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1 Introduction

Nonlinear one-dimensional maps may be the simplest object that can produce chaos. There
are several attempts to produce pseudo-random numbers by using one-dimensional maps dis-
playing chaos. $[1]-13]$

Pseudo-random sequences generated by dynamical systems can possess statistical properties
of Markov or hidden Markov information sources.[4] On the other hand, we can consider the
inverse problem of constructing a dynamical system which has a stochastic structure of an
arbitrary prescribed Markov source. In this paper we give two solutions for this problem.
Using piecewise-linear maps, we construct a dynamical system which has a structure of an
arbitrary prescribed finite state Markov chain. A construction of a dynamical system having a
statistical structure of an arbitrary prescribed reverse Markov source is also given.

A construction of piecewise-linear maps that realize discrete memoryless information sources
was given by $\mathrm{K}\mathrm{a}\mathrm{c}^{[5]}$ for uniform distributions and $\mathrm{K}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{y}\mathrm{a}^{[6]}$ for non-uniform distributions, re-
spectively. It is interesting to note that the proposed constructions of Markov and Reverse
Markov sourc.es contain the results of.Kac and Kanaya, as special cases, respectively.

2 Dynamical Systems Realizing Markov Sources

We consider a Markov chain with a state $s–\{1,2, \cdots, n\}$ . Let $p_{ij},$ $i,j=1,2,$ $\cdots,$ $n$ be
transition probabilities from the state $i\in S$ to the state $j\in S$ . Let $P=\lceil p_{ij}$ ] denote by the
stochastic matrix that has transition probabilities $p_{ij}$ as the $(i,j)$-element for $i,j=1,2,$ $\cdots,$ $n$ .
We write an $\mathrm{i},\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$ probability distribution as $p=[p_{1},p_{2}, \cdots , p_{n}].\mathrm{t}$ Markov source is defined
by the stochastic process $\{X_{N}\}_{N=}\infty 0$ produced by the triple of state space $S$ , stochastic matrix
$P$ and initial probability vector $p$ . We denote it by $\mathcal{M}(S, P,p)$ . The generic probability of a
string $a_{0}a_{1N-1}\ldots a\in S^{N}$ is given by

Prob $\{X_{0}=a_{0}, X_{1}=a_{1}, \cdots , X_{N-1}=a_{N-1}\}$
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$\vee=p_{a0}p_{a}\mathrm{o}a1\ldots p_{a_{N2}a}-N-1^{\cdot}$ (1)

Our aim is to construct a dynamical system which is equivalent to an arbitrary prescribed
Markov source. We first define a dynamical system equivalent to a given Markov source. Let
$I$ denote the closed interval $[0,1]$ and $\tau$ : $Iarrow I$ be a nonlinear map. Consider the following
decomposition of $I$ :

$0=\triangle 0\leq\triangle_{1}\leq\triangle_{2}\leq\cdots\leq\triangle_{n}=1$ .
and set

$I_{k}$ $=$ $[\triangle_{k-1}, \triangle_{k})$ for $k=1,2,$ $\cdots,$ $n-1$

$I_{n}$ $=$ $[\triangle_{n-1}, \triangle_{n}]$ .

Define the quantizer a by
$\sigma(x)=k$ for $x\in I_{k}$ .

For any positive integer $N$ and any string $a_{0}a_{1N-1}\ldots a\in S^{N}$ , let $A(a_{0}a_{1}\cdots aN-1)$ denote the set
each element $x$ of which produces $a_{0}a_{1}\cdots a_{N-1}$ by the random number generator $\{\sigma(\tau^{k}(X))\}k=0N-1$

and $\mu[a_{0}a_{1}\cdots aN-1]$ denote the measure of the set $A(a0a1\ldots aN-1)$ , that is,

$A(a0a_{1}\cdots aN-1)$

$=$ $\{x:\sigma(X)=a_{0},$ $\sigma(\mathcal{T}(x))--a_{1},$
$\cdots,$ $\sigma(\tau^{N-1}(X))=a_{N-1}\}$ (2)

$\mu[a_{0}a1\ldots aN-1]$

$=$ $\mu(A(a0a1^{\cdot}\cdot\iota aN-1))$ . (3)

Let $F(\sigma, \tau, \mu)$ denote the dynamical system that consists of the triple of quantizer a, one-
dimensional map $\tau$ and measure $\mu$ . We call $\mathcal{F}(\sigma, \tau, \mu)$ is equivalent to $\mathcal{M}(S, P,p)$ if

$\mu[a_{0}a_{1}\cdots aN-1]$ (4)

$=p_{a0}p_{aa}\mathrm{o}1\ldots p_{a_{N2}}-aN-1$ (5)

for any $N$ and any string $a_{0}a_{1}\cdots a_{N-1}\in’ S^{N}$

3 The Construction of Markov Sources by Piecewise
Linear Maps

In this section we construct a dynamical system that is equivalent to an arbitrarily prescribed
Markov source $\mathcal{M}(S, P,p)$ .

Let the decomposition of the interval $I=[0,1]$ be

$\triangle_{k}=\frac{k}{n}$ for $k=1,2,$ $\cdots,$ $n$
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and $\tau_{k}(x),$ $k=1,2,$ $\cdots,$ $n$ be the restriction of the map $\tau(x)$ to subinterval $I_{k}$ . Define $\tau_{k}(x),$ $k=$

$1,2,$ $\cdots,$ $n$ by
$\tau_{k}(x)=p_{kl}-1(_{X}-ckl-1)+\frac{l-1}{n}$

for $c_{kl-1}\leq x\leq c_{kl}$ and $l=1,2,$ $\cdots$ , $n,$

$\}$ (6)

where $c_{kl}$ is defined by

$c_{k0}=\underline{k-1}$ ,
$n$

$c_{kl}= \frac{1}{n}\cdot\sum_{j=1}^{l}p_{kj}+\frac{k-1}{n}$ for $k,$ $l=1,2,$ $\cdots,$ $n$ .
,

(7)

7

Furthermore define $\mu$ by
$\mu(x)d_{X}=np_{k}dx$ for $x\in I_{k}$ . (8)

For the dynamical system $F(\sigma, \tau, \mu)$ constructed as above, the following theorem holds.

Theorem 1 The dynamical system $\mathcal{F}(\sigma, \tau, \mu)$ is equivalent to $\mathcal{M}(S, P,p)$ .

$Proof.\cdot$ To compute $\mu[a_{0}a1\ldots aN-1]$ , let $BV$ the set of bounded variation, and for any
$f\in BV$ , define the linear operator $\dot{P}_{\tau}$ : $BVarrow BV$ called Perron-Frobenius operator (PF-
operator) by

$P_{\tau}(f(x))= \sum_{(y\in \mathcal{T}^{-}x)1}\frac{f(y)}{|\tau(y)|},\cdot$ (9)

By the definition of the PF-operator

$\int_{0}^{1}f(x)g(\tau(x))d_{X}=\int_{0}^{1}P_{\mathcal{T}}(f(x))g(x)dX$ (10)

can easily be verified. Next, let $y_{k}(x)$ : $I_{k}arrow I,$ $k=1,2,$ $\cdots,$ $n$ be inverse branches of $\tau(x)$

and $\eta_{k}(X),$ $k=1,2,$ $\cdots,$ $n$ be indicator functions that take 1 on $I_{k}$ and otherwise $0$ . By the
definition (9) of $\mathrm{P}\mathrm{F}$-operator we have

$P_{\tau}(\eta_{k}(x)\mu(x))$ $= \sum_{j=1}^{n}\frac{\eta_{k}(y_{j}(x))\mu(yj(_{X}))}{|\tau’(y_{j}(_{X))}|}$

$=$ $\frac{np_{k}}{|\tau’(yk(X))|}$

$= \sum_{j=1}^{n}npkpkj\eta j(x)$ (11)

for $k=1,2\cdots,$ $n$ . Furthermore, it follows from similar calculations that

$P_{\mathcal{T}}( \eta_{k}(x))=\sum_{j=1}pnkj\eta j(x)$ (12)
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for $k=1,2\cdots$ , $n$ . The calculation of $\mu[a_{012}aa\cdots a_{N}-1]$ by using (10), (11) and (12) yields the
following chain of equalities:

$\mu[a_{012}aa\cdots a_{N}-1]$

$=$ $\int_{0}^{1}\eta_{a_{0}}(x)\eta_{a_{1}}(\mathcal{T}(x))\eta_{a}2(_{\mathcal{T}^{2}}(X))$

.. . $\eta_{a_{N-1}}(\tau-1(_{X}N))\mu(x)d_{X}$

$=$ $\int_{0}^{1}P_{\mathcal{T}}(\eta a0(x)\mu(x))\eta a_{1}(_{X)(_{\mathcal{T}}}\eta_{a}2(X))$

.. . $\eta_{a_{N-1}}(_{T^{N2}}-(x))dX$

$=$ $\int_{0}^{1}\sum_{j=0}^{l}np_{a}\mathrm{o}pa\mathrm{o}j\eta j(_{X)\eta()\eta}a_{1}Xa_{2}(\mathcal{T}(X))$

. . . $\eta_{a_{N-1}}(\tau^{N-2}(x))dX$

$=$ $np_{a_{0}}p_{aa_{1}}0 \int_{0}^{1}\eta_{a_{1}}(X)\eta a_{2}(T(X))$

.. . $\eta_{a_{N-1}}(\tau^{N-2}(x))dX$

$=$ $np_{a}0p_{a0a}1 \int_{0}^{1}P_{\mathcal{T}}(\eta_{a}1(X))\eta a2(x)$

... $\eta_{a_{N-1}}(\tau^{N3}-(x))dX$

$=$ $np_{a_{0}}pa_{0}a_{1} \int 0x1\sum_{j=0}^{l}p_{a_{1}j}\eta j()\eta_{a}2(X)$

... $\eta_{a_{N-1}}(\tau^{N-3}(x))dX$

$=$ $np_{a_{0}}p_{a01}ap_{a}0a_{2} \int_{0}^{1}\eta_{a_{2}}(_{X})\cdots\eta a_{N-1}(\tau^{N3}-(x))d_{X}$

$=$ $np_{a0}pa \mathrm{o}a1p_{a}1a_{2}\ldots p_{a}N-2aN-1\int_{0}^{1}\eta_{a_{N-}}1(_{X)}dx$

$=$ $p_{a0}p_{aa}\mathrm{o}1pa1a_{2}\ldots p_{a_{N}a}-2N-1$ , (13)

which coincides with (1).
In general any hidden Markov chain can be considered as a functional process over a certain

Markov chain. Accordingly, a dynamical system that realizes an arbitrary prescribed hidden
Markov chain can easily obtained from a dynamical system equivalent to a suitable Markov
chain a certain functional process over which coincides the given hidden Markov chain.

$\mathrm{K}\mathrm{a}\mathrm{c}^{[51}$ proved that for integer $g\geq 3$ the map $\tau(x)=gx$ (mod 1) generates independently
uniformly distributed random sequence over the set of $g$-alphabets, $\{0,1, \cdots, g-1\}$ . Our way
of construction contains the result of Kac as a special case when we choice $\tau_{k}(x),$ $k=1,2,$ $\cdots,$ $n$

as straight lines and $\mu(x)=1$ .
The state diagram for the Markov chain with state $S=\{1,2,3\}$ and stochastic matrix

$P=[ \frac{1}{\frac{\not\in}{\frac{g}{4}}}$ $\frac{\frac{1}{3}}{\frac,4\S}$ $\frac{\frac{}{\not\in}\frac{1}{\mathrm{f}}}{2}$ (14)
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is shown in Fig. 1. An example of realization of this Markov chain with a piece-wise linear
map is shown in Fig. 2.

Fig. 1. The state diagram for the Markov source.

$\mathit{1}_{l}$ $\mathit{1}_{2}$ $\mathit{1}_{\mathit{3}}$

Fig. 2. A realization of the Markov chain with a piece-wise linear map.

4 The Construction ofReverse Markov Chains by Piece-
wise Linear Maps

Consider the state $S$ and stochastic matrix $P$ on $S$ . If the stochastic matrix $P$ is irreducible,
then there exists an unique provability vector $u=[u_{1}, u_{2}, \cdots, u_{n}],$ $u_{k}>0,$ $k=1,2,$ $\cdots,$ $n$ such
that

$u=uP$ . (15)
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If the generi.C probability of any string $a_{0}a_{1}\cdots a_{N-1}\backslash \in S^{N}$ from the source defined by the
stochastic process $\{X_{N}\}_{N=}^{\infty}0$ is given by $\mathrm{r}$

..

Prob $\{X_{0}=a_{0}, X_{1}=a_{1}, \cdots, X_{N-1}=a_{N-1}\}$

$=u_{a_{N-1}}paN-1aN-2\ldots$ pal $a0$ , (16)

then we call the source $\{X_{N}\}_{N=}^{\infty}0$ the reverse Markov source with $(S, P)$ and denote it by
$\mathcal{M}^{*}(S, P)$ .

Consider a dynamical system $\mathcal{F}(\sigma, \tau, \mu)$ with uniform measure $\mu$ on the interval $I$ . In
particular, let $F^{*}(\sigma, \tau)$ denote a dynamical system with uniform measure $\mu$ on the interval $I$ .
In this section we show that for an arbitrary prescribed reverse Markov source $\mathcal{M}^{*}(S, P)$ , we
can construct a pair of quantizer $\sigma$ and nonlinear map $\tau$ so that the dynamical system $F^{*}(\sigma, \tau)$

is equivalent to $\mathcal{M}^{*}(S, P)$ .
We first consider cumulative probabilities

$c_{0}.=0,$ $c_{k}.= \sum_{j=1}^{k}u_{j}$ for $k=1,2,$ $\cdots,$ $n$ (17)

and define the decomposition of the interval $I=[0,1]$ by $\triangle_{k}=c_{k},$ $k=1,2,$ $\cdots,$ $n$ . Next, for
$k=1,2,$ $\cdots,$ $n$ , define the map $\tau_{k}(x)$ : $I_{k}arrow I$ by

$\tau_{k}(x)=p_{lk}^{-}1(x-c_{\iota_{-1k}}^{*)}+c_{l-1}$

for $c_{l-1k}^{*}\leq x\leq c_{lk}^{*}$ and $l=1,2,$ $\cdots n,$

$\}$ (18)

where $c_{lk}^{*}$ is

$c_{lk}^{*}c_{0k}^{*}= \sum_{=}^{1}=j1c_{k-}lu_{j}’ pjk+c_{k-1}$

for $k,$ $l=1,2,$ $\cdots,$ $n$ .
$\}$ (19)

For the dynamical system $\mathcal{F}^{*}(\sigma, \tau)$ constructed as above, the following theorem holds.

. Theorem 2 The dynamical system $F^{*}(\sigma, \mathcal{T})$ is equivalent to the reverse Markov model $\mathcal{M}^{*}(S, P)$ .

Proof: To calculate the probability measure $\mu[a_{0}a_{1}\cdots aN-1]$ consider the indicator function
$\eta_{k}(x)$ , $k=1,2,$ $\cdots,$ $n$ that take 1 on the interval $I_{k}1$ and $0$ on otherwise. From the definition
of $\mathrm{P}\mathrm{F}$-operator (9), we have, for $k=1.’ 2\cdots,$ $n$ ,

$P_{\tau}( \eta k(X))=\sum_{j=1}^{n}pjk\eta j(x)$ . (20)

Using the above formula and (10) we can calcuIate $\mu[a0, a_{1}\cdots aN-1]$ to verify that it coincides
with (16). Since the argument is quite similar to that of the previous section, we omit the
detail. 1

$\mathrm{K}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{y}\mathrm{a}^{[6]}$ provided a construction of a dynamical system which is equivalent to an arbitrary
prescribed discrete memoryless source. Our way of construction contains that of Kanaya as a
special case by letting $\tau_{k}(x),$ $k=1,2,$ $\cdots,$ $n$ be straight lines.
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We consider an example that $S=\{1,2,3\}$ and stochastic matrix $P$ is the same as specified
(14) in the previous section. For this case the stationary probability is $u=1 \frac{3}{10},$ $\frac{3}{10},$ $\frac{2}{5}$ ]. An
example of construction of the reverse Markov source with a piecewise linear map is shown in
Fig. 3.

Fig. 3. A realization of the reverse Markov source with a piecewise linear map.

The next example is that $S=\{1,2\}$ and stochastic matrix $P$ is

$P=$
The stationary probability for this case is $u=[ \frac{2}{3}, \frac{1}{3}]$ . The state diagram for this reverse Markov
model is shown in Fig. 4. An example of construction of the reverse Markov source with a
piecewise linear map is shown in Fig. 5. It can be seen from the form of the map that this
source has the structure of hidden Markov source as shown in Fig. 6.

Fig. 4. The state diagram for the reverse Markov source.
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Fig. 5. A realization of the reverse Markov source with a piecewise linear map.

Fig. 6. A hidden Markov source equivalent to the reverse Markov source.

5 Conclusions

We have considered the construction problem of dynamical systems that realize arbitrary
prescribed Markov (or reverse Markov) sources and provided solutions for this problem by
giving two ways of construction with piecewise linear maps. The established representations of
information sources by dynamical systems are useful not only for the design of pseudo-random
number generator that has prescribed statistical properties but also the design of white chaos,[7]
source coding problems, model estimations for sources.

One of further researches is the construction of dynamical systems that realize a certain
wider family of information sources containing hidden Markov sources as a special case. The
linearly dependent process is one of such families of information sources. In general the generic
probability of any string emitted from the hidden Markov source can be expressed by the prod-
uct of several sub-matrices of stochastic matrix.[8] On the other hand, the generic probability
of any string emitted from the linearly dependent process can be expressed by the product of
several sub-matrices of the matrix whose elements are not always non-negative.[8]
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In our constructions, elements of the stochastic matrix correspond to absolute inverse values
of the gradient of piecewise linear functions. On the other hand, in order to solve the construc-
tion problem of an arbitrary prescribed linearly dependent process, we should characterize, as
parameters of a suitable dynamical system, not necessary non-negative elements appearing in
the matrix that defines the linearly dependent process.

However, this problem is very hard and no key for resolutions has not been found so far.
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