ON BLOCH FUNCTIONS AND THE CONTRACTION OF TEICHMULLER METRICS

Author(s)
XINZHONG, HUANG; OWA, SHIGEYOSHI

Citation
数理解析研究所講究録 (1997), 1012: 198-204

Issue Date
1997-09

URL
http://hdl.handle.net/2433/61533

Type
Departmental Bulletin Paper

Textversion
computer
ON BLOCH FUNCTIONS AND THE CONTRACTION OF TEICHMÜLLER METRICS

HUANG XINZHONG AND SHIGEYOSHI OWA

ABSTRACT. In this note, we consider the properties of Bloch functions determined by Beltrami coefficient. A sufficient condition for extremal quasiconformal mapping with nonexistence of degenerating sequence is obtained. As a result, we consider the contraction or preserved of Teichmüller metrics for the related Beltrami lines under the projection mapping π.

1. INTRODUCTION

Let Q_{f} be the class of quasiconformal mappings f of the unit disk $D = \{z||z| \leq 1\}$ onto itself with $f(0) = f(1) - 1 = 0$, μ_f be the complex dilatation of f, $k_f = \|\mu_f\|_{\infty} = \text{esssup}_{z \in D} |\mu_f|$, $k_0(f) = \inf_{g} k_g$, where $g \in Q_{f}$ with $g|_{\partial D} = f|_{\partial D}$. We say that $f(z)$ is extremal if $k_f = k_0(f)$, and the corresponding μ_f is called extremal.

We know that the universal Teichmüller space $T(1)$ can be represented as a quotient space of QS by the Möbius group $PSL(2, R)$, where QS is the group of all quasi-symmetric homeomorphisms of a circle, and the Teichmüller distance $d([f], [g])$, from a point $[g]$ to another point $[f]$ in $T(1)$, is equal to

\begin{equation}
(1.1) \quad d([f], [g]) = \frac{1}{2} \log \frac{1 + k_0(g \circ f^{-1})}{1 - k_0(g \circ f^{-1})}.
\end{equation}

QS contains another topological subgroup, which is much larger than $PSL(2, R)$, the subgroup S of symmetric homeomorphisms. Gardiner-Sullivan [1] showed that $QS mod S$ also has a natural complex Banach manifold structure and a natural quotient metric \overline{d}, called the Teichmüller metric in $QS mod S$. Let $\overline{k}_f = \inf_{U} \text{esssup}_{x \in U} |\mu_f(x)|$, where U moves all neighborhoods of ∂D in D, \overline{k}_f is called the boundary dilatation of f. Set $\overline{k}_0(f) = \inf_{g} \overline{k}_g$, where g moves all quasiconformal mappings of D with the same boundary values as f. If $\overline{k}_0(f) = \overline{k}_f$, then $f(z)$ is called extremal in $QS mod S$. The distance between two points $\pi[f]$ and $\pi[g]$ in $QS mod S$ is equal to

\begin{equation}
(1.2) \quad \overline{d}(\pi[f], \pi[g]) = \frac{1}{2} \log \frac{1 + \overline{k}_0(g \circ f^{-1})}{1 - \overline{k}_0(g \circ f^{-1})}.
\end{equation}

Suppose $\mu(z)$ is a given Beltrami coefficient, we consider the Beltrami line $C_{\mu} = \{[f^t]| -1 \leq t \leq 1\}$ or $\pi C_{\mu} = \{\pi[f^t]| -1 \leq t \leq 1\}$, where $f^t = t\frac{\mu}{||\mu||_\infty}$. If μ is

The first author was supported by the National Science Foundation of Fujian, China.
extremal in $T(1)$ or in $Q S m o d S$, then the natural mapping $t \mapsto t\|\mu\|_\infty$ from the
open interval $(-1, 1)$ with the Poincaré metric onto C_μ or πC_μ with the Teichmüller
metric is an isometry. Whether μ is extremal or not, such mapping is weakly
contracting. The following problem is very interesting and considered by many
authors(cf. [2],[3]):

For which points $[f] \in T(1)$, does the Teichmüller distance from 0 to $[f]$ in QS
strictly greater than the distance from 0 to $\pi[f]$ in $Q S m o d S$?

In this note, we will investigate some properties for Bloch functions determined
by μ and partially solve the above problem.

2. MAIN RESULTS AND THEIR PROOFS

Let $f(z) = \sum_{n=0}^\infty a_n z^n$ be analytic in D, $f(z)$ is called a Bloch function if

$$(2.1) \quad \|f\|_B = \sup_{z \in D} (1 - |z|^2)|f'(z)| < \infty.$$

The Bloch functions will be denoted by B. B_0 will be the subset of B with

$$(2.2) \quad \|f\|_{B_0} = \lim_{|z| \to 1} \sup_{D} (1 - |z|^2)|f'(z)| = 0.$$

$A(D) = \{f(z) | f(z) \text{ is analytic in } D, \|f(z)\|_1 = \frac{1}{\pi} \iint_D |f(z)| \, dxdy < \infty\}$. The quasi-
conformal mapping f from D onto itself is called a Teichmüller mapping of finite
type, if $\mu_f = \|\mu(z)\|_\infty \frac{\varphi^\kappa}{|\varphi|}, \varphi_0 \in A(D)$. From Reich's example(cf.[4]), we know that
even the point $[f]$ corresponds to a Teichmüller mapping of finite type, the distance
from 0 to $[f]$ under the projection π may not contract. However, if $[f] \in T(1)$, and
$d(0, \pi[f]) < d(0, [f])$, then $[f]$ contains a Teichmüller mapping of finite type. This
makes the above problem more complicated.

Suppose $\kappa(z) \in L^\infty(D)$, the space of complex-valued bounded measurable functions in D with $\|\kappa\|_\infty = \text{esssup}_{z \in D}|\kappa(z)|$, we consider a linear functional L_κ on
$A(D)$

$$(2.3) \quad L_\kappa(f) = \frac{1}{\pi} \iint_D \kappa(z)f(z) \, dxdy, \quad f(z) \in A(D),$$

then

$$(2.4) \quad \|L_\kappa\| \leq \|\kappa\|_\infty.$$

Hamilton, Reich and Streble [5, 6] showed that

Theorem A. A Beltrami coefficient μ is extremal if and only if one of the following
statements holds:

1) There exist $\varphi \in A(D)$ and $k \in [0, 1)$ such that $\mu = k\varphi/|\varphi|$ for almost every-
where on D.

2) There is a degeneration sequence $\{\varphi_n\} \in A(D)$, $\|\varphi_n\|_1 = 1$, converging to 0
locally uniformly in D, such that
For a given Beltrami coefficient $\mu(z)$, let

$$b_n = \frac{n+2}{\pi} \int_D \mu(z) z^n \, dx \, dy,$$

it is clearly that $|b_n| \leq 2\|\mu(z)\|_{\infty}$ and $g(\zeta)$ is analytic in D. We call that the analytic function $g(\zeta)$ is determined by $\mu(z)$.

Let $G(\zeta) = (g(\zeta)$, Anderson proved in [7] the following

Theorem B. For a given $\mu(z) \in L^\infty(D)$, then

$$\|L_\mu\| \leq \|G(\zeta)\|_B \leq 4\|L_\mu\|,$$

where $G'(\zeta) = \frac{2}{\pi} \iint_D \frac{\mu(z)}{(1-(\zeta)^2)^3} \, dx \, dy$.

Theorem C. If $\mu(z)$ possesses a degenerating sequence, then

$$\|L_\mu\| \leq \lim_{|z| \to 1} \sup (1-|z|^2)|G'(z)|,$$

then $\mu(z) = \|\mu\|_{\infty} \frac{\varphi_0(z)}{|\varphi_0(z)|}, \varphi_0 \in A(D)$, for almost all $z \in D$.

Theorem C means that if $\mu(z)$ is extremal and $\lim_{|z| \to 1} \sup (1-|z|^2)|G'(z)| = 0$, then

$$\mu(z) = \|\mu\|_{\infty} \varphi_0 / |\varphi_0|, \quad \varphi_0 \in A(D),$$

for almost everywhere $z \in D$. For an extremal quasiconformal mapping $f^{\mu(z)} \in Q_I$, in what case, is it a finite type Teichmüller mapping or even has it no degenerating sequence? This problem is very interesting itself(cf. [8, 9] and the references cited there). First, we will prove the following

Theorem 1. Suppose $\mu(z)$ is extremal, let $g(z)$ be defined in (2.6), if there exists a ρ_0, $0 < \rho_0 < 1$, such that

$$\sup_{\rho_0 < |z| < 1} (1-|z|^2)|g'(z)| < 1,$$

then there exists a $\varphi_0 \in A(D)$ with $\mu(z) = \|\mu(z)\|_{\infty} \frac{\varphi_0(z)}{|\varphi_0(z)|}$ for almost all $z \in D$. In particular, $\mu(z)$ possesses no degenerating sequence.

The proof of Theorem 1. If $\mu(z)$ is an extremal Beltrami coefficient, let $g(\zeta)$ be defined in (2.6), if $f(z) = \sum_{n=0}^{\infty} a_n z^n \in A(D)$, $0 < \rho < 1$, we have

$$L_\mu(f(\rho z)) = \sum_{n=0}^{\infty} a_n \rho^n L_\mu(z^n) = \sum_{n=0}^{\infty} \frac{a_n b_n}{n+2 \rho^n}.$$
Since \(\|f(\rho z) - f(z)\|_1 \to 0 \), when \(\rho \to 1^- \), then we have

\[
L_{\mu}(f) = \lim_{\rho \to 1^-} \sum_{n=0}^{\infty} \frac{a_n b_n}{n + 2} \rho^n.
\]

On the other hand, if \(G(\zeta) = \zeta g(\zeta) \), then

\[
\frac{1}{2\pi} \int_{0}^{2\pi} f(re^{i\theta})G'(\zeta re^{-i\theta}) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{n=0}^{\infty} a_n r^n e^{in\theta} \right) \left(\sum_{n=0}^{\infty} (n+1) b_n \zeta^n r^n e^{-in\theta} \right) d\theta
\]

\[
= \sum_{n=0}^{\infty} (n+1) a_n b_n \zeta^n r^{2n}.
\]

Thus, we have

\[
(2.11) \quad \lim_{\rho \to 1^-} \sum_{n=0}^{\infty} \frac{a_n b_n}{n + 2} \rho^n = \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} f(re^{i\theta})G'(\zeta re^{-i\theta})(1 - r^2) r, dr d\theta,
\]

for any \(f(z) \in A(D) \). Since

\[
g(\zeta) = \sum_{n=0}^{\infty} b_n \zeta^n = \sum_{n=0}^{\infty} \left(\frac{n+2}{\pi} \right) \int_{D} z^n \mu(z) dx dy \zeta^n
\]

\[
= \frac{1}{\pi} \int_{D} \left(\sum_{n=0}^{\infty} (n+2) z^n \mu(z) \right) dx dy
\]

\[
= \frac{1}{\pi} \int_{D} \left[\frac{2 - z\zeta}{(1 - z\zeta)^2} \right] \mu(z) dx dy,
\]

then,

\[
(2.11) \quad |g(\zeta)| \leq \frac{3\|\mu\|_{\infty}}{\pi|\zeta|} \log \frac{1 + |\zeta|}{1 - |\zeta|} = o((1 - |\zeta|^2)^{-1}), \quad |\zeta| \to 1^-.
\]

If \(\{f_n(z)\} \) is a degenerating sequence for \(\mu(z) \) with \(\|f_n\|_1 = 1 \), by Theorem B and (2.11), we can choose a \(\rho' \) with \(\rho_0 < \rho' < 1 \) such that

\[
|L_{\mu}(f_n)| \leq \frac{4\|\mu\|_{\infty}}{\pi} \int_{|z| \leq \rho'} |f_n(re^{i\theta})| r dr d\theta + \sup_{\rho' < |z| < 1} (1 - |z|^2) |g(z)|
\]

\[
+ \sup_{\rho' < |z| < 1} (1 - |z|^2) |g'(z)| < 1, \quad \text{for} \ n \to \infty,
\]

which contradicts that \(\{f_n(z)\} \) is a degenerating sequence. By Theorem A, Theorem 1 is proved.

The following example 1 shows that there is non-extremal Beltrami coefficient \(\mu(z) \) with the bound \(\sup_{\rho_0 < |z| < 1} (1 - |z|^2) |g'(z)| = \frac{2}{\pi} \).
Example 1. Set Beltrami coefficient
\[
\mu(z) = \begin{cases}
1, & \text{for } \Re z \geq 0, |z| < 1 \\
0, & \text{for } \Re z < 0, |z| < 1.
\end{cases}
\]

Then by [8, Theorem 1], we see that \(\mu(z)\) is not extremal. In this case, by calculation, we have
\[
g'(z) = 2 + \frac{2i}{\pi} \left[z + \frac{1}{3} z^3 + \cdots + \frac{1}{2n-1} z^{2n-1} + \cdots \right]
\]
and \(\lim_{|z| \to 1}(1 - |z|^2)|g'(z)| = \frac{2}{\pi}\).

Next we will investigate the relationship between extremal Beltrami coefficient \(\mu\) and the coefficients of \(g(z)\) defined in (2.6).

From [11] and Theorem 1, we know that if \(\mu(z)\) is extremal and the determined analytic function \(g(z) \in B_0\), then \(\lim_{n \to \infty} |b_n| = 0\). However, we also know that even if \(f(z) \in B\) and \(\lim_{n \to \infty} |b_n| = 0\), one cannot derive that \(f(z) \in B_0\). From this we will prove the following

Corollary 1. Suppose \(\mu(z)\) is extremal, and let \(g(z) = \sum_{n=0}^{\infty} b_n z^n\) be defined in (2.6), if there exist a positive number \(N_0\) and \(l, 0 < l < \frac{1}{2}\), such that
\[
|b_n| < \frac{l}{n}, \quad \text{holds for } n > N_0,
\]
then there exists a \(\varphi_0(z) \in A(D)\) with
\[
\mu(z) = ||\mu||_{\infty} \varphi_0 / |\varphi_0|, \quad \text{for almost all } z \in D.
\]

The proof of Collary 1. If \(\mu(z)\) is extremal, and let \(g(z) = \sum_{n=0}^{\infty} b_n z^n\) be defined in (2.6), we have
\[
|g'(z)| \leq |\sum_{n=0}^{N_0} n b_n z^n| + \sum_{n=N_0+1}^{\infty} l |z^n|
\]
\[
= |\sum_{n=0}^{N_0} n b_n z^n| + \frac{l |z|^{N_0+1}}{1 - |z|},
\]
thus there exists a \(\rho_0 > 0\), such that \(\sup_{\rho_0 < |z| < 1}(1 - |z|^2)|g'(z)| < 1\), by Theorem 1, we obtain the assertion.

Let \(\Pi\) denote the subset of \(T(1)\) consisting of elements of \([f]\) which correspond to Teichmüller mappings of finite type whose complex dilatations \(\mu = \mu_f\) satisfy the following condition: There exists a \(\rho_0, 0 < \rho_0 < 1\), such that \(\sup_{\rho_0 < |\zeta| < 1}(1 - |\zeta|^2)|g'(\zeta)| < 1\), where \(g(\zeta)\) is defined in (2.6). We will prove the following

Theorem 2. For \([f] \in \Pi\), then \(d(0, \pi([f])) < d(0, [f])\).

In order to prove Theorem 2, we need the following Theorem D due to Gardiner [2].
Theorem D. For every \([f] \in T(1)\), then \(\bar{k}_f = \bar{k}_0(f)\) if and only if

\[
\sup \limsup_{\{\varphi_n\} \to \infty} \left| \operatorname{Re} \int_D \varphi_n \mu_f \, dx \, dy \right| = \bar{k}_f,
\]

where the supremum is taken over all degenerating sequences \(\{\varphi_n\}\) for \(\mu_f\) with \(\|\varphi_n\|_1 = 1\) in \(A(D)\).

The proof of Theorem 2. We use the same way as in [3] to prove Theorem 2. If \([f] \in \Pi\), then we conclude that \(\bar{k}_0(f) = k_0(f)\). On the contrary, by Theorem D, we can find a degenerating sequence \(\{\varphi_n\}\) with \(\|\varphi_n\|_1 = 1\) such that

\[
\lim_{n \to \infty} \operatorname{Re} \int_D \varphi_n \mu_f \, dx \, dy = \|\mu_f\|_\infty = k_0(f) = \bar{k}_0(f),
\]

which is impossible by Theorem 1.

Thus we have \(\bar{k}_0(f) < k_0(f)\), which is equivalent to \(d(0, \pi([f])) < d(0, [f])\).

On the other hand, comparing with Theorem 2, we will prove the following

Theorem 3. Suppose \([f] \in T(1)\), and \(b_n = \frac{n+2}{\pi} \int_D \mu_f \, x^n \, dx \, dy\), if \(\lim_{n \to \infty} b_n = 2\|\mu_f\|_\infty\), then \(d(0, \pi([f])) = d(0, [f])\). The constant 2 is the best.

The proof of Theorem 3. First, from Fehlmann and Sakan’s paper in [10], we know that the subset of \(T(1)\) satisfying the conditions in Theorem 3 is not empty, and by the example of Fehlmann and Sakan made in [10], there exists an extremal Beltrami coefficient \(\mu\) such that the coefficients of \(g(z)\) satisfy \(\lim_{n \to \infty} b_n = 2\|\mu\|_\infty\), thus the constant 2 is the best. Now, if \(\lim_{n \to \infty} b_n = 2\|\mu_f\|_\infty\), then we have \(\lim_{n \to \infty} \frac{b_n}{2} = 2\|\mu_f\|_\infty\), and the sequence \(\{\varphi_n(z) = \frac{n+2}{2} z^n\}\) is a degenerating sequence for the Beltrami coefficient \(\mu_f\), with \(\|\varphi_n\|_1 = 1\), by Theorem D, we conclude that \(\bar{k}_0(f) = k_0(f)\), thus \(d(0, \pi([f])) = d(0, [f])\).

To consider the contraction of Teichmüller metrics, we need the following Principle of Teichmüller contraction due to Gardiner [2].

Principle of Teichmüller contraction. Assume \(\|\mu\| = 1\), \(0 < k_1 < k_2 < 1\), and \(d(0, [f^{k_1}]) \leq \lambda_1 d_f(0, k_1)\) or \(d(0, \pi([f^{k_1}])) \leq \lambda_1 d_f(0, k_1)\) with some \(\lambda_1 < 1\), where and in the sequel, \(f^k\) is the quasiconformal mapping of \(D\) on to itself such that \(\mu_f = k_\mu\) for every positive \(k < 1\). Then there exists a \(\lambda_2 < 1\) depending only on \(k_1, k_2\), and \(\lambda_1\) such that

\[
d(0, [f^k]) \leq \lambda_2 d_f(0, k) \quad \text{or} \quad d(0, \pi([f^k])) \leq \lambda_2 d_f(0, k)
\]

respectively, for all \(k\) with \(0 \leq k \leq k_2\).

Using Theorem 2 and the Principle of Teichmüller contraction, we can obtain the following
Corollary 2. Under the same circumstance as in Theorem 2, let $k = \|\mu_f\|_\infty$ and $\lambda = \frac{\bar{d}(0, \pi([f]))}{d(0, [f])}$. Fix $k' < 1$ and let f^t be the quasiconformal mapping of D onto itself such that $\mu_{f^t} = \frac{t}{k}\mu_f$ for every $t \in [0, k')$. Then there exists $\lambda' < 1$ depending only on k, k', and λ such that

$$\bar{d}(0, \pi([f^t])) \leq \lambda' d_p(0, f),$$

for every t with $0 \leq t \leq k'$, where d_p denotes the Poincaré metric on D.

The proof of Corollary 2. By Theorem 2, we have $d(0, [f]) = d_p(0, k)$ and $\lambda = \frac{\bar{d}(0, \pi([f]))}{d(0, [f])} < 1$, using the principle of Teichmüller contraction, the Corollary 2 is obtained.

REFERENCES

8. X. Z. Huang, The image domain of an extremal dilatation, Advances in Math. (China) 22 (1993), 435-446.

DEPARTMENT OF MATHEMATICS, HUAQIAO UNIVERSITY, QUANZHOU, FUJIAN 362011, CHINA
DEPARTMENT OF MATHEMATICS, KINKI UNIVERSITY, HIGASHI-Osaka, Osaka 577, Japan