P.T.MOCANU の補題の拡張

和歌山大学・教育 鈴木 徳彦 (Norihiko SUZUKI)

1 導入と準備

$p(z), q(z)$ を単位円板 U で解析的であるとする。$w(0) = 0$ かつ $|w(z)| < 1(z \in U)$ を満たし、$p(z) = q(w(z))$ なるような解析関数 $w(z)$ が存在すれば、関数 $p(z)$ は U で $q(z)$ に subordinate であるという。このとき、$p(z) < q(z)$ または $p < q$ と書く。$q(z)$ が U で単葉ならば subordination $p < q$ は $p(0) = q(0), p(U) \subset q(U)$ と同値である。

1986 年の Mocanu [1] の On starlikness of libera transform の補題を 2 つ引用する。これについて拡張を試み、また 新たな証明をつけた。

補題 1.[1] 関数 $p(z)$ が単位円板 U で解析的で $p(0) = 1$ で、かつ $\alpha > 0$

\[\text{Re}[zp'(z) + \alpha p(z)] > 0, \quad z \in U \]
ならば、$\text{Re} p(z) > 0, \quad z \in U$ となる。

補題 2.[1] 関数 $P(z)$ が単位円板 U で解析的で $P(0) = 1$ で、かつ

\[\text{Re}[zP'(z) + P(z)] > 0, \quad z \in U \]
ならば、$|\arg P(z)| < \frac{\pi}{2}, \quad z \in U$ となる。

2 主な結果

定理の証明には、次の Jack[2] （または, Miller and Mocanu [3]）が必要である。

補題 3. 関数 $w(z)$ を単位円板 U で解析的で $w(0) = 0$ とする。$|w(z)|$ が円 $\{|z| = r\} \quad (0 \leq r < 1)$ 上の点 z_0 で最大値をとるとき、

\[\frac{z_0w'(z_0)}{w(z_0)} = k \geq 1 \]
となる。
定理. 関数 \(p(z) \) が単位円板 \(U \) で解析的で \(p(0) = 1 \) で，かつ

\[
\text{Re}[zp'(z) + \alpha p(z)] > \beta, \ z \in U
\]

ならば，

\[
\text{Re } p(z) > \gamma, \ z \in U
\]
となる。ただし，\(\alpha, \beta, \gamma \) はすべて実数で，\(\alpha > 0 \)，
\(\alpha > \beta, \gamma < 1 \) かつ

\[
\beta > -\frac{1-\gamma}{2} + \alpha \gamma
\]
を満たすものとする。

（証明） \(p(0) = 1, \gamma < 1 \) より，\(z = 0 \) の近傍では，\(\text{Re } p(z) > \gamma \) が成立している。\(\sigma = 2\gamma - 1 \) と置けば，

\[
p(z) < \frac{1-\sigma z}{1-z}
\]
が成立する。これは，

\[
p(z) = \frac{1-\sigma w(z)}{1-w(z)} \quad (w(z) \neq 1)
\]
と考えて，\(w(z) \) は \(U \) で解析的で \(w(0) = 0, |w(z)| < 1 \) である。このとき，

\[
\text{Re } p(z) > \gamma, \ z \in U \iff p(z) = \frac{1-\sigma w(z)}{1-w(z)}
\]
が成立する。

ここで (2.6) より，

\[
zp'(z) = z \cdot \frac{w'(z)}{w(z)} \cdot \frac{w(z)(1-\sigma)}{(1-w(z))(1-\sigma w(z))} \cdot \frac{1-\sigma w(z)}{1-w(z)}
\]

\[
= \frac{zw'(z)}{w(z)} \cdot \frac{w(z)(1-\sigma)}{(1-w(z))^2}
\]
を得る。今仮に，ある \(z_0 \in U \) に対して，

\[
\text{Re } p(z) > \gamma, \ |z| < |z_0| \quad \text{かつ } \text{Re } p(z_0) = \gamma
\]
となったとすると，|w(z_0)| = 1, w(z_0) = e^{i\theta} (\theta \neq 0) と置け，補題 3 を使う。（2.7）より，

\[
z_0p'(z_0) = \frac{z_0 w'(z_0)}{w(z_0)} \cdot \frac{w(z_0)(1-\sigma)}{(1-w(z_0))^2}
\]

\[
= k \cdot \frac{(1-\sigma)e^{i\theta}}{1-2e^{i\theta} + e^{2i\theta}}
\]

\[
= k \cdot \frac{1-\sigma}{2\cos -1} = k \cdot \frac{1-\gamma}{\cos -1}
\]

\[
\leq -\frac{1-\gamma}{2},
\]
よって，
\[\text{Re} [z_0 p'(z_0) + \alpha p(z_0)] = z_0 p'(z_0) + \alpha \text{Re} p(z_0) \]
\[\leq -\frac{1-\gamma}{2} + \alpha \gamma < \beta \]
となる。よって，\(z_0 \in U \) に対して，\(\text{Re} [z_0 p'(z_0) + \alpha p(z_0)] < \beta \) が成立してこれは仮定に矛盾する。よって，\(z_0 \in U \) は存在せず \(|w(z)| < 1 \) であり，すなわち，すべての \(z \in U \) に対して，\(\text{Re} p(z) > \gamma \) が成立することが示された。□

定理で \(\beta = 0 \) とおくと，
\[\gamma < \frac{1}{1+2\alpha} \quad (\alpha > 0) \]
を得。よって

系 1. 関数 \(p(z) \) が単位円板 \(U \) で解析的で \(p(0) = 1 \) で

\[\text{Re} [zp'(z) + \alpha p(z)] > 0, \ z \in U \]
ならば，

\[\text{Re} p(z) > \gamma, \ z \in U \]
となる。ただし，

\[\gamma < \frac{1}{1+2\alpha} \]
を満たすものとする。

特に，\(\gamma = 0 \) についても成立するから

系 2. 補題 1 が成立する。

次に，補題 2 の別証明を与える。

（補題 2 の証明）先ず，補題 1 より \(z \in U \) に対して，\(\text{Re} [zP'(z) + P(z)] > 0 \) なら，\(\text{Re} P(z) > 0 \) である。すなわち，\(|\arg P(z)| < \frac{\pi}{2} \) である。今，\(|\arg P(z)| < \gamma \) に対して，\(\gamma = \frac{\pi}{3} \) であることを示す。

\[|\arg P(z)| < \frac{\pi}{2} \] だから，

\[P(z) < \frac{1-z}{1+z} \]
と書けるが、一般的には，

\[P(z) < \left(\frac{1-z}{1+z}\right)^\sigma \]
（2.16）
\[P(z) = \left(\frac{1 - w(z)}{1 + w(z)} \right) ^{\sigma} \]

これより, \(w(0) = 0, |w(z)| < 1 \) が成立している. この時,
\[
|\arg P(z)| \leq |\sigma \cdot \arg \left(\frac{1 - w(z)}{1 + w(z)} \right)|
\leq |\sigma| \cdot \frac{\pi}{2} = \gamma
\]

より, \(|\sigma| \cdot \frac{\pi}{2} = \gamma \) （\(\sigma > 0 \) としてよい）を満たしている. ここで, (2.12) より,

（2.18）
\[
\frac{P'(z)}{P(z)} = \sigma \left(\frac{-w'(z)}{1 - w(z)} - \frac{w'(z)}{1 + w(z)} \right)
\]

となり, 今ある \(z_0 \in U \) に対し, \(|z| < |z_0|\) のとき, \(|\arg P(z)| < \gamma \) かつ \(|\arg P(z_0)| = \gamma \) となったとすると, \(|w(z_0)| = 1 \) （\(w(z_0) = e^{i \theta}, \theta \neq \pi \) ）をきいて, 再び補題 3 が使える. よって (2.12) より,

（2.19）
\[
P(z_0) = \left(\frac{1 - e^{i \theta}}{1 + e^{i \theta}} \right)^{\sigma}
\]

ゆえに,

\[
P(z_0) + z_0 P'(z_0) = P(z_0) \left(1 + \frac{z_0 P'(z_0)}{P(z_0)} \right)
= P(z_0) \left\{ 1 + z_0 \sigma \left(\frac{-w'(z_0)}{1 - w(z_0)} - \frac{w'(z_0)}{1 + w(z_0)} \right) \right\}
= P(z_0) \left(1 - \frac{k \sigma}{\sin \theta} \right)
\]

となる. 1 - \(\frac{k \sigma}{\sin \theta} \) の偏角を \(\beta \) と置くと, \(\beta = \tan^{-1} \left(-\frac{k \sigma}{\sin \theta} \right) \), \(|\arg[P(z_0) + z_0 P'(z_0)]| = |\gamma + \beta| < \frac{\pi}{2} \) （\(\sigma > 0, \frac{\pi}{2} \sigma = \gamma \) ）でなければならない. ゆえに,

（2.21）
\[
|\gamma + \tan^{-1} \sigma| < \frac{\pi}{2},
\]

となりこれは, \(0 < \gamma + \tan^{-1} \sigma < \frac{\pi}{2} \) であり, (2.17) より,

\[
\frac{\pi}{2} \sigma + \tan^{-1} \sigma < \frac{\pi}{2}
\]

（2.22）
\[
\Leftrightarrow \sigma + \frac{2}{\pi} \tan^{-1} \sigma < 1.
\]

（2.16）より, \(0 < \sigma < 1, 0 < \gamma < \frac{\pi}{2} \) であることがわかり, \(\tau = 3.14, \frac{\pi}{2} = 0.6 \), \(\frac{\pi}{2} = 1.57 \) として近似値を計算すると, (2.22) を満たす \(\sigma \) は, \(\sigma = 0.65 \) であり, これより
\(\gamma = 1.02 \) を得る。ゆえに，\(\gamma = 1.02 < \frac{\pi}{3} = 1.047 \) となり，これは補題 2 の結果を得ている。
ただし，この結果は sharp ではない。sharp な結果を得ることは，今後の課題である。これで証明を終了する。□

参考文献

