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Abstract

The charge density wave (CDW) of the quasi- one-dimensional mesoscopic loop
threaded by the Aharonov-Bohm magnetic flux is studied. It is found that the ener-
getically favorable CDW-state is the state where two kinds of CDWs with different
wave lengthes coexist in the loop. Two wave lengthes are complementarily shifted
by the flux to each other. In accordance with this, the Aharonov-Bohm flux escapes
from the flux-quantization.

Text

The quasi-one-dimensional conductor undergoes, at the critical temperature To(>
0), the charge dendity wave (CDW) transition [1]-[3]. Below T¢, the conductor is
in the superconducting phase resulting from the CDW electronic state [4][5]. In this
paper we study the CDW state of the loop threaded by the Aharonov-Bohm magnetic
flux (A-B flux), and also examine the possibility of the A-B flux-quantization. The
present investigations are carried out under the condition that the one-dimensional
lattice contains no serious impurity. Especially inelastic impurity scatterers are as-
sumed to be absent. That is, our discussion will be restricted to the regime of the
mesoscopic region where the loop circumference L is smaller than the phase coherence
length of the electron lg, L < Iy [6] [7]. Accordingly, the free electron model will be
adopted as an appropriate basis of calculations.

Let us consider an infinitely long and closely wound solenoid running along z axis.
If the winding of the solenoid can be viewed as a current sheet, the magnetic field
developed by an external current source is B = Be, in the solenoid and vanishes
on the outside. Thus the A-B vector potential is A(r,0,t) = &(t)/27r - ey for
§ < 1 < oo. Here eg is an unit vector in the direction of the azimuthal angle # and ¢
is a radius of the solenoid. The magnetic flux @ is given by & = § A dl where § - - -dl
is a line integral bounded by the loop. The Hamiltonian of a free electron orbiting
around the A-B flux is

1. . 2 '
Hye = o—[~ihV — eA(r,1))". ()



The wave function ¥(r,t) satisfying the Schrodinger equation ihd¥ /3t = H; ¥ is
factorized as (here the time-dynamical vector potential is adopted for convenience)

¥(r,1) = explie | A(,0)dr'/Al(r, ) (2)

for ¢ < r < oo. In obtaining (2), Vx A = 0 for £ < r < oo has been used. The
factorized phase factor is called the Dirac phase, and the pseudo-wave function (r,1)
satisfies the pseudo- Schrbdinger equation

9 % o
ih(r, 1) = [_i%ﬁvz _ e./ro E(r,t) dr'i(r,t), S ®

where E is the electric field, E = —dA/dt. On combining (3) with Faraday’s law
§ Edr = —3%(1)/0t, we find the multi-valued circular condition:

¥(r,0 + 27, 1) = exp[—2mia(t)y(r, 6, 1), (4).

where a(t) is a scaled magnetic flux, a(t) = e®(t)/h [8]. As seen from (4), a(t) can
be restricted to —1/2 < a(t) < 1/2 without losing generality. Furthermore a(t) > 0
can be imposed on a(t), because the sign of a(t) simply identifies a positive direction
of the magnetic flux . Thus 0 < a(t) < 1/2 will be assumed in what follows. Our
quasi-one-dimensional loop winds round the solenoid. Thereby a radius of the loop is
€. Applying (3) and (4) to a free electron confined in this loop gives, for a time-static
@, an energy spectrum €no = h2k2 /2m with kpoe = (n— a) /€. Here n is an
integer, n = 0,41,42,43,.....

The Peierls structual transition in a quasi-one-dimensional conductor [9] is linked
to the singular behavior in the time-static 1-D susceptibility [10][11)

xte) = 3 LB =S kea), (%)

where f(FEy) is the Fermi distribution function, f(E) = [exp B(E — p) + 1]71. To
calculate x9(q), we will neglect, for the sake of simplicity, the effects of the time-
static lattice potential, and so employ the energy spectrum €, o as Ex. On replacing
the summation Y, by an integral (L/27r)fffp dk (k= n/€), we have, at T = 0,

2Wkr — )+ q | 2(kp+3)+q
0 Im 1 £ ! £ ' : 6
(@) =570 - I(krﬁ_)_ |+ nl—-—z(m%)_qn (6)

In the above expression, I = 2 is a circumference of the loop, and kr = np/€ (nF is

an integer) is the Fermi wave vector defined by the Fermi energy €5 = h%k%/2m. Our,

x{(q), which is symmetric with respect to a reflection @ & —a, has two singularities
respectively lying at ¢ = Q4o = 2(nr + a)/€ and at ¢ = Q_o = 2(nF — )/€. Thus
the CDW phase in question is somewhat more complicated than the one for o = 0.
The background of the doubled singularities is as follows. For a finite «, the Fermi
energy ep = hlk%/2m given for a = 0 splits into a pair of ‘Fermi energies’, that
is, N2(Q_a/ 2)?/ 2m and h}(—Q4a/2)?/ 2m (see Fig.1). As a result, our system has

153



154

the doubled CDW gaps, |A4,| and |A_,4|, which are made at the respective ‘Fermi
energies’. The wave lengthes of these CDW are

2r L
Qia 2(nrta)

No matter which mode may take place, the corresponding ratio L/A o or L/A_,
must be an integer as far as it occupies the loop by itself. This reflects the common
assumption that the wave function is single-valued. In the absence of an A-B flux,
this condition is automatically satisfied as L/Ag = 2np. In contrast to this, the
condilion can provide the flux quantization when the A-B flux is present. From (7),
the quantized values @ = 0 and o = 1/2 are readily obtained. !

There is an alternative case where the CDW system satisfies the single-valued
condition without any flux quantization. Let us consider the loop in which two
modes of the CDW coexist. If one half of L is occupied by A;,-CDW and the other
half by A_o-CDW, a number of the waves in L is

(7)

Ao =

L L
/\L+,\L.=(np+a)+(np'—a)=2nﬁ'y (8)
+o —a

which, for a finite a, remains as it was for @ = 0. Obviously, such a coexistence
state escapes from the flux quantization. Which materializes in the loop 7 The
answer is, as will be observed, that the coexistence state (8) is promising. As to
the flux-quantized state in either case @ = 0 or @ = 1/2, it necessarily accompanies
the flux-screening flux ®*¢ = {—a or (1/2 — @)} x (h/e) which is produced by the
induced persistent current J;,q on the loop. The flux-screening energy E¢ s, which
is an expence paid for the flux-quantization, is a function of a self-inductance of the
loop L4 = dmpeéIn(&/b) (jio is a free-space permeability and b is a radius of the
wire ). It must be notable that the loop considered was assumed to be a mesoscopic
one preserving the phase coherence (4). Hence £ in L4 is very small, and so gives
a large Ky ,. whose expression is Ey,. = {a® or (1/2 — a)?} x (h/€)?/2L4. Such a
large Ey ,. might act as an insuperable barrier to the flux-quantization. On the other
hand, the formation energy of the coexistence state § E,, is much smaller than Ey s
In conclusion, our loop seems to prefer the coexistence state (8) to the flux-quantized
states. The detailed discussions will be given at the end of the text.

Henceforth an a is not necessarily restricted to the quantized values. The much
simplified theory for the CDW is the mean-field treatment described by the Hamil-
tonian [4][5]

Hipw = Z ‘k’cltc'ck’ + Z A;OCL—Q:{:nck'
. lk'|SQ:|:a OS"ISQin
+ > Aiacl'wiack’v | (9)

~Q1a<k'<0

where r,t, and cyr are respectively creation and annihilation operators of electrons, and
kn,o ate abbreviated by k/. The CDW gaps Ay, will be determined by the so-called

'The 1-D susceptibility (6) is calculated in terms of the oversimplified electronic states. Not every (pair
of) singularity(ies) in (6), as is well known, ensures the actual CDW transition. Here appearance of the
CDW states is assumed.



gap equation(see (16)). When an a is finite, the numbers of the occupied states of
HZES.,, which respectively lie in [-np, np+ 2a] and in [-(nF — 2a), nF}, differ from
the actual one lying in [—nr, nr] (see Fig.1). To be more precise, the state n = np +
2a belonging to the empty domain n > np is treated as a fractionally occupied state
in the HXfy, case, while the fractional part of (two) electrons at n = —np have been

illegally removed in the {53, case. The concept ‘fractional occupation’is introduced

as a convenient mathematical aid for calculating the diagonized fields. Things are
readily understood from the symmetry property, €nt120,0 = €-na OF equivalently
€_(n— 2(,),, = €n,o- For this reason, the special notice will be taken when the energy
of HERw or H0w i is calculated (see (12) and (14)).

With the aids of k = k' — Qia/Z and k = k' + Q4./2 respectively introduced for
0<k < Q4o and for -Qia<k<0, H(,Dw can be converted into

chw = Z (HQ* /2’ k ~Q4a /2)
'kISQ:kalz
« (ciﬂ.Qh/g AWSN ) (CE+Q*,/2) . (10)
Do G Quasz/ \Ci-Quaf2

Diagonalizing the above 2 x 2 matrix, we have the eigenvalues[S]

Ero(k) = {k? +(Bayy g {(——kqﬁ,) + AP}, (11)

which satisfy an 1nequa1|ty Eic'(k) < E}*(k). The energy for HCDW is, at T = 0,
given by

Espw=21 3. EX°(k)-I. EX°(0) ], (12)

'HSQ-}G/Z .

where the weight function I, (0 < I, < 1), which will be determined later, represents

the fractional occupation. The summation spans over the whole states |k| < Q44/2,

because after the transition all states considered in HZ}f,;, condense under the opened

gap 2[A4q4l. EX?(0) is the energy of the quasi-particle with n = np + 2. The

reason why I, E}® is subtracted is, as was mentioned below (9), that the empty state

n = nF + 2a is superfluously counted as the fractionally occupied state. Replacing

Zl’=l<Q+ /2 by (L/27) fQQ“‘/;z dk, we obtain, to lowest order in the small parameters
|84al/er and o/nr,

|A+a|2 _ |A+or| dep

dep 2¢r tn (| |)]
+ 2Q2a-Iy)er+21, [ |Asal - -7;617‘]. : - (13)

2
Egi‘;w = 2np'[§€p—

Analogous consideration leading to (12) now gives the eneygy for Hof -
- —ari - 2a .
Echw=2[ )  EZ*(k)+1a E+a(—“£—) |- (14)
- kI<Q_a/2
The result calculated is

|A_al® Aol  der
dep 2ep ](lA—a')]

da 12
— 20— L) er+ 2L [{(——er)? +|Acal?} - Zer].  (15)
nrg ng

- 2
Ecpw = 2np [ ger -
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Here the reasonable choice of I, is reached. It is easily understood that the term
2(2a - I;,,)cp in (13) and (15) should vanish. Consequently we obtain I, = 2a.

The pairing energies A4, are determined by the well-known gap equatmn [4][5]
which is given by

1 =22— § . = (16)
Ny . nto _ o
L lHSQ:!:a/z E+ (k) ’E— (k)

at T = 0, where Ny, is a number of the lattice sites in the loop and A is the non-
dimensional coupling constant between electrons and phonons. Under the approxi-
mated calculations which give (13) and (15), |A4q| = derexp[— (1 £ a/nF) [/ Av])
is obtained. Here v = 4nr/NL, and a/nF € A(< 1) has been used. From (13) and
(15) we have

2a
E&pw — Edpw = 2Ia(|Ao| - —fF)

+ 2. a2 'A‘" In (l‘zﬂ) Lo (17)

in leading order. In a similar way, EgRw — EZpw is readily obtained.

Let us define the formation energy of the coexistence state by 6 E., = [ E&pw +
FCDW Jla=0/2 — EZpw where [------- ]1,=0 means that I, = 0 should be imposed
on ECDW The reason of setting I, = 0 is that 2 X 2a electrons have actually
transfered from the A_, -CDW region to the A4,-CDW region in the coexistence
state. In other words, two Hamiltonians HCDW and Hgpy jointly but segregately
govern the physics of the loop. In such a case, the compensations —I, E¥*(0) and
+1oEL°(—2c/£) should be respectively removed from (12) and (14). Usmg (1'3) and
(15) w1th I = 0, we obtain

2 2
6B = - np(AI/)

|AU| 4([7‘

(In( 55 - 51 (18)

When obtaining (18), we had no need to re-examine the terms that had already been
discarded from (13) and (15) as higher ordered corrections. With useof A = 1.0x 10!
and v = 1, we have |Ag| / er = 1.8x 1074, and furthermore obtain |Ag| = 2.0x 10° I
for mesoscopic values £ = 1.0 x 107° meter and np = 5 x 10%. An estimated value
of the flux-screening energy Ey,. is Ef,. = 8.5a% x 102K for £/b = 1.0 x 102,
giving Ef,c > 6E., and |EX%,, — E2pu |- As a consequence we are led to the
conclusion that the-coexistence state (8) is energetically much more promising than
the flux-quantized state with either @ = 0 or @ = '1/2.

In our loop, inelastic scattering of the electrons is not allowed, and furthermore
the mesoscopic condition I <l is initially assumed. Accordingly, application of an
accelerating field E will yield a change in ky, o, dkpo /dt = —eE [ h, and produce
the CDW-current [12]. If the field E is turned off (the flux a remains fixed ), the
produced CDW-current. will be expected to flow persistently. All properties of the
CDW.-current seems to be periodic in the flux a with period « /2. This period a /2
is a direct result from two symmetry properties; one is discussed below (4) and the
other is the symmetry property of €, , mentioned below (9) which survives after a
reflection @ — —a. Following the epoch-making paper [6], the persistent currents in
the mesoscopic loops have been widely studied theoretically [7]{13]-[17]. The evidence



for the persistent current also has been observed experimentally, which is periodic
in @ with period a/2 [18]. It seems to be a further question whether or not the
CDW-current proposed above is a possible explanation of the observed current.
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Fig.1 The A-B flux gives rise to a splitting of the Fermi energy. The newly obtained
‘Fermi energies’ ci" = 1?2 (FQ+a/ 2)?/ 2m are respectively given at n = :an Elther
of the |Atq|, the CDW gaps, is opened at the corresponding ‘Fermi energy



