<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>題目</td>
<td>族内の RADIUS PROBLEM(Convolution の新しい展開)</td>
</tr>
<tr>
<td>著者</td>
<td>小中澤 聖二</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1012: 47-55</td>
</tr>
<tr>
<td>発行日</td>
<td>1997-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61549</td>
</tr>
<tr>
<td>型</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>版權</td>
<td>publisher</td>
</tr>
<tr>
<td>來源</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
S 族内の RADIUS PROBLEM

小中澤 聖二（SEIJI KONAKAZAWA）
東京工業高等専門学校

1. はじめに

S を単位円板 D 上で定義された通常の単葉函数の族であるとする，

$$S = \left\{ f(z) = z + \sum_{n=2}^{\infty} a_n z^n \bigg| \text{analytic and univalent in } D \right\}. \quad (1.1)$$

$$UCV = \left\{ f(z) \in S \bigg| \Re \left\{ 1 + (z-\zeta) \frac{f''(z)}{f'(z)} \right\} \geq 0 \text{ in } D \times D \right\}. \quad (1.2)$$

この UCV の条件は次と同値である，

$$\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \geq \left| \frac{zf''(z)}{f'(z)} \right| \text{ in } D. \quad (1.3)$$

UCV に属する函数は D 内の全ての円弧（但し，その中心も D 内に入っているもの）を convex arc に写す。
そこで order α ($0 \leq \alpha < 1$) 付きの族 uniformly convex functions of order α を次で定義しよう。

$$UCV_\alpha = \left\{ f(z) \in S \left| \text{Re} \left\{ 1 + \frac{(z - \zeta) f^{\prime\prime}(z)}{f'(z)} \right\} \geq \alpha \text{ in } D \times D \right\}.$$ (1.4)

[2, Theorem 1] にあるのと同じ考察により、この条件は次と同値であることがわかる。

$$\text{Re} \left\{ 1 + \frac{zf''(z)}{(1-\alpha)f'(z)} \right\} \geq \frac{zf''(z)}{(1-\alpha)f'(z)} \text{ in } D.$$ (1.5)

また、通常の order α ($0 \leq \alpha < 1$) の starlike functions と convex functions の族を，

$$S^*_\alpha = \left\{ f(z) \in S \left| \text{Re} \frac{zf'(z)}{f(z)} \geq \alpha \text{ in } D \right\}.$$ (1.6)

及び

$$C_\alpha = \left\{ f(z) \in S \left| \text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \geq \alpha \text{ in } D \right\}.$$ (1.7)

とそれぞれ表わす。

以下の Theorem 1 及び Theorem 2 は S 内の radius problem に係わるもので，また Theorem 3 は UCV と C_α に関する包含関係のための条件を与えるものである。それは、F. Rønning の uniformly starlike functions と呼ばれる族 UST と S^*_α に関する包含問題，

"Find the largest $\alpha \geq 0$ such that $UST \subset S^*_\alpha"$ [3]

に類似するものであるが one variable characterization (1.3) のおかげで convex case は分かり易い。F. Rønning の問題との類似の言い方をすると

"Find the largest $\alpha \geq 0$ such that $UCV \subset C_\alpha"$

の解は，"$\alpha = \frac{1}{2}$" ということになる。ちなみに UST の定義は

$$UST = \left\{ f(z) \in S \left| \text{Re} \frac{f(z) - f(\zeta)}{(z - \zeta)^2} \geq 0 \text{ in } D \times D \right\}$$

であり，z と ζ が分かち難い。この条件は D 内の全ての円弧（但し，その中心 ζ も D 内に入っているもの）を $f(\zeta)$ に関する星型の curve に写すことを意味している。$UST \subset S^*_\alpha$ は自明であり，F. Rønning 自身は $UST \nsubseteq S^*_1/2$ を示している。
Theorem 1. The radius of uniform convexity of order α ($0 \leq \alpha < 1$) in S is

$$\frac{4 - \sqrt{13 + 2\alpha + \alpha^2}}{3 + \alpha}.$$

Corollary. The radius of starlikeness of order α ($0 \leq \alpha < 1$) in S is the unique root r_0 ($0 < r_0 \leq \tanh \frac{\pi}{4}$) of the equation

$$F(r) = \alpha.$$
\[
F(r) = \begin{cases}
\frac{1-r}{1+r} & \text{if } 0 \leq r \leq \frac{e-1}{e+1}, \\
\cos x_0 \left(\frac{1-r}{1+r} \right)^{\cos x_0} & \text{if } \frac{e-1}{e+1} < r \leq \tanh \frac{\pi}{4}.
\end{cases}
\]

The value of \(x_0 \) is defined by the equation,

\[
\log \frac{1+r}{1-r} = \frac{x_0}{\sin x_0} \quad (0 < x_0 \leq \frac{\pi}{2}).
\]

Theorem 3. \(UCV \subset C_{\alpha} \) if and only if \(\alpha \leq \frac{1}{2} \).

2. **Theorem 1** の証明

[3, Theorem 4] の証明と同様, sharp estimate

\[
\left| \frac{zf''(z)}{f'(z)} \right| - \frac{2r^2}{1-r^2} \leq \frac{4r}{1-r^2} \quad (2.1)
\]

for \(|z| = r < 1\), を使う。

\[
w = u + iv = \frac{zf''(z)}{(1-\alpha)f'(z)}
\]

とおけば (1.5) 及び (2.1) はそれぞれ,

\[
Re\{1+w\} \geq |w| \quad (2.2)
\]

\[
\left| w - \frac{2r^2}{(1-\alpha)(1-r^2)} \right| \leq \frac{4r}{(1-\alpha)(1-r^2)} \quad (2.3)
\]

となる. そこで, いつ disk (2.3) が放物線 (2.2) の中にあるか見てやる. disk (2.3)

は帯状領域

\[
\frac{2r(r-2)}{(1-\alpha)(1-r^2)} \leq u \leq \frac{2r(r+2)}{(1-\alpha)(1-r^2)} \quad (2.4)
\]

にあり, 放物線 (2.2) の頂点は \((u, v) = (-\frac{1}{2}, 0)\) なので, 次が必要である,

\[
-\frac{1}{2} \leq \frac{2r(r-2)}{(1-\alpha)(1-r^2)}.
\]
よって,

\[r \leq \frac{4 - \sqrt{13 + 2\alpha + \alpha^2}}{3 + \alpha}. \] (2.5)

逆に、条件 (2.5) を仮定する。 (2.3) より、その boundary は,

\[v^2 = \left(\frac{4r}{(1 - \alpha)(1 - r^2)} \right)^2 - \left(u - \frac{2r^2}{(1 - \alpha)(1 - r^2)} \right)^2 \] (2.6)

を満たす。他方、(2.2) は,

\[1 + 2u - v^2 \geq 0 \] (2.7)

を意味する。 (2.6) を (2.7) に代入し,

\[\left(u - \frac{(3 - \alpha)r^2 - (1 - \alpha)}{(1 - \alpha)(1 - r^2)} \right)^2 - \frac{4r^2((1 - \alpha)r^2 + (3 + \alpha))}{(1 - \alpha)^2(1 - r^2)^2} \geq 0. \] (2.8)

従って (2.8) が 条件 (2.5) のもとに interval (2.4) 内で成立することを確かめればよい。

ここで不等式,

\[\frac{(3 - \alpha)r^2 - (1 - \alpha)}{(1 - \alpha)(1 - r^2)} \leq \frac{2r(r - 2)}{(1 - \alpha)(1 - r^2)} \] (2.9)

は,

\[r \leq \frac{-2 + \sqrt{5 - 2\alpha + \alpha^2}}{1 - \alpha}, \] (2.10)

と同値であり、また簡単な計算により,

\[\frac{4 - \sqrt{13 + 2\alpha + \alpha^2}}{3 + \alpha} < \frac{-2 + \sqrt{5 - 2\alpha + \alpha^2}}{1 - \alpha} \] (2.11)

（但し 0 \leq \alpha < 1），が解るので (2.9) は条件 (2.5) のもとに成立することを知る。よって、(2.8) が \(u = \frac{2r(r - 2)}{(1 - \alpha)(1 - r^2)} \) で成り立つなら、それは interval (2.4) 全域で成り立つ。そして実際,

\[
\left(\frac{2r(r - 2)}{(1 - \alpha)(1 - r^2)} - \frac{(3 - \alpha)r^2 - (1 - \alpha)}{(1 - \alpha)(1 - r^2)} \right)^2 - \frac{4r^2((1 - \alpha)r^2 + (3 + \alpha))}{(1 - \alpha)^2(1 - r^2)^2}
\]

\[= \frac{(3 + \alpha)r^2 - 8r + (1 - \alpha)}{(1 - \alpha)(1 - r^2)} \]

は条件 (2.5) のもとに non-negative である。以上で Theorem 1 が示された。
3. Theorem 2 の証明

\[
\frac{zf'(z)}{f(z)} \quad (f \in S, |z| = r < 1) \text{のrangeの境界のF. Rønning'sによるparametrization,}
\]

\[
W_r(\theta) = \left(\frac{1 + r}{1 - r}\right)^{\cos \theta} \left(\cos \left(\sin \theta \log \frac{1 + r}{1 - r}\right) + i \sin \left(\sin \theta \log \frac{1 + r}{1 - r}\right)\right), \quad (3.1)
\]

\[0 \leq \theta < 2\pi \quad [2] \text{を用いる。両辺のreal partをとって,}
\]

\[
\Re W_r(\theta) = \left(\frac{1 + r}{1 - r}\right)^{\cos \theta} \cos \left(\sin \theta \log \frac{1 + r}{1 - r}\right). \quad (3.2)
\]

ここで (3.2) の右辺が全ての\(\theta\)でnon-negativeであるとする,

\[
\cos \left(\sin \theta \log \frac{1 + r}{1 - r}\right) \geq 0 \text{for all } \theta.
\]

これより,

\[
\log \frac{1 + r}{1 - r} \leq \frac{\pi}{2},
\]

よって,

\[
r \leq \tanh \frac{\pi}{4}.
\]

先ず, \(r < \tanh \frac{\pi}{4}\)と仮定し, (3.2)の両辺のlogarithmをとり,

\[
\log \Re W_r(\theta) = \cos \theta \log \frac{1 + r}{1 - r} + \log \left(\cos \left(\sin \theta \log \frac{1 + r}{1 - r}\right)\right). \quad (3.3)
\]

ここで,

\[
R := \log \frac{1 + r}{1 - r},
\]

とおくと (3.3)の右辺は,

\[
R \cos \theta + \log (\cos (R \sin \theta)), \quad (3.4)
\]

となる。最小値を求めるので,

\[
R \cos \theta = -\sqrt{R^2 - R^2 \sin^2 \theta}
\]
としてよい. そこで，

\[x := R \sin \theta, \]

とおくと (3.4) は,

\[\Psi(x) := -\sqrt{R^2 - x^2} + \log \cos x, \]

\(-R \leq x \leq R, \) となる. この \(\Psi(x) (-R \leq x \leq R) \) の最小値を知りたい. その導函数は,

\[\Psi'(x) = \frac{x}{\sqrt{R^2 - x^2}} - \tan x. \]

(I) \(R \leq 1 \) であれば,

\[\min_{-R \leq x \leq R} \Psi(x) = \Psi(0) = -R, \]

これは,

\[\Re W_r(\theta) \geq \frac{1 - r}{1 + r}, \]

を意味する. よって,

\[\Re \frac{zf'(z)}{f(z)} \geq \frac{1 - |z|}{1 + |z|} \quad \text{for} \ |z| \leq \frac{e - 1}{e + 1}. \]

(II) \(1 < R < \frac{\pi}{2} \) であれば, 等式

\[R = \frac{x_0}{\sin x_0}, \]

を満たす unique な解 \(x_0 \) (0 < \(x_0 < R \) があり, そこで最小値がとられる,

\[\min_{-R \leq x \leq R} \Psi(x) = \Psi(x_0). \]

これは,

\[\Re W_r(\theta) \geq e^{\Psi(x_0)}, \]

を意味し,

\[\Re \frac{zf'(z)}{f(z)} \geq \cos x_0 \left(\frac{1 - |z|}{1 + |z|} \right)^{\cos x_0}, \]
for $\frac{e-1}{e+1} < |z| < \tanh \frac{\pi}{4}$, ここに, x_0 ($0 < x_0 < \frac{\pi}{2}$) は, 等式

$$\log \frac{1+|z|}{1-|z|} = \frac{x_0}{\sin x_0},$$

の unique な解, を知る. さて, $r = \tanh \frac{\pi}{4}$, つまり $R = \frac{\pi}{2}$, であれば (3.2) は

$$\Re W_{\tanh \frac{\pi}{4}}(\theta) = e^{\frac{\pi}{2} \cos \theta} \cos \left(\frac{\pi}{2} \sin \theta \right) \geq 0,$$

すなわち,

$$\Re \frac{z f'(z)}{f(z)} \geq 0 \text{ if } |z| = \tanh \frac{\pi}{4},$$

となり, これは case (II) に含めてよい. 以上で Theorem 2 が示された.

さて, $F(|z|)$ を Theorem 2 の不等式の右辺とすると, これは $|z|$ が 0 から $\tanh \frac{\pi}{4}$ まで増加するとき, 1 から 0 まで減少する. よって order α ($0 \leq \alpha < 1$) に対して, unique な解 r_0 ($0 < r_0 \leq \tanh \frac{\pi}{4}$) があり $F(r_0) = \alpha$, を満たしその r_0 は radius of starlikeness of order α を与える. 例えば,

$$r_0 = \frac{1}{3} \text{ if } \alpha = \frac{1}{2}, \quad r_0 = \frac{e-1}{e+1} \text{ if } \alpha = \frac{1}{e},$$

$$r_0 = \tanh \frac{\sqrt{2} \pi}{8} \text{ if } \alpha = \frac{1}{\sqrt{2} e^\frac{\pi}{4}}, \quad r_0 = \tanh \frac{\pi}{4} \text{ if } \alpha = 0,$$

などとなる.

4. Theorem 3 の証明

$$w = u + iv = \frac{zf''(z)}{f'(z)}$$

とおくと, UCV の条件式 (1.3) と C_α の条件式 (1.7) はそれぞれ

$$1 + 2u \geq v^2 \quad (4.1)$$

及び

$$u \geq \alpha - 1, \quad (4.2)$$

となる. よって, 放物線 (4.1) が half-plane (4.2) に含まれるための条件は

$$\alpha \leq \frac{1}{2}.$$
REFERENCES

193 東京都 八王子市 橋田町 1220-2
E-mail address: kona@tokyo-ct.ac.jp