On angular estimate of analytic functions

By

Mamoru Nunokawa(布川 護,群馬大学), Yong Chan Kim(Yeungnam University)

Akira Ikeda (池田 彰,群馬大学), Naoya Koike (小池 尚也,群馬大学)

and Ota Yoshiaki(太田 悦彰,群馬大学)

Abstract

In this paper, we obtained the following result

$$|arg(zp'(z) - p(z))| > \frac{\pi}{2}(\beta + \frac{2}{\pi}Tan^{-1}(-\beta))$$

$$\Rightarrow |argp(z)| < \frac{\pi}{2}\beta$$

where β and p(z) satisfy the conditions of Theorem 1.

Introduction and Results.

If f(z) and g(z) are analytic in the unit disk $E = \{z : |z| < 1\}$, then f(z) is subordinate to g(z), written $f(z) \prec g(z)$, if g(z) is univalent in E, f(0) = g(0) and $f(E) \subset g(E)$. In this paper we need the following lemma.

Lemma 1. Let p(z) be analytic in E, p(0) = 1, $p(z) \neq 0$ in E and suppose that there exists a point $z_0 \in E$ such that

$$|argp(z)| < \frac{\pi}{2}\beta$$
 for $|z| < |z_0|$

and

$$|argp(z_0)| = \frac{\pi}{2}\beta$$

where $0 < \beta$.

Then we have

$$\frac{z_0p'(z_0)}{p(z_0)}=ik\beta$$

where

$$k \geq 1$$
 when $argp(z_0) = \frac{\pi}{2}\beta$

and

$$k \leq -1$$
 when $argp(z_0) = -\frac{\pi}{2}\beta$

We owe this lemma to [2].

In [1], Miller and Mocanu proved the following theorem.

Theorem A. Let $\beta_0 = 1.21872 \cdots$ be the solution of

$$\beta\pi = \frac{3}{2}\pi - Tan^{-1}\beta$$

and let

$$\alpha = \alpha(\beta) = \beta + \frac{2}{\pi} Tan^{-1}\beta$$

for $0 < \beta < \beta_0$.

If p(z) is analytic in E, with p(0) = 1, then

$$p(z)+zp'(z)\prec(\frac{1+z}{1-z})^{\alpha}$$

$$\Rightarrow p(z) \prec (\frac{1+z}{1-z})^{\beta}$$

OI

$$|arg(p(z)+zp'(z))|<\frac{\pi}{2}\alpha$$
 E

$$\Rightarrow |argp(z)| < \frac{\pi}{2}\beta \qquad E.$$

Applying Theorem A, we can obtain many interesting results.

Corresponding Theorem A, we will obtain a result which is probably useful to obtain some results for meromorphic functions.

Theorem 1. Let p(z) be analytic in E, p(0) = 1, $p(z) \neq 0$ in E and suppose that

$$|arg(zp'(z)-p(z))|>rac{\pi}{2}(eta+rac{2}{\pi}Tan^{-1}(-eta))$$
 in E

where $0 < \beta$ and the branche of $Tan^{-1}(-\beta)$ is restricted in $\frac{\pi}{2} < Tan^{-1}(-\beta) < \pi$. Then we have

$$|argp(z)| < \frac{\pi}{2}\beta$$
 for E.

Proof. If there exists a point $z_0 \in E$ such that

$$|argp(z)| < \frac{\pi}{2}\beta$$
 for $|z| < |z_0|$

and

$$|argp(z_0)| = \frac{\pi}{2}\beta,$$

then from Lemma 1, we have

$$\frac{z_0p'(z_0)}{p(z_0)}=i\beta k$$

where

(1)
$$k \geq 1 \quad when \quad argp(z_0) = \frac{\pi}{2}\beta$$

and

(2)
$$k \leq -1 \quad when \quad argp(z_0) = -\frac{\pi}{2}\beta.$$

When $argp(z_0) = \frac{\pi \beta}{2}$, then from (1), we have

$$\arg(z_0 p'(z_0) - p(z_0)) = \arg p(z_0) \left(\frac{z_0 p'(z_0)}{p(z_0)} - 1\right)$$

$$= \frac{\pi}{2} \beta + \arg(i\beta k - 1)$$

$$\leq \frac{\pi}{2} \beta + Tan^{-1}(-\beta)$$

$$= \frac{\pi}{2} (\beta + \frac{2}{\pi} Tan^{-1}(\beta))$$

and if arg $p(z_0) = -\frac{\pi\beta}{2}$, then from (2), we also have

$$\arg(z_0 p'(z_0) - p(z_0)) = \arg p(z_0) \left(\frac{z_0 p'(z_0)}{p(z_0)} - 1\right)$$

$$= -\frac{\pi}{2}\beta + \arg(i\beta k - 1)$$

$$\geq -\frac{\pi}{2}\beta - Tan^{-1}(-\beta)$$

$$= -\frac{\pi}{2}(\beta + \frac{2}{\pi}Tan^{-1}(\beta)).$$

These contradict the assumption of the theorem and therefore this completes the proof.

Remark. It is trivial that $\frac{\pi}{2}(\beta + \frac{2}{\pi}Tan^{-1}(-\beta)) > \pi$ for $0 < \beta$.

Applying the same method as the proof of Theorem 1 and from Lemma 1, we can generalize Theorem A as the following.

Theorem A'. Let p(z) be analytic in E, p(0) = 1, $p(z) \neq 0$ in E and suppose that

$$|arg(p(z)+zp'(z))|<rac{\pi}{2}(eta+rac{2}{\pi}Tan^{-1}eta) \quad in \quad E$$

where $0 < \beta$.

Then we have

$$|argp(z)| < \frac{\pi}{2}\beta$$
 in E.

References

- [1] S.S Miller and P.T.Mocanu, Marx-Strohhäcker differential subordination systems, Proc. Amer. Math. Soc., 99(3), 527-534(1987).
- [2] M.Nunokawa, On the order of strongly convex functions, Proc. Japan Acad., 69. A, No.7, 234-237(1993).

Mamoru Nunokawa Akira Ikeda Naoya Koike Yoshiaki Ota

Department of Mathematics University of Gunma Aramaki, Maebashi, Gunma 371, Japan

Yong Chan Kim

Department of Mathematics

Yeungnam University
214-1, Daedong, Gyongsan 712-749, Korea