<table>
<thead>
<tr>
<th>Title</th>
<th>On meromorphic α-starlike functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>IKEDA, AKIRA</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1997), 1012: 20-24</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61551</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On meromorphic α-starlike functions

by

AKIRA IKEDA [福岡大学 池田 彰]

Abstract

Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in $E = \{z : |z| < 1\}$, let for a real number α

$$\text{Re} \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) \right] > 0 \quad \text{in} \quad E.$$

Then it is well known that $[1, 2]$

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad \text{in} \quad E.$$

Corresponding to this, we take the analytic function $f(z) = 1/z + \sum_{n=0}^{\infty} a_n z^n$ in the punctured disk $U = \{z : 0 < |z| < 1\}$ satisfying

$$\text{Re} \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f(z)} \right) \right] < 0 \quad \text{in} \quad E.$$

Then we prove

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} < 0 \quad \text{in} \quad E.$$

1. Introduction.

Let Σ denote the class of function of the form

$$f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$$

which are analytic in the punctured disk $U = \{z : 0 < |z| < 1\}$.

A function $f(z)$ belonging to the class is said to be meromorphic starlike of order α $(0 \leq \alpha < 1)$ in $E = \{z : |z| < 1\}$ if and only if

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} < -\alpha$$

for all $z \in E$. We denote by $\Sigma^*(\alpha)$ the class of all functions in Σ which are meromorphic starlike of order α in U. We note also that

$$\Sigma^*(\alpha) \subseteq \Sigma^*(0) \equiv \Sigma^* \quad (0 \leq \alpha < 1),$$

where Σ^* denote the subclass of A consisting of functions which are meromorphic starlike in U. The meromorphic starlike is meant that the complement of $f(E)$ is starlike with respect to the origin.
Definition 1. Let α be a real number and suppose that $f(z) \in \Sigma$ with $f(z)f'(z) \neq 0$ in U. If $f(z)$ satisfies the condition
\[
\Re \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] < 0 \quad \text{in } E,
\]
then $f(z)$ is said to be a meromorphic α-starlike function.

2. Preliminary Results.

Lemma 1. Let $p(z)$ be analytic in E, $p(0) = 1$ and suppose that there exists a point $z_0 \in E$ such that
\[
\Re \{ p(z) \} > 0 \quad \text{for } |z| < |z_0|,
\]
\[
\Re \{ p(z_0) \} = 0 \quad \text{and} \quad p(z_0) = ia \quad (a \neq 0).
\]
Then we have
\[
\frac{z_0 p'(z_0)}{p(z_0)} = ik,
\]
where
\[
(1) \quad k \geq \frac{1}{2} \left(a + \frac{1}{a} \right) \geq 1 \quad \text{when } a > 0
\]
and
\[
(2) \quad k \leq \frac{1}{2} \left(a + \frac{1}{a} \right) \leq -1 \quad \text{when } a < 0.
\]

We owe this lemma to [3, Theorem 1].

Lemma 2. Let α, β be positive real number ($\alpha > 1$, $0 < \beta < 1$) and $p(z)$ be analytic in E, $p(0) = 1$, $p(z) \neq \beta$ in E, and suppose that

(i) for the case $0 < \beta \leq 1/2$
\[
\Re \left(\alpha \frac{zp'(z)}{p(z)} - p(z) \right) > -\frac{\alpha\beta}{2(1 - \beta)} - \beta \quad \text{in } E,
\]
where $\alpha > 2(1 - \beta)^2/\beta$;

(ii) for the case $1/2 < \beta < 1$
\[
\Re \left(\alpha \frac{zp'(z)}{p(z)} - p(z) \right) > -\frac{\alpha(1 - \beta)}{2\beta} - \beta \quad \text{in } E,
\]
where $\alpha > 2\beta$.

Then we have
\[
\Re \{ p(z) \} > \beta \quad \text{in } E.
\]
Proof. If we put
\[q(z) = \frac{1 - \beta}{p(z) - \beta}, \]
then \(q(z) \) is analytic in \(E \), \(q(0) = 1 \) and \(q(z) \neq 0 \) in \(E \).

At first, we want to prove \(\text{Re}\{p(z)\} > \beta \) in \(E \), i.e. \(\text{Re}\{q(z)\} > 0 \) in \(E \). If there exists a point \(z_0 \in E \) such that
\[\text{Re}\{q(z)\} > 0 \quad \text{for} \quad |z| < |z_0| < 1, \]
\[\text{Re}\{q(z_0)\} = 0 \quad \text{and} \quad q(z_0) = ia \quad (a \neq 0), \]
then from Lemma 1, we have
\[
\text{Re}\left(\alpha \frac{z_0p'(z_0)}{p(z_0)} - p(z_0) \right) = \text{Re}\left(-\alpha \frac{1 - \beta}{1 - \beta + \beta i a} ik - \frac{1 - \beta + \beta i a}{i a} \right)
= -\frac{\alpha \beta a (1 - \beta)}{(1 - \beta)^2 + \beta^2 a^2} - \beta
\leq -\frac{\alpha \beta (1 - \beta)}{2} \frac{1 + a^2}{(1 - \beta)^2 + a^2 \beta^2} - \beta
\]
by virtue of (1), (2). Let us put
\[\varphi(x) = \frac{1 + x^2}{(1 - \beta)^2 + x^2 \beta^2} \]
and simple calculation leads to
\[\varphi'(x) = \frac{2x(1 - 2\beta)}{((1 - \beta)^2 + x^2 \beta^2)^2}. \]

For the case \(0 < \beta \leq 1/2 \), \(\varphi(x) \) takes its minimum value at \(x = 0 \)
\[\varphi(0) = \frac{1}{(1 - \beta)^2}. \]
Therefore we have
\[
\text{Re}\left(\alpha \frac{z_0p'(z_0)}{p(z_0)} - p(z_0) \right) \leq -\frac{\alpha \beta}{2(1 - \beta)} - \beta.
\]
Next, if \(1/2 < \beta < 1 \), \(\varphi(x) \) takes its minimum at \(x = \infty \)
\[\lim_{z \to \infty} \varphi(x) = \lim_{z \to \infty} \frac{1 + x^2}{(1 - \beta)^2 + x^2 \beta^2} = \frac{1}{\beta^2}, \]
and we have
\[
\text{Re}\left(\alpha \frac{z_0p'(z_0)}{p(z_0)} - p(z_0) \right) \leq -\frac{\alpha(1 - \beta)}{2 \beta} - \beta.
\]
This contradicts the assumption of Lemma 2. Therefore we have \(\text{Re}\{q(z)\} > 0 \) in \(E \) and then
\[\text{Re}\{p(z)\} > \beta \quad \text{in} \quad E. \]
This completes our proof.

3. Main Results.

Theorem 1. Let $f(z)$ be a meromorphic α-starlike function, and suppose that

\[
\Re \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] < 0 \quad \text{in} \quad E,
\]

where α is a real number. Then we have

\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} < 0 \quad \text{in} \quad E.
\]

Proof. Let us put

\[
p(z) = -\frac{zf'(z)}{f(z)}.
\]

By simple calculation, we obtain

\[
\frac{zp'(z)}{p(z)} - p(z) = 1 + \frac{zf''(z)}{f'(z)},
\]

or

\[
\Re \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] = \Re \left[\alpha \frac{zp'(z)}{p(z)} - p(z) \right].
\]

At first, we want to prove $\Re \{zf'(z)/f(z)\} < 0$ in E, which means $\Re \{p(z)\} > 0$ in E. If there exists a point $z_0 \in E$ such that

\[
\Re \{p(z)\} > 0 \quad \text{for} \quad |z| < |z_0|,
\]

then from Lemma 1 we have

\[
p(z_0) = ia \quad (a \neq 0),
\]

where k is real and $|k| \geq 1$. Thus

\[
\Re \left[\alpha \frac{zp'(z_0)}{p(z_0)} - p(z_0) \right] = \Re [\alpha ik - ia] = 0.
\]

This contradicts the assumption of the theorem. Therefore we have

\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} < 0 \quad \text{in} \quad E.
\]

This completes our proof.
Theorem 2. Let α, β be positive real number ($\alpha > 1, 0 < \beta < 1$), $f(z)$ be a meromorphic α-starlike function and suppose that

(i) for the case $0 < \beta \leq 1/2$

\[
\text{Re} \left[(1 - \alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > -\frac{\alpha \beta}{2(1 - \beta)} - \beta \quad \text{in } E,
\]

where $\alpha > 2(\beta - 1)^2/\beta$;

(ii) for the case $1/2 < \beta < 1$

\[
\text{Re} \left[(1 - \alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > -\frac{\alpha(1 - \beta)}{2\beta} - \beta \quad \text{in } E,
\]

where $\alpha > 2\beta$.

Then we have

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} < -\beta \quad \text{in } E.
\]

Proof. Applying (4), (5) and (6), we can easily prove the theorem. Therefore from the assumption of the theorem and Lemma 2, we have

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} = \text{Re} \left\{ -p(z) \right\} < -\beta \quad \text{in } E.
\]

Acknowledgement.

The author would like to express his sincere thanks to Prof. M. Nunokawa (University of Gunma) and Prof. M. Saigo (Fukuoka University) for their valuable advices.

References

Akira Ikeda
Department of Applied Mathematics
Fukuoka University
Fukuoka 814-80, Japan