<table>
<thead>
<tr>
<th>Title</th>
<th>STARLIKE AND CONVEX FUNCTION OF COMPLEX ORDER INVOLVING A CERTAIN FRACTIONAL INTEGRAL OPERATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Choi, Jae Ho</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1997, 1012: 1-13</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1997-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61553</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
STARLIKE AND CONVEX FUNCTION OF COMPLEX ORDER INVOLVING A CERTAIN FRACTIONAL INTEGRAL OPERATOR

Abstract

Let the classes $S_0^*(b)$, $K_0(b)$ and $C_0(b)$ consist of functions which are starlike, convex and close-to-convex of complex order b introduced by Nasr and Aouf [2], [3]. The main object of the present paper is to investigate the starlike and convex functions of complex order involving a certain fractional integral operator. Further relevant connections are also pointed out with various earlier results involving the Hadamard product.

Key words: fractional integral, Hadamard product, starlike and convex functions of complex order

AMS Subject Classification: 30C45
1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form:

\[(1.1)\quad f(z) = z + \sum_{n=2}^{\infty} a_n z^n\]

which are analytic in the unit disk $\mathcal{U} = \{ z : |z| < 1 \}$. A function $f(z)$ belonging to the class \mathcal{A} is said to be starlike of complex order b ($b \in \mathbb{C} \setminus \{0\}$) if and only if $z^{-1} f(z) \neq 0 (z \in \mathcal{U})$ and

\[(1.2)\quad \text{Re} \left\{ 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right\} > 0 \quad (z \in \mathcal{U}).\]

We denote by $\mathcal{S}_0^*(b)$ the subclass of \mathcal{A} consisting of functions which are starlike of complex order b. Further, let $\mathcal{S}_1^*(b)$ denote the class of functions $f(z) \in \mathcal{A}$ satisfying

\[(1.3)\quad \left| \frac{zf'(z)}{f(z)} - 1 \right| < |b| \quad (b \in \mathbb{C} \setminus \{0\}).\]

Here the inequality (1.2) is equivalent to

\[(1.4)\quad \text{Re} \left\{ \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right\} > -1.\]

If $f(z) \in S_1^*(b)$, then $f(z)$ satisfies (1.4) which implies that

\[(1.7)\quad \text{Re} \left\{ 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right\} > 0.\]

Thus $\mathcal{S}_1^*(b)$ is a subclass of $\mathcal{S}_0^*(b)$.

A function $f(z)$ belonging to the class \mathcal{A} is said to be convex of complex order b ($b \in \mathbb{C} \setminus \{0\}$) if and only if $f'(z) \neq 0 (z \in \mathcal{U})$ and

\[(1.5)\quad \text{Re} \left\{ 1 + \frac{1}{b} \frac{zf''(z)}{f'(z)} \right\} > 0 \quad (z \in \mathcal{U}).\]

We denote by $\mathcal{K}_0(b)$ the subclass of \mathcal{A} consisting of functions which are convex of complex order b. Furthermore, let $\mathcal{K}_1(b)$ denote the class of functions $f(z) \in \mathcal{A}$ satisfying

\[(1.6)\quad \left| \frac{zf''(z)}{f'(z)} \right| < |b| \quad (b \in \mathbb{C} \setminus \{0\}).\]

We note that

\[(1.7)\quad f(z) \in \mathcal{K}_0(b) \iff zf'(z) \in \mathcal{S}_0^*(b)\]
and

\[(1.8) \quad f(z) \in \mathcal{K}_1(b) \iff zf'(z) \in S_1^*(b) \]

for \(b \in \mathbb{C} \setminus \{0\} \).

A function \(f(z) \) belonging to the class \(\mathcal{A} \) is said to be close-to-convex of complex order \(b \) (\(b \in \mathbb{C} \setminus \{0\} \)) if and only if there exists a function \(g(z) \in \mathcal{K}_0(c) \) (\(c \in \mathbb{C} \setminus \{0\} \)) satisfying the condition

\[(1.9) \quad \Re \left\{ 1 + \frac{1}{b} \left(\frac{f'(z)}{g'(z)} - 1 \right) \right\} > 0 \quad (z \in \mathcal{U}).\]

We denote by \(\mathcal{C}_0(b) \) the subclass of \(\mathcal{A} \) consisting of functions which are close-to-convex of complex order \(b \). Also let \(\mathcal{C}_1(b) \) denote the class of functions \(f(z) \in \mathcal{A} \) satisfying

\[(1.10) \quad \left| \frac{f'(z)}{g'(z)} - 1 \right| < |b| \]

for some \(g \in \mathcal{K}_0(c) \) (\(c \in \mathbb{C} \setminus \{0\} \)).

We also have \(\mathcal{K}_1(b) \subset \mathcal{K}_0(b) \) and \(\mathcal{C}_1(b) \subset \mathcal{C}_0(b) \).

Remark. Setting \(b = 1 - \alpha \) (\(0 \leq \alpha < 1 \)), we observe that \(S_0^*(1 - \alpha) = S^*(\alpha) \), \(\mathcal{K}_0(1 - \alpha) = \mathcal{K}(\alpha) \) and \(\mathcal{C}_0(1 - \alpha) = \mathcal{C}(\alpha) \), where \(S^*(\alpha) \), \(\mathcal{K}(\alpha) \) and \(\mathcal{C}(\alpha) \) denote the usual classes of starlike, convex and close-to-convex of real order \(\alpha \), respectively. Indeed, letting \(b = i\alpha \) (\(\alpha \in \mathbb{R} \)), we obtain that \(f \in S_0^*(i\alpha) \) implies that \(\Im(zf'(z)/f(z)) > -\alpha \).

For the functions \(f_j(z) \) (\(j = 1, 2 \)) defined by

\[(1.11) \quad f_j(z) = \sum_{n=0}^{\infty} a_{j,n+1} z^{n+1} \quad (a_{1,1} = a_{2,1} = 1),\]

let \((f_1 * f_2)(z)\) denote the Hadamard product or convolution of \(f_1(z) \) and \(f_2(z) \), defined by

\[(1.12) \quad (f_1 * f_2)(z) = \sum_{n=0}^{\infty} a_{1,n+1} a_{2,n+1} z^{n+1}.\]

Let \(a, b, c \) be complex numbers with \(c \neq 0, -1, -2, \cdots \). The Gaussian hypergeometric function \(_2F_1(z) \) is defined by

\[(1.13) \quad _2F_1(z) \equiv _2F_1(a, b; c; z) \equiv \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!},\]
where \((\lambda)_n\) denotes the Pochhammer symbol defined, in terms of \(\Gamma\)-function, by
\[
(\lambda)_n := \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \begin{cases}
1 & (n = 0) \\
\lambda(\lambda + 1) \cdots (\lambda + n - 1) & (n \in \mathbb{N} := \{1, 2, 3, \ldots\})
\end{cases}.
\]

Many essentially equivalent definitions of fractional calculus have been given in the literature (cf., e.g, [9], [10,p.45]). For convenience, we recall here the following definitions due to Owa [4] and Saigo [8] which have been used rather frequently in the theory of analytic functions:

Definition 1. The fractional integral of order \(\lambda\) (\(\lambda \in \mathbb{C}\)) is defined, for a function \(f(z)\), by
\[
D_{z}^{-\lambda}f(z) = \frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\lambda}} \, d\zeta \quad (\text{Re}(\lambda) > 0),
\]
where \(f(z)\) is an analytic function in a simply-connected region of the \(z\)-plane containing the origin, and the multiplicity of \((z - \zeta)^{\lambda-1}\) is removed by requiring \(\log(z - \zeta)\) to be real for \(z - \zeta > 0\).

Definition 2. For \(\alpha, \beta, \eta \in \mathbb{C}\) and \(\text{Re}(\alpha) > 0\), the fractional integral operator \(I_{0,z}^{\alpha,\beta,\eta}\) is defined by
\[
I_{0,z}^{\alpha,\beta,\eta}f(z) = \frac{z^{-\alpha-\beta}}{\Gamma(\alpha)} \int_{0}^{z} (z-\zeta)^{\alpha-1} _{2}F_{1}(\alpha + \beta, -\eta; \alpha; 1 - \frac{\zeta}{z}) f(\zeta) \, d\zeta,
\]
where the function \(_{2}F_{1}\) is Gauss's hypergeometric function defined by (1.13).

The definition (1.15) is an interesting extension of both the Riemann-Liouville and Erdélyi-Kober fractional operators in terms of Gauss's hypergeometric functions. Indeed, in its special case, it is treated alike the definition (1.14).

It is easy to observe that
\[
I_{0,z}^{\alpha,-\alpha,\eta}f(z) = D_{z}^{-\alpha}f(z) \quad (\text{Re}(\alpha) > 0).
\]

By using the fractional integral, we now introduce the linear operator \(\Omega^{\lambda}\) given by
\[
\Omega^{\lambda}f(z) = \Gamma(2 - \lambda)z^{\lambda}D_{z}^{\lambda}f(z) \quad (\text{Re}(\lambda) < 0)
\]
for \(f(z) \in A\).
The operator $T_{0,\alpha,\beta,\eta}^{\alpha,\beta,\eta}$ is also modified by defining $J_{0,\alpha,\beta,\eta}^{\alpha,\beta,\eta}$ in the form

$$J_{0,\alpha,\beta,\eta}^{\alpha,\beta,\eta} f(z) = \frac{\Gamma(2-\beta)\Gamma(2+\alpha+\eta)}{\Gamma(2-\beta+\eta)} z^\beta T_{0,\alpha,\beta,\eta}^{\alpha,\beta,\eta} f(z)$$

for $f(z) \in A$ and $\min\{\text{Re}(\alpha+\eta), \text{Re}(-\beta+\eta), \text{Re}(-\beta)\} > -2$.

2. Main results

In order to prove our main results, we shall require the following lemmas to be used in the sequel.

Lemma 1. (Jack [1]) Let $\omega(z)$ be analytic in \mathcal{U} with $\omega(0) = 0$. Then if $|\omega(z)|$ attains its maximum value on the circle $|z| = r (r < 1)$ at a point z_0, we can write

$$z_0 \omega'(z_0) = k \omega(z_0),$$

where k is real and $k \geq 1$.

Lemma 2. (Ruscheweyh and Sheil-Small [7]) Let $\phi(z)$ and $g(z)$ be analytic in \mathcal{U} and satisfy

$$\phi(0) = g(0) = 0, \quad \phi'(0) \neq 0, \quad \text{and} \quad g'(0) \neq 0.$$

Suppose that for each $\sigma (|\sigma| = 1)$ and $\rho (|\rho| = 1)$

$$\phi(z) * \left(1 + \frac{\rho \sigma z}{1 - \sigma z}\right) g(z) \neq 0 \quad (z \in \mathcal{U} \setminus \{0\}).$$

Then, for each function $F(z)$ analytic in the unit disk \mathcal{U} and satisfying the inequality $\text{Re}\{F(z)\} > 0 (z \in \mathcal{U})$, we have

$$\text{Re}\left(\frac{(\phi * G)(z)}{(\phi * g)(z)}\right) > 0 \quad (z \in \mathcal{U}),$$

where $G(z) = F(z)g(z)$.

Lemma 3. (Jack [7]) Let $\phi(z)$ be convex and $g(z)$ starlike in \mathcal{U}. Then, for each function $F(z)$ analytic in the unit disk \mathcal{U} and satisfying $\text{Re}\{F(z)\} > 0 (z \in \mathcal{U})$, we have

$$\text{Re}\left(\frac{(\phi * Fg)(z)}{(\phi * g)(z)}\right) > 0 \quad (z \in \mathcal{U}),$$
Lemma 4. (c.f., Owa, Saigo and Srivastava [5]) Let $\alpha, \beta, \eta \in \mathbb{C}$ and $\operatorname{Re}(\alpha) > 0$, and let $k > \operatorname{Re}(\beta - \eta) - 1$. Then

$$I_{0, z}^{\alpha, \beta, \eta} k = \frac{\Gamma(k + 1)\Gamma(k - \beta + \eta + 1)}{\Gamma(k - \beta + \eta)\Gamma(k + \alpha + \eta + 1)} z^{k - \beta}.$$

Applying the above lemmas, we derive

Theorem 1. Let the function $f(z)$ defined by (1.1) be in the class $S_0^*(b)$ and satisfy

$$h(z) \left(\frac{1 + \rho \sigma z}{1 - \sigma z} \right) b f(z) \neq 0 \quad (z \in \mathcal{U} \setminus \{0\})$$

for each $\rho (|\rho| = 1)$ and $\sigma (|\sigma| = 1)$, where

$$h(z) = z + \sum_{n=2}^{\infty} \frac{(2 - \beta + \eta)_{n-1}(1)n}{(2 - \beta)_{n-1}(2 + \alpha + \eta)_{n-1}} z^n,$$

and for $\alpha, \beta, \eta \in \mathbb{C}$ with $\operatorname{Re}(\alpha) > 0$ and $\min\{\operatorname{Re}(\alpha + \eta), \operatorname{Re}(-\beta + \eta), \operatorname{Re}(-\beta)\} > -2$. Then $J_{0, z}^{\alpha, \beta, \eta} f(z)$ belongs to the class $S_0^*(b)$.

Proof. Note from (1.18), (2.4) and (2.6) that

$$J_{0, z}^{\alpha, \beta, \eta} f(z) = z + \sum_{n=2}^{\infty} \frac{(2 - \beta + \eta)_{n-1}(1)n}{(2 - \beta)_{n-1}(2 + \alpha + \eta)_{n-1}} a_n z^n = (h \ast f)(z),$$

which readily yields

$$1 + \frac{1}{b} \left(\frac{z(J_{0, z}^{\alpha, \beta, \eta} f(z))'}{J_{0, z}^{\alpha, \beta, \eta} f(z)} - 1 \right) = \frac{h(z) \ast \left(\sum_{n=0}^{\infty} (n + b) a_{n+1} z^{n+1} \right)}{b(h \ast f)(z)}$$

$$= \frac{(h \ast [(b-1)f + zf'])(z)}{(h \ast bf)(z)}.$$

as $a_1 = 1$.

Therefore, putting $\phi(z) = h(z), g(z) = bf(z)$ and $F(z) = 1 + 1/b[(zf'(z))/f(z) - 1]$ in Lemma 2, we conclude from (2.7) that

$$\operatorname{Re} \left\{ 1 + \frac{1}{b} \left(\frac{z(J_{0, z}^{\alpha, \beta, \eta} f(z))'}{J_{0, z}^{\alpha, \beta, \eta} f(z)} - 1 \right) \right\} > 0,$$

which completes the proof of Theorem 1.
Corollary 1. Let the function $f(z)$ defined by (1.1) be in the class $S_0^*(b)$ and satisfy
\[u(z) \ast \left(\frac{1 + \rho \sigma z}{1 - \sigma z} \right) b f(z) \neq 0 \quad (z \in \mathbb{U} \setminus \{0\}) \]
for each $\rho (|\rho| = 1)$ and $\sigma (|\sigma| = 1)$, where
\[u(z) = z + \sum_{n=2}^{\infty} \frac{(1)_n}{(2 - \lambda)_{n-1}} z^n \quad (\text{Re}(\lambda) < 0). \]
Then $\Omega^\lambda f(z)$ belongs to the class $S_0^*(b)$.

Proof. Setting $\alpha = -\beta = -\lambda$ in Theorem 1 and taking Remark 2 into account, we have Corollary 1.

Corollary 2. Let $h(z)$ be convex and let $f(z) \in S_1^*(b) (|b| \leq 1)$, where $h(z)$ is given by (2.6) with the same assumptions of α, β and η in Theorem 1. Then $J_{0,z}^{\alpha,\beta,\eta} f(z) = (h \prec f)(z)$ belongs to the class $S_0^*(b)$.

Proof. From the hypothesis, we obtain
\[f(z) \in S_1^*(b) \subseteq S^*(0) = S^* \quad (|b| \leq 1). \]
By applying Lemma 3 in view of Theorem 1, we have the desirous result immediately.

Theorem 2. Let the function $f(z)$ defined by (1.1) be in the class $\mathcal{K}_0(b)$ and satisfy
\[h(z) \ast \left(\frac{1 + \rho \sigma z}{1 - \sigma z} \right) b z f'(z) \neq 0 \quad (z \in \mathbb{U} \setminus \{0\}) \]
for each $\rho (|\rho| = 1)$ and $\sigma (|\sigma| = 1)$, where $h(z)$ is given by (2.6) and for $\alpha, \beta, \eta \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$ and $\min\{\text{Re}(\alpha + \eta), \text{Re}(-\beta + \eta), \text{Re}(-\beta)\} > -2$. Then $J_{0,z}^{\alpha,\beta,\eta} f(z)$ belongs to the class $\mathcal{K}_0(b)$.

Proof. Applying (1.7) and Theorem 1, we observe that
\[f(z) \in \mathcal{K}_0(b) \iff zf'(z) \in S_0^*(b) \Rightarrow J_{0,z}^{\alpha,\beta,\eta} z f'(z) \in S_0^*(b) \]
\[\iff (h \ast zf')(z) \in S_0^*(b) \iff z(h \ast f)'(z) \in S_0^*(b) \]
\[\iff (h \ast f)(z) \in \mathcal{K}_0(b) \iff J_{0,z}^{\alpha,\beta,\eta} f(z) \in \mathcal{K}_0(b), \]
which evidently proves Theorem 2.

Taking $\alpha = -\beta = -\lambda$ in Theorem 2, we get
Corollary 3. Let the function $f(z)$ defined by (1.1) be in the class $K_0(b)$ and satisfy

$$u(z) * \left(\frac{1 + \rho \sigma z}{1 - \sigma z} \right) b z f'(z) \neq 0 \quad (z \in \mathcal{U} \setminus \{0\})$$

for each ρ ($|\rho| = 1$) and σ ($|\sigma| = 1$), where $u(z)$ is given by (2.8). Then $\Omega^\lambda f(z)$ belongs to the class $K_0(b)$.

Corollary 4. Let $h(z)$ be convex and let $f(z) \in K_1(b)$ ($|b| \leq 1$), where $h(z)$ is given by (2.6) with the same assumption of α, β and η there. Then $J_{0_z}^{\alpha,\beta,\eta} f(z) = (h \prec f)(z)$ belongs to the class $K_0(b)$.

Theorem 3. Let the function $f(z)$ defined by (1.1) be in the class \mathcal{A} and satisfy

$$\left| \frac{(J_{0_z}^{\alpha,\beta,\eta} f(z))'}{g(z)} - 1 \right|^\sigma \left| \frac{z(J_{0_z}^{\alpha,\beta,\eta} f(z))''}{g'(z)} - \frac{z(J_{0_z}^{\alpha,\beta,\eta} f(z))''}{\{g'(z)\}^2} \right| ^\delta < |b|^{\sigma + \delta} \quad (z \in \mathcal{U})$$

for some $\sigma \geq 0, \delta \geq 0$ and $g(z) \in K_0(c)$. Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with $\Re(\alpha) > 0$ and $\min\{\Re(\alpha + \eta), \Re(-\beta + \eta), \Re(-\beta)\} > -2$. Then $J_{0_z}^{\alpha,\beta,\eta} f(z)$ belongs to the class $C_1(b)$.

Proof. If we define

$$\omega(z) = \frac{1}{b} \left(\frac{(J_{0_z}^{\alpha,\beta,\eta} f(z))'}{g'(z)} - 1 \right)$$

for $f(z) \in \mathcal{A}$ and $g(z) \in K_0(c)$, then it is an elementary matter to show that $\omega(z)$ is analytic in \mathcal{U} and $\omega(0) = 0$. Noting that

$$b z \omega'(z) = \frac{z(J_{0_z}^{\alpha,\beta,\eta} f(z))''}{g'(z)} - \frac{z(J_{0_z}^{\alpha,\beta,\eta} f(z))''}{\{g'(z)\}^2} ,$$

we know that the condition (2.11) leads us to

$$|b \omega(z)|^\sigma |b z \omega'(z)|^\delta < |b|^{\sigma + \delta} .$$

Suppose that there exists $z_0 \in \mathcal{U}$ such that

$$\max_{|z| \leq |z_0|} |\omega(z)| = |\omega(z_0)| = 1 \quad (\omega(z_0) \neq 1) .$$

Then, using Lemma 1, we see

$$|b \omega(z_0)|^\sigma |b z_0 \omega'(z_0)|^\delta = |b|^{\sigma + \delta} |k|^\delta \geq |b|^{\sigma + \delta} ,$$

which contradicts (2.11). Therefore we conclude $|\omega(z)| < 1$ for all $z \in \mathcal{U}$. This implies that

$$\left| \frac{(J_{0_z}^{\alpha,\beta,\eta} f(z))'}{g'(z)} - 1 \right| < |b| \quad (z \in \mathcal{U}) ,$$

which completes the proof of Theorem 3.

Letting $\alpha = -\beta = -\lambda$ in Theorem 3, we have
Corollary 5. Let the function $f(z)$ defined by (1.1) be in the class A and satisfy
\begin{equation}
\left| \frac{(\Omega^\lambda f(z))^\prime}{g'(z)} - 1 \right|^\sigma \left| \frac{z(\Omega^\lambda f(z))''}{g'(z)} - \frac{z(\Omega^\lambda f(z))^\prime}{g'(z)} \right|^\delta < |b|^{\sigma+\delta} \quad (z \in \mathcal{U})
\end{equation}
for some $\sigma \geq 0$, $\delta \geq 0$, and $g(z) \in \mathcal{K}_0(c)$. Then $\Omega^\lambda f(z)$ belongs to the class $C_1(b)$.

Putting $g(z) = z \in \mathcal{K}_0(1)$, Theorem 3 gives

Corollary 6. Let the function $f(z)$ defined by (1.1) be in the class A and satisfy
\begin{equation}
\left| (J_{0,z}^{\alpha,\beta,\eta} f(z))' - 1 \right|^\sigma \left| z(J_{0,z}^{\alpha,\beta,\eta} f(z))'' \right|^\delta < |b|^{\sigma+\delta} \quad (z \in \mathcal{U})
\end{equation}
for some $\sigma \geq 0$ and $\delta \geq 0$. Then $J_{0,z}^{\alpha,\beta,\eta} f(z)$ belongs to the class $C_1(b)$.

Theorem 4. Let the function $f(z)$ defined by (1.1) be in the class A and satisfy
\begin{equation}
\left| a \left(\frac{z(J_{0,z}^{\alpha,\beta,\eta} f(z))'}{J_{0,z}^{\alpha,\beta,\eta} f(z)} - 1 \right) + (1-a) \frac{z^2(J_{0,z}^{\alpha,\beta,\eta} f(z))''}{J_{0,z}^{\alpha,\beta,\eta} f(z)} \right| < |b| \left(1 + (1-a)(1-|b|) \right) \quad (z \in \mathcal{U})
\end{equation}
for some $a \leq 1$ and $|b| \leq 1$. Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with Re(α) > 0 and min{Re($\alpha + \eta$), Re($-\beta + \eta$), Re($-\beta$)} > -2. Then $J_{0,z}^{\alpha,\beta,\eta} f(z)$ belongs to the class $S^*_1(b)$.

Proof. If we set
\begin{equation}
\omega(z) = \frac{1}{b} \left(\frac{z(J_{0,z}^{\alpha,\beta,\eta} f(z))'}{J_{0,z}^{\alpha,\beta,\eta} f(z)} - 1 \right) \quad (f \in A),
\end{equation}
then the function $\omega(z)$ is regular in \mathcal{U} and $\omega(0) = 0$. By using the logarithmic differentiation on both sides of (2.17), we have
\[\frac{z(J_{0,z}^{\alpha,\beta,\eta} f(z))''}{(J_{0,z}^{\alpha,\beta,\eta} f(z))'} = b\omega(z) + \frac{bz\omega'(z)}{1 + b\omega(z)}. \]
This yields
\[a \left(\frac{z(J_{0,z}^{\alpha,\beta,\eta} f(z))'}{J_{0,z}^{\alpha,\beta,\eta} f(z)} - 1 \right) + (1-a) \frac{z^2(J_{0,z}^{\alpha,\beta,\eta} f(z))''}{J_{0,z}^{\alpha,\beta,\eta} f(z)} \]
\[= b\omega(z) \left\{ 1 + (1-a) \left(b\omega(z) + \frac{z\omega'(z)}{\omega(z)} \right) \right\} . \]
Assume that there exists \(z_0 \in \mathcal{U}\) such that (2.13) holds true for the function \(\omega(z)\) in (2.17). Then, writing \(\omega(z_0) = e^{i\theta}\), and using Lemma 1, we deduce

\[
|b\omega(z_0)| \left\{ 1 + (1 - a) \left(b\omega(z_0) + \frac{z_0\omega'(z_0)}{\omega(z_0)} \right) \right\} = |b||1 + (1 - a)(k + be^{i\theta})|
\geq |b||1 + (1 - a)(1 - |b|)|,
\]

which contradicts (2.16). Thus we obtain

\[
|\omega(z)| = \left| \frac{1}{b}\left(\frac{z(J_{0,z}^\alpha\beta\eta f(z))'}{(J_{0,z}^\alpha\beta\eta f(z))} - 1 \right) \right| < 1 \quad (z \in \mathcal{U}),
\]

which completes the proof of Theorem 4.

Taking \(\alpha = -\beta = -\lambda\) in Theorem 4, we have

Corollary 7. Let the function \(f(z)\) defined by (1.1) be in the class \(A\) and satisfy

\[
|a\left(\frac{z(\Omega^\lambda f(z))'}{\Omega^\lambda f(z)} - 1 \right) + (1 - a)\frac{z^2(\Omega^\lambda f(z))''}{\Omega^\lambda f(z)}| < |b|[1 + (1 - a)(1 - |b|)] \quad (z \in \mathcal{U})
\]

for some \(a \leq 1\) and \(|b| \leq 1\). Then \(\Omega^\lambda f(z)\) belongs to the class \(S_1^*(b)\).

Theorem 5. Let the function \(f(z)\) defined by (1.1) be in the class \(A\) and satisfy

\[
|a\left(\frac{z(J_{0,z}^\alpha\beta\eta f(z))'}{(J_{0,z}^\alpha\beta\eta f(z))} - 1 \right) + (1 - a)\frac{z(J_{0,z}^\alpha\beta\eta f(z))''}{(J_{0,z}^\alpha\beta\eta f(z))'}| < |b|^2 \left(1 + \frac{1 - a}{1 + |b|} \right) \quad (z \in \mathcal{U})
\]

for some \(a \leq 1\). Suppose also that \(\alpha, \beta, \eta \in \mathbb{C}\) with \(\text{Re}(\alpha) > 0\) and \(\text{min}\{\text{Re}(\alpha + \eta), \text{Re}(\beta + \eta), \text{Re}(\beta)\} > -2\). Then \(J_{0,z}^\alpha\beta\eta f(z)\) belongs to the class \(S_1^*(b)\).

The proof of Theorem 5 is much akin to that of Theorem 4, and we omit the details involved.

Theorem 6. Let the function \(f(z)\) defined by (1.1) be in the class \(A\) and satisfy

\[
|a\left(\frac{z(J_{0,z}^\alpha\beta\eta f(z))'}{(J_{0,z}^\alpha\beta\eta f(z))} - 1 \right) + \frac{z(J_{0,z}^\alpha\beta\eta f(z))''}{(J_{0,z}^\alpha\beta\eta f(z))'}| < |b|^\sigma \left(1 + \frac{2|b|}{1 + |b|} \right) \quad (z \in \mathcal{U})
\]

for some \(\sigma \geq 0\) and \(\delta \geq 0\). Suppose also that \(\alpha, \beta, \eta \in \mathbb{C}\) with \(\text{Re}(\alpha) > 0\) and \(\text{min}\{\text{Re}(\alpha + \eta), \text{Re}(\beta + \eta), \text{Re}(\beta)\} > -2\). Then \(J_{0,z}^\alpha\beta\eta f(z)\) belongs to the class \(C_1(b)\).

Proof. Define the function \(\omega(z)\) by

\[
\omega(z) = \frac{1}{b}\left\{ (J_{0,z}^\alpha\beta\eta f(z))' - 1 \right\}.
\]
Then it follows that $\omega(z)$ is analytic in \mathcal{U} with $\omega(0) = 0$. Substituting for $J_{0,z}^{\alpha,\beta,\eta}f(z)$ into the left-hand side of (2.20) from (2.21), we get

$$\left|\left(J_{0,z}^{\alpha,\beta,\eta}f(z)\right)' - 1\right|^\sigma \left|1 + \frac{z\left(J_{0,z}^{\alpha,\beta,\eta}f(z)\right)''}{\left(J_{0,z}^{\alpha,\beta,\eta}f(z)\right)'}\right|^\delta = \left|b\omega(z)\right|^\sigma \left|\frac{1 + b\omega(z) + z\omega'(z)}{1 + b\omega(z)}\right|^\delta.$$

Assume that there exist a point $z_0 \in \mathcal{U}$ satisfying (2.13) for the function $\omega(z)$ in (2.21). Then, applying Lemma 1, we obtain

$$|b\omega(z_0)|^\sigma \left|\frac{1 + b(\omega(z_0) + z_0\omega'(z_0))}{1 + b\omega(z_0)}\right|^\delta = |b|^\sigma \left|k + 1 - \frac{k}{1 + b\omega(z_0)}\right|^\delta,$$

which contradicts the condition (2.20). Hence we have $J_{0,z}^{\alpha,\beta,\eta}f(z) \in C_1(b)$.

Theorem 7. Let the function $f(z)$ defined by (1.1) be in the class A and satisfy

(2.22) $\text{Re} \left(\frac{zf''(z)}{f'(z)} - \frac{zg''(z)}{g'(z)}\right) > \frac{|2b - 1| - 1}{2(2b - 1) + 1}$ if $b - \frac{1}{2} < \frac{1}{2}$

or

(2.23) $\text{Re} \left(\frac{zf''(z)}{f'(z)} - \frac{zg''(z)}{g'(z)}\right) < \frac{|2b - 1| - 1}{2(2b - 1) + 1}$ if $b - \frac{1}{2} > \frac{1}{2}$

for some $g(z) \in \mathcal{K}_0(c)$. Then $f(z)$ belongs to the class $C_0(b)$.

Proof. Let us introduce the function $\omega(z)$ by

(2.24) $1 + \frac{1}{b} \left(\frac{f'(z)}{g'(z)} - 1\right) = \frac{1 + \omega(z)}{1 - \omega(z)}$

for some $g(z) \in \mathcal{K}_0(c)$ and $f(z) \in A$. Differentiating both side of (2.24) logarithmically, we obtain

$$zf''(z) - zg''(z) = \frac{(2b - 1)z\omega'(z)}{1 + (2b - 1)\omega(z)} + \frac{z\omega'(z)}{1 - \omega(z)}.$$

Suppose that there exists $z_0 \in \mathcal{U}$ such that (2.13) holds true for the function $\omega(z)$ in (2.24). Then, letting $\omega(z_0) = e^{i\theta}$ and $2b - 1 = |2b - 1|e^{i\phi}$, and using Lemma 1, we have

$$\text{Re} \left(\frac{z_0f''(z_0)}{f'(z_0)} - \frac{z_0g''(z_0)}{g'(z_0)}\right) = \text{Re} \left(\frac{(2b - 1)k\omega(z_0)}{1 + (2b - 1)\omega(z_0)}\right) + \text{Re} \left(\frac{k\omega(z_0)}{1 - \omega(z_0)}\right)$$

$$= \frac{k|2b - 1|(|2b - 1| + \cos(\theta + \phi))}{1 + |2b - 1|^2 + 2|2b - 1|\cos(\theta + \phi)} - \frac{k}{2}.$$
for \(k \geq 1 \) and \(z_0 \in \mathcal{U} \). Hence, let
\[
h(t) = \frac{|2b-1| + t}{1 + |2b-1|^2 + 2|2b-1|t} \quad (-1 \leq t \leq 1).
\]
If \(|b - 1/2| \leq 1/2\), then \(h(t) \) is monotone increasing and
\[
\text{Re} \left(\frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g''(z_0)}{g'(z_0)} \right) \leq \frac{|2b-1|k}{|2b-1|+1} - \frac{k}{2}
\]
\[
\leq \frac{|2b-1| - 1}{2(|2b-1|+1)}.
\]
If, on the other hand, \(|b - 1/2| \geq 1/2\), then \(h(t) \) is monotone decreasing and
\[
\text{Re} \left(\frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g''(z_0)}{g'(z_0)} \right) \geq \frac{|2b-1|k}{|2b-1|+1} - \frac{k}{2}
\]
\[
\geq \frac{|2b-1| - 1}{2(|2b-1|+1)}.
\]
These contradict (2.22) and (2.23), which evidently completes the proof of Theorem 6.

Corollary 8. Let the function \(f(z) \) defined by (1.1) be in the class \(A \) and satisfy
\[
(2.25) \quad \text{Re} \left(\frac{z(J_{0,z}^\alpha,\beta,\eta(z))''}{(J_{0,z}^\alpha,\beta,\eta(z))'} - \frac{z g''(z)}{g'(z)} \right) > \frac{|2b-1| - 1}{2(|2b-1|+1)} \quad \text{if } |b - 1/2| < \frac{1}{2}
\]
or
\[
(2.26) \quad \text{Re} \left(\frac{z(J_{0,z}^\alpha,\beta,\eta(z))''}{(J_{0,z}^\alpha,\beta,\eta(z))'} - \frac{z g''(z)}{g'(z)} \right) < \frac{|2b-1| - 1}{2(|2b-1|+1)} \quad \text{if } |b - 1/2| > \frac{1}{2}
\]
for some \(g(z) \in \mathcal{K}_0(c) \). Suppose also that \(\alpha, \beta, \eta \in \mathbb{C} \) with \(\text{Re}(\alpha) > 0 \) and \(\min\{\text{Re}(\alpha + \eta), \text{Re}(-\beta + \eta), \text{Re}(-\beta)\} > -2 \). Then \(J_{0,z}^\alpha,\beta,\eta(z) \) belongs to the class \(C_0(b) \).

Theorem 8. Let the function \(f(z) \) defined by (1.1) be in the class \(A \) and satisfy
\[
(2.27) \quad \text{Re} \left(\frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) > \frac{-|2b-1| - 3}{2(|2b-1|+1)} \quad \text{if } |b - 1/2| \leq \frac{1}{2}
\]
or
\[
(2.28) \quad \text{Re} \left(\frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < \frac{-|2b-1| - 3}{2(|2b-1|+1)} \quad \text{if } |b - 1/2| > \frac{1}{2}
\]
Then \(f(z) \) belongs to the class \(S_0^* (b) \).

Proof. The proof of Theorem 8 runs parallel to that of Theorem 7 with
\[
1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) = \frac{1+\omega(z)}{1-\omega(z)},
\]
and we omit the details involved.
Corollary 9. Let the function $f(z)$ defined by (1.1) be in the class A and satisfy

\begin{equation}
\Re \left(\frac{z(J_{0,z}^{\alpha,\beta,\eta}(z))'' - z(J_{0,z}^{\alpha,\beta,\eta}(z))'}{J_{0,z}^{\alpha,\beta,\eta}(z)} \right) > \frac{-|2b-1|-3}{2(|2b-1|+1)} \quad \text{if} \quad |b - \frac{1}{2}| \leq \frac{1}{2}
\end{equation}

or

\begin{equation}
\Re \left(\frac{z(J_{0,z}^{\alpha,\beta,\eta}(z))'' - z(J_{0,z}^{\alpha,\beta,\eta}(z))'}{J_{0,z}^{\alpha,\beta,\eta}(z)} \right) < \frac{-|2b-1|-3}{2(|2b-1|+1)} \quad \text{if} \quad |b - \frac{1}{2}| > \frac{1}{2}.
\end{equation}

Suppose also that $\alpha, \beta, \eta \in \mathbb{C}$ with $\Re(\alpha) > 0$ and $\min\{\Re(\alpha+\eta), \Re(-\beta+\eta), \Re(-\beta)\} > -2$. Then $J_{0,z}^{\alpha,\beta,\eta}(z)$ belongs to the class $S_{0}^{*}(b)$.

REFERENCES