay). m

Corollary 21 For every Kripke frame G, every finite rooted frame F
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without proper clusters and every set D of antichains in F ,
G o(F,D, 1) iff G = ~(F,D, L).

Proof Follows from Proposition 20 and the refutability criterion for

canonical formulas in [11]. | o

Remark. Actually, it is not hard to show that Proposition 20 holds for
any general U-frame G. It follows that the formulas of the form v(F, G, 1)

are enough to axiomatize all logics in NExtU.

Proposition 22 A skeleton-closed class C of transitive frames is ML.,-

aziomatic iff it is ML-axiomatic.

Proof If C is axiomatized by a set I' of ML.,-formulas then it is also
axiomatizable by the set T"(I'). Suppose now that L is the logic in
ML characterized by C. Since C is skeleton-closed, it is axiomatizable
by a set I of canonical formulas for K4 built on frames without proper
clusters. The logic pL € NExtU is also characterized by C. It follows
that v(F,D, 1) € pL whenever o(F,D, L) € . Now, if G ¢ C then
G [ a(F,D, 1), for some a(F,D, L) € T and so G & v(F, D, 1). Thus,
C is axiomatized by pL (or by the ML, -formulas v(F,D, 1) such that

a(F,D, L) € T). o

As we saw in Section 2, not all ML-definable skeleton-closed classes

of transitive frames are L-definable. The situation changes drastically,
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however, when we consider frame classes definable by rules. Call a class
of general V-frames L-rule definable if it is of the form Fr |-, for some V-
consequence . A class of transitive Kripke frames is £-rule definable if it
coincides with the subclass of all Kripke frames in some. L'-rﬁle definable

class of general V-frames.

Theorem 23 (i) Let C be an Lo-definable class of general U-frames.
Then there exists an L-rule definable class C' of general V-frames such
that C coincides with the subclass of all U-frames in C'.

(ii) A class of Kripke frames is La-definable iff it is L-rule definable.

Proof Clearly, (ii) follows from (i), and to prove (i) it suffices to show
that for any Lo-definable class of descriptive U-frames, there exists an
L-rule definable class C' of descriptive V-frames such that C consists of
precisely the U-frames in C' (for a V-frame F is a U-frame iff (F1); is
a U-frame). To this end consider the variety V of V-algebras generated
by Ct ={F*:F €C}. V= HSPC"*, where H denotes the operation of
taking homomorphic images, S the operation of taking subalgebras, and
P the operation of forming direct products. It is enough to show that
for any A € V such that A, is a U-frame, we have Ay € C. Suppose
that A € HSPCt and A, is a U-frame. Then A € HSC*, since C*
is closed under products. By the fact that there are descriptive frames

H and G such that G € C, A, is a generated subframe of H and G is
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reducible to H by some f. For a frame F = (W, R, P), denote by P?
the smallest set of cones containing P and such that F® = (W, R, P?) is
a U-frame. In other words, P? is the closure of P under the operations
—, —, N and U. One can easily show that H? is a reduct of G® =

(since (X OY) = f1X)® fY(Y), for ® € {—,—,N,U}) and that
Ay = (A4)? is a generated subframe of . And since C is closed under
generatéd sﬁbframes, which are U-frames, and reducts, which are also

U-frames, we finally obtain A, € C. O
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