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1. Introduction. Given a domain $D$ in $d$-dimensional Euclidean space $\mathrm{R}^{d}(d\geq 2)$

and given an exponent 1 $<p<\infty$ , the Royden $p$ -algebra $M_{p}(D)$ of $D$ is defined by
$M_{p}(D):=L^{1,p}(D)\cap L^{\infty}(D)\cap C(D)$ , which is a commutative Banach algebra, i.e. the
so-called normed ring, under pointwise addition and multiplication with $||u;M_{p}(D)||$ $:=$

$||u;L^{\infty}(D)||+||\nabla u;Lp(D)||$ as norm, where $L^{1,p}(D)$ is the Dirichlet space, i.e. the space
of locally integrable real valued functions $u$ on $D$ whose distributional gradients $\nabla u$ be-
long to $L^{p}(D)$ . The maximal ideal space $D_{p}^{*}$ of $M_{p}(D)$ is referred to as the Royden p-
compactification of $D$ , which is also characterized as the compact Hausdorff space contain-
ing $D$ as its open and dense subspace such that every function in $M_{p}(D)$ is continuously
extended to $D_{p}^{*}$ and $M_{p}(D)$ is uniformly dense in $C(D_{p}^{*})$ .

Suppose that $D$ and $D’$ are domains in $\mathrm{R}^{d}$ (and more generally that $D$ and $D’$ are
Riemannian manifolds of class $C^{\infty}$ which are orientable and connected). In 1982 , H.
Tanaka and the present author [7] showed that $D_{d}^{*}$ and $(D’)_{d}^{*}$ are homeomorphic if and
only if there exists an almost quasiconformal mappimg of $D$ onto $D’$ . Here we say that
a homeomorphism $f$ of $D$ onto $D’$ is an almost quasiconformal mapping of $D$ onto $D’$ if
there exists a compact set $E\subset D$ such that $f|D\backslash E$ is a quasiconformal mapping of $D\backslash E$

onto $D’\backslash f(E)$ . Since then it has been an open question what can be said about the above
result if the exponent $d$ is replaced by $1<p<d$ . Recently we obtained the following result
[6] answering to the above question: when $1<p<d,$ $D_{p}^{*}$ and $(D’)_{p}^{*}$ are homeomorphic
if and only if there exists an almost $\mathrm{q}\mathrm{u}\dot{\mathrm{a}}$siisometric mapping of $D$ onto $D’$ . Here we say
that a homeomorphism $f$ of $D$ onto $D’$ is almost quasiisometric mapping if there exists a
compact set $E\subset D$ such that $f|D\backslash E$ is a quasiisometric (i.e. $\mathrm{b}\mathrm{i}$-Lipschtz with respect to
geodesic distances) mapping of $D$ { $E$ onto $D’\backslash f(E)$ . The proof of this last result seems
to depend essentially on the fact that when $1\leq p<d$ , a homeomorphism which, together
with its inverse, does not increase the $\mathrm{p}$-capacity of spherical rings having the p-capacity
less than any given fixed positive number by more than a fixed factor is quasiisometric (i.e.
locally bi-Lipschitzian).

The purpose of this paper is to give a proof of the above mentioned last fact. This is
a slight but nontrivial extension of a part of a beautiful theorem of Gehring [3] appeared
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in 1971 (cf. also Reimann [8]). Our proof is an amelioration of that of Gehring in the
above paper and largely mimics it. The reason we do not consider exponents $d<p\leq\infty$

is the following two: first, the formal extention of the Gehring theorem to our present
setting is no longer true for $d<p\leq\infty$ and thus we must exclude exponents $d<p\leq\infty$ ;
second, even if $D_{p}^{*}$ and $(D’)_{\mathrm{p}}^{*}\mathrm{f}_{0}\mathrm{r}d<p\leq\infty$ are homeomorphic, $D$ and $D’$ need not even
be homeomorphic and therefore, from this point of view, there is no need to consider the
case $d<p\leq\infty$ . As for the case $p=d$, we only have to remark that quasiisometric
mappings are quasiconformal mappings but there are quasiconformal mappings which are
not quasiisometric mappings.

2. Terminology and the main result. We denote by $\mathrm{R}^{d}(d\geq 2)$ the d-dimensional
Euclidean space and by $\overline{\mathrm{R}}^{d}$ its one point compactification obtained by adding the point
$\infty$ at infinity. Sometimes points in $\mathrm{R}^{d}$ are denoted- by the uppercase letter $P$ or by the
lowercase letters $x$ and $y$ . In the latter case the $i^{\mathrm{t}\mathrm{h}}$ component of $x$ will be denoted by $x_{i}$ .
Points in $\mathrm{R}^{d}$ are also viewed as vectors and the norms of $P$ and $x$ are denoted by $|P|$ and
$|x|$ .

For each subset $E\subset \mathrm{R}^{d}$ we denote by $\partial E,$
$\overline{E}$ , and $E^{c}$ respectively the boundary, closure,

and complement of $E$ in $\overline{\mathrm{R}}^{d}$ . For each $1\leq k\leq d$ we denote by $m_{k}$ the k-dimensional
Hausdorff measure in $\mathrm{R}^{d}$ so normalized that $m_{d}$ is the Lebesgue volume measure in $\mathrm{R}^{d}$ and
$m_{d-1}(S)$ is the surface area measure of a smooth surface $S$ in $\mathrm{R}^{d}$ . We use the notation

$\omega_{d}=m_{d-1}(Sd-1)$ , $\tau_{d}=m_{d}(Bd)$ ,

where $B^{d}$ is the unit ball $\{x : |x|<1\}$ in $\mathrm{R}^{d}$ and $S^{d-1}$ the unit sphere $\partial B^{d}$ so that $\omega_{d}=d\tau_{d}$ .
We say that a region $R\subset \mathrm{R}^{d}$ is a $7\dot{\mathrm{v}}ng$ if $R^{c}$ consists of exactly two components $C_{0}$ and

$C_{1}$ . To be definite we always assume that $\infty\in C_{1}$ so that $C_{0}$ is a compact set in $\mathrm{R}^{d}$ . The
$p$-capacity $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R$ of $R(1\leq p\leq\infty)$ is given by

$\mathrm{c}\mathrm{a}\mathrm{p}_{p}R:=\inf_{)u\in W(R}\int_{R}|\nabla u(X)|^{p}dmd(X)$ ,

where $\nabla u$ is the (usual or distributional) gradient vector $(\partial u/\partial x_{1}, \cdots, \partial u/\partial x_{d})$ of $u$ and
$W(R):=\{u\in C(\overline{\mathrm{R}}^{d})\cap ACL(R) : u|C_{i}=i(i=0,1)\}$ , where $ACL(R)$ is the class of real
valued functions $u$ on $R$ such that $u$ is absolutely continuous on each component of the
intersection of $R$ with almost every straight line perpendicular to each coordinate plane.
Here a family $F$ of straight lines $l$ perpendicular to a coordinate plane $\pi_{i}=\{x\in \mathrm{R}^{d}$ : $x_{i}=$

$0\}$ for some $i–1,$ $\cdots,$
$d$ is measured by the $m_{d-1}$ -measure of the set $\{\pi_{i}\cap l : l\in F\}$ . As

an example of $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\dot{\mathrm{a}}\mathrm{n}\mathrm{t}$ rings we have a $TeiChm\ddot{u}lle\gamma\cdot 7\dot{\eta}ngR\tau$ determined by

$(R_{T})^{C}=\{te_{1} : -1\leq t\leq 0\}\cup\{te_{1} : 1\leq t\leq\infty\}$

with $e_{1}=(1,0, \cdots, 0).$
. We will us.e the conformal $d$-capacity $t_{d}:=\mathrm{c}\mathrm{a}.\mathrm{p}_{d}R_{T}$ . A ring R. is

said to be a spherical ring if

$R=\{x : a<|x-P|<b\}$ ,

118



where $0<a<b<\infty$ and $P\in \mathrm{R}^{d}$ . In the case of the above spherical ring $R$ it can be
easily seen (cf. e.g. p.35 in Heinonen et al. [4] for a proof for the case $1<p<\infty$ ; the
result for the case of $p=1$ is indicated in [3]; the cases for $p=1$ and $p=\infty$ can be shown
directly and more easily by the similar way as those for $1<p<\infty$ (see also the appendix
at the end of this paper)) that ..

(3) $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R=\{$

$\omega_{d}a^{d-1}$ $(p=1)$ ,

$\omega_{d}(\frac{b^{q}-a^{q}}{q})^{1-p}$ $(1<p<\infty, p\neq d)$ ,

$\omega_{d}(\log\frac{b}{a})^{1-d}$ $(p=d)$ ,

$\frac{1}{b-a}$ $(p=\infty)$ ,

where we have set $q=(p-d)/(p-1)$ . In passing we remark that when $d<p\leq\infty$ and $D$

is a bounded open set in $\mathrm{R}^{d}$ , as a result of (3), we have $\inf_{R^{\mathrm{C}\mathrm{a}\mathrm{p}_{p}R}}>0$ , where the infimum
is taken with respect to all spherical rings $R\subset D$ .

Hereafter we always assume that $D$ and $D’$ are nonempty open sets in $\mathrm{R}^{d}$ and that $f$ is
a homeomorphism of $D$ onto $D’$ ; then $f$ maps each ring $R$ in $D$ onto a ring $f(R)\subset D’$ .
We say that

$f\in Q_{p}(K, \delta)$

for $0<K<\infty$ and $0<\delta\leq\infty$ , if the following condition is satisfied:

(4) $\mathrm{c}\mathrm{a}_{\mathrm{P}_{p}f}(R)\leq K_{\mathrm{C}\mathrm{a}_{\mathrm{P}_{p}}}R$

for every spherical ring $R$ with $\overline{R}\subset D$ and

(5). $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R<\delta$.

Here we do not exclude the $\delta=\infty$ case in which the condition (5) is redundant. Hence
of course our main concern is about the class $Q_{p}(K, \delta)$ for $0<\delta<\infty$ . To be precise we.
sometimes write $Q_{p}(K, \delta;D, D’)$ to indicate that mappings are from $D$ onto $D’$ .

N.ext we consider a metric pro.perty for $\mathrm{h}_{\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}\mathrm{m}\mathrm{o}}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}_{\mathrm{S}}\mathrm{m}\mathrm{s}.f$of $D$ onto $D’$ . For each $P\in D$

we set
$\max|f(x)-f(P)|$

$L(P, f):= \lim_{r\downarrow}\sup_{0}\frac{|x-P|=r}{r}$ .

We say that $f$ is $K$-Lipschitzian on $D$ ,

$f\in Lip(K)$
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or more precisely $f\in Lip(K;D, D’)$ in notation, if $L(P, f)\leq K(0<K<\infty)$ for every
$P\in D$ . The Riemannian distance $\rho_{D}(x, y)$ between $x$ and $y$ in $D$ is given by

$\rho_{D}(x, y)=\inf_{\gamma}m_{1}(\gamma)$ ,

where $\gamma$ runs over all connected polygonal lines in $D$ connecting $x$ and $y$ in $D$ ; if there is

no $\gamma$ connecting $x$ and $y$ or equivalently if $x$ and $y$ are in different components of $D$ , then
we understand that $\rho_{D}(x, y)=\infty$ . A homeomorphism $f$ of $D$ onto $D’$ is referred to as a
$K$-quasiisomet$r\dot{\mathrm{z}}c$ mapping of $D$ onto $D’$ if there exists a $K\in[1, \infty)$ such that

$K^{-1}\rho_{D}(x, y)\leq\rho_{D}’(f(_{X}), f(y))\leq K\rho_{D}(_{X}, y)$

for every pair of points $x$ and $y$ in $D$ . It is readily seen that a homeomorphism $f$ of $D$ onto $D’$

is a $K$-quasiisometric mapping if and only if $f\in Lip(K;D, D’)$ and $f^{-1}\in Lip(K;D/, D)$ .
It is easy to see that if a homeomorphism $f$ of $D$ onto $D’$ satisfies $f,$ $f^{-1}\in Lip(K)$ , then

$f,$ $f^{-1}\in Q_{p}(K^{p+d}, \delta)$ for every $1\leq p<\infty$ and $0<\delta\leq\infty$ . In view of the reason mentioned

in. the introduction we are interested in studying the converse of the above fact only for
$1\leq p<d$ . We can state the following rsult.

THE MAIN THEOREM. $Suppo\mathit{8}ef$ is a homeomorphism of a nonempty open set $D$ onto $D’$

in $d$ -dimensional Euclidean space $\mathrm{R}^{d}$ with $d\geq 2,1\leq p<d,$ $0<K<\infty$ , and $0<\delta\leq\infty$ .

If $f,$ $f^{-1}\in Q_{p}(K, \delta)$ , then $f,$ $f^{-1}\in Lip(K_{1})$ , where $0<K_{1}<\infty$ depends only on $d,$ $p,$ $K$ ,

and not dependent on $\delta$ ; explicitly

(6) $K_{1}=K^{\frac{1}{d-p}} \exp((2^{d+1}\omega^{1\frac{1}{d}}d^{+}K\frac{2(d-1)}{d-p}t_{d)}^{-}\frac{1}{d}\frac{d}{d-1}\mathrm{I}\cdot$

Gehring [3] obtained the result that if $f,$ $f^{-1}\in Q_{p}(K, \infty)$ for $p\in[1, d)\cup(d, \infty)$ , then
$f,.f^{-1}\in Lip(K’)$ where $0<K’<\infty$ depends only on $d,$ $p$ , and $K$ . Our result is a
generalization of the above Gehring theorem for $1\leq p<d$ since $Q_{p}(K, \delta)\supset Q_{p}(K, \infty)$

$(0<\delta\leq\infty)$ . Contrary to the above Gehring theorem, our main theorem above cannot be
true in general for $d<p\leq\infty$ . In fact, if $D$ is bounded, then $\delta:=\inf_{R}\mathrm{c}\mathrm{a}\mathrm{p}_{p}R>0$ , where
the infimum is taken with respect to all spherical rings $R$ in $D$ (cf. the remark right after
(3) $)$ . Thus taking any homeomorphism $f$ with $f,$ $f^{-1}\not\in Lip(K_{1})$ for every $0<K_{1}<\infty$ , we
have $f,$ $f^{-1}\in Q_{p}(K, \delta)$ for every $0<K<\infty$ , and the invalidity of the above main theorem
follows. Nevertheless our. proof is.entirely based upon the idea of the Gehring proof in
the above paper. The proof will be given in \S 23 after a series of preparatory discussins
in sections 7, 11, 14, and 21: in \S 7 several estimates for the $p$-capacity are given; in \S 11
volume distortions under mappings in $Q_{p}(K, \delta)$ are considered; in \S 14 area distiortions
under mappings in $Q_{p}(K, \delta)$ are studied; in \S 21 mappings together with their inverses in
$Q_{p}(K, \delta)$ are shown to be quasiconformal; in \S 24 there is an appendix in which proofs for
the first and the last identity in (3) are given.
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In passing we state a remark. Let us say that

$f\in\tilde{Q}_{p}(K, \delta)$

for $0<K<\infty$ and $0<\delta<\infty$ , if (4) holds for every spherical ring $R$ with $\overline{R}\subset D$ and,
instead of (5), $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R\geq\delta$. Then we can show by using the well known inequality mentioned
below that $\tilde{Q}_{p}(K, \delta)=Q_{p}(K, \infty)(1<p<\infty)$ for every $0<\delta<\infty$ : if $R_{i}(1\leq i\leq n)$ are
disjoint rings each of which separates the boundary components of $R$ , then

$(_{\mathrm{C}\mathrm{a}_{\mathrm{P}_{p}}}R)^{\frac{1}{1-p}} \geq\sum_{i=1}^{n}(\mathrm{c}\mathrm{a}\mathrm{P}_{p}Ri)^{\frac{1}{1-p}}$,

where the equality holds if $\overline{R}=\bigcup_{i=1}^{n}\overline{R_{i}}$ and $h$ are spherical rings $(1 \leq i\leq n)$ . Hence the
original Gehring theorem for $p\in(1, \infty)$ and $p\neq d$ may be restated that if, for $p\in(1, \infty)$

and $p\neq d,$ $f,$ $f^{-1}\in\tilde{Q}_{p}(K, \delta),$ $0<K<\infty$ and $0<\delta<\infty$ , then $f,$ $f^{-1}\in Lip(K/)$ , where
$0<K’<\infty$ depends only upon $d,$ $p$ , and $K$ and not dependent on $\delta$ . On the contrary our
main theorem above seems not to be able to be reduced to the Gehring theorem although
we closely follow the original proof of Gehring $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{y}\mathrm{p}_{\mathrm{i}\mathrm{n}\mathrm{g}}$ it here and there to prove our
main theorem. In this context we must stress that the class $\tilde{Q}_{1}(K, \delta)$ is a difficult class
to treat since we do not know any $p=1$ counterpart to the above displayed capacity
inequality. Hence there remain an open question to resolve whether $f,$ $f^{-1}\in\tilde{Q}_{1}(K, \delta)$ ,
$0<K<\infty$ and $0<\delta<\infty$ , implies the existence of $0<K’<\infty$ dependent only upon
$d,p$, and $K$ and not dependent on $\delta$ such that $f,$ $f^{-1}\in Lip(K/)$ . Here we add one more
comment on $Q_{d}(K, \delta),$ $0<K<\infty$ and $0<\delta\leq\infty$ , although it is a subsidiary object \’in

this paper. We can show that if $f\in Q_{d}(K, \delta)$ , then $f\in Q_{d}(K’,)\infty$ (and hence, as is well
known, $f^{-1}\in Q_{d}(K’, \infty)),$ $0<K’<\infty$ , i.e. $f$ is a quasiconformal mapping. However we
can only $\mathrm{s}\mathrm{h}\mathrm{o}\dot{\mathrm{w}}$ that $K’$ depends not only on d.and $K$ but a.lso on $\delta$ . Thus to determine
whether the dependence on $\delta$ is essential or not is another open question left.

7. Estimates for the -capacity. We state in this section three different type estimates
for the $p$-capacity of rings, where the exponent $p$ is supposed to satisfy $1\leq p\leq d$ in this
section. To begin with we give some extremal length type $\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}.\mathrm{m}$‘ates. For a ring $R$ with
complementary components $C_{0}$ and $C_{1}$ we consider

$V(R)=m_{d}(R)$ , $A(R)= \inf_{\Sigma}m_{d-1}(\Sigma)$ , $L(R)=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(c0, C_{1})$ ,

where the infimum is taken with respect to every polyhedral surfaces $\Sigma$ in $R$ separating $C_{0}$

and $C_{1}$ . If $C_{0}$ and $C_{1}$ are nondegenerate,then the following two sided estimates of $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R$

hold (see Lemma 1 in Gehring [3]):

(8) $\frac{A(R)^{p}}{V(R)^{p-1}}\leq \mathrm{c}\mathrm{a}\mathrm{p}_{p}R\leq\frac{V(R)}{L(R)^{p}}$ .
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Next let $R$ be an arbitrary ring with complementary components $C_{0}$ and $C_{1}$ . If $R^{*}$ is

a spherical ring with complementary components $C_{0}^{*}$ and $C_{1}^{*}$ such that $m_{d}(C_{0}^{*})=m_{d}(C_{0})$

and $m_{d}(c_{0}*\cup R^{*})=m_{d}(C0\cup R)$ , then

(9) $\mathrm{C}\mathrm{a}\mathrm{p}_{p}R\geq \mathrm{C}\mathrm{a}\mathrm{P}_{p}^{R^{*}}$ .

For a proof of this fact see Gehring [2] (see also Lemma 2 in Gehring [3]).

Finally we recall the extremal length definition of the conformal capacity cap$dR$ of rings
$R$ . For a ring $R$ and a function $\varphi$ which is nonnegative and Borel measurable in $R$ we put

$V( \varphi, R)=\int_{R}\varphi^{d}dm_{d}$ , $A( \varphi, R)=\inf_{\Sigma}\int\Sigma m_{d}\varphi d-1d-1$ ,

where the infimum is taken with respect to every polyhedral surface $\Sigma$ in $R$ separating

the complementary components $C_{0}$ and $C_{1}$ . We denote by $\Phi(R)$ the family of nonnegative

Borel functions $\varphi$ on $R$ with $V(\varphi, R)$ and $A(\varphi, R)$ not simultaneously $0$ or $\infty$ . It is known

(Gehring [1] and Ziemer [10]) that

$\mathrm{c}\mathrm{a}\mathrm{p}_{d}R=\in\sup_{\varphi\Phi(R)}\frac{A(\varphi,R)^{d}}{V(\varphi,R)^{d}-1}$ .

We wish to replace $\Phi(R)$ in the above identity by its subfamily $\Psi(R)$ of nonnegative
continuou functions $\psi$ on $R$ with $V(\psi, R)<\infty$ and $A(\psi, R)>0$ . To do this we need to

requir for $R$ to be approximable from outside in the sense that there is a sequence of rings
$h$ containing $\overline{R}$ such that $\overline{R}$ separates the complementary components of each $h$ and

cap$dR= \lim_{iarrow\infty}$ cap$dR_{i}$ .

Under the condition that $R$ is approximable from outside we have the following extremal
length expression of the conformal capacity $\mathrm{c}\mathrm{a}\mathrm{p}_{d}R$ of $R$ (cf. Lemma 5 in Gehring [3]):

(10) cap$dR= \sup_{)\psi\in\Psi(R}\frac{A(\psi,R)^{d}}{V(\psi,R)^{d-1}}$ .

11. Volume distortions. We next study analytic properties of mappings in $Q_{p}(K, \delta)$ .
First we consider how volumes of sets are distorted under the mappings in $Q_{p}(K, \delta)$ . The
exponent $p$ is supposed to satisfy $1\leq p<d$ in this section. The study of volume distortions
under $f$ is based upon the following quantity associated with $f$ , so to speak , a kind of
Jacobian of $f$ :
.

$J(P, f):= \lim_{r\downarrow}\sup_{0}\frac{m_{d}(f(B(P,r)))}{m_{d}(B(P,r))}$

for any $P\in D$ and for any homeomorphism $f$ of $D$ onto $D’$ , where $B(P, r)$ is the open ball
of radius $0<r\leq\infty$ centered at $P:B(P, r):=\{x:|x-P|<r\}$ . First we maintain that

(12) $J(P, f)\leq K^{\frac{d}{d-p}}$
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for every $P\in D$ if $f\in Q_{p}(K, \delta)$ for any $0<\delta\leq\infty$ . The following proof is a minor modi-
fication of that for Lemma 6 in Gehring [3] in which the above assertion for $\delta=\infty$ is stated.

PROOF OF (12): Let $b=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(P, D^{C})/2$ and take an $a$ arbitrarily in $(0, b)$ . Consider
spherical rings $R=\{x : a<|x-P|<b\}$ and $R^{*}=\{x : a^{*}<|x|<b^{*}\}$ with complementary
components $C_{0},$ $C_{1}$ and $C_{0}^{*},$ $C_{1}^{*}$ , respectively, where $a^{*}$ and $b^{*}$ are chosen so as to satisfy
$m_{d}(C_{0}^{*})=m_{d}(f(c_{0}))$ and $m_{d}(c_{0}*\cup R^{*})=m_{d}(f(c_{0}\cup R))$ . Observe that $b^{*}$ is a fixed number
determined by $f,$ $P$ , and $b;a^{*}\downarrow \mathrm{O}$ along with $a\downarrow \mathrm{O}$ . Recall that, for $1<p<d$ ,

$\mathrm{c}\mathrm{a}\mathrm{p}_{p}R=\omega_{d}(\frac{b^{q}-a^{q}}{q})^{1-p}=\omega_{d}r^{p-1}(\frac{a^{r}b^{r}}{b^{r}-a^{r}})^{p-1}$ ,

where $q:=(p-d)/(p-1)$ and $r=|q|$ ; for $p=1$ ,

$\mathrm{c}\mathrm{a}\mathrm{p}_{1}R=\omega_{d}a^{d-}1$ .

Hence $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R\downarrow 0$ as $a\downarrow \mathrm{O}$ so that there is an $a_{1}\in(0, b)$ such that $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R<\delta$ for $a\in(\mathrm{O}, a_{1})$ .
Since $f\in Q_{p}(K, \delta)$ , we have $\mathrm{c}\mathrm{a}_{\mathrm{P}_{p}f}(R)\leq K\mathrm{c}\mathrm{a}\mathrm{p}_{p}R$ for every $a\in(\mathrm{O}, a_{1})$ . On the other hand,
by (9), we see that $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R^{*}\leq \mathrm{c}\mathrm{a}_{\mathrm{P}}fp(R)$ . Thus we deduce

$\mathrm{c}\mathrm{a}\mathrm{p}_{p}R^{*}\leq K_{\mathrm{C}}\mathrm{a}_{\mathrm{P}_{p}^{R}}$

for every $a\in(\mathrm{O}, a_{\mathrm{i}})$ . In terms of $a,$ $b,$ $a^{*}$ , and $b^{*}$ , the above displayed inequality takes the
form

$( \frac{(b^{*})^{q}-(a)^{q}*}{q})^{1-p}\leq K(\frac{b^{q}-a^{q}}{q})^{1-p}$

for $1<p<d$ and
$(a^{*})^{d-1}\leq Ka^{d-1}$

for $p=1$ . Since $(a^{*})^{r}\leq(a^{*})^{r}(b^{*})r/((b^{*})^{r}-(a^{*})^{r})$ , the first of the above inequalities implies

$( \frac{a^{*}}{a})^{d}\leq K^{\frac{d}{d-p}}(1-(\frac{a}{b})^{r})^{\frac{d(1-\mathrm{p})}{d-p}}$

and the second of the above inequalities implies

$( \frac{a^{*}}{a})^{d}\leq K^{\frac{d}{d-1}}$

for every $a\in(\mathrm{O}, a_{1})$ . By $m_{d}(f(B(P, a)))/m_{d}(B(P, a))=(a^{*}/a)^{d}$ , we conclude that

$J(P, f)= \lim_{1a}\sup_{0}(\frac{a^{*}}{a})^{d}\leq K^{\frac{d}{d-\mathrm{p}}}$

as desired. $\square$
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For any homeomorphism $f$ of $D$ onto $D’$ satisfying (12) for every $P\in D$ , the following
volume distortion inequality holds:

(13) $m_{d}(f(E))\leq K^{\frac{d}{d-p}}m_{d}(E)$

for every Borel set $E$ in $D$ . In particular, (13) holds for every Borel set $E$ in $D$ if
$f\in Q_{p}(K, \delta)$ . Although the proof for Lemma 7 in Gehring [3] works in essence as that for
(13) for any $f$ satisfying (12), we repeat it here in the form to suit the present situation
only for the sake of convenience and completeness.

PROOF OF (13): The inequality (13) is trivially true if $m_{d}(E)=\infty$ and thus we assume
that $m_{d}(E)<\infty$ . Given an arbitrary positive number $\epsilon>0$ . By the regularity of $m_{d}$ we
can find an open set $G\supset E$ such that

$m_{d}(G)\leq md(E)+\epsilon$ .

Since $E\subset D\cap G$ , by replacing $G$ by $D\cap G$ , we can assume that $E\subset G\subset D$ .

In view of (12) we can find a sequence $(r_{j}(P))_{j\geq 1}$ for each $P\in G$ with the following two
conditions: first

$0<r_{j}(P)< \min\{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(P, \partial G), 1\}/10j$ $(j=1,2, \cdots)$ ;

second on setting $U=B(P, r_{j}(P))$

$m_{d}(f(kU))\leq(K^{\frac{d}{d-\mathrm{p}}}+\epsilon)m_{d(kU)}$ $(k=1,5)$ ,

where, in general, for balls $B(x, r)$ we write $aB(x, r)=B(x, ar)$ for any positive number
$a>0$ . Then we consider the collection $\mathcal{U}:=\{B(P, r_{j}(P)) : P\in G, j=0,1, \cdots\}$ .

We first consider the case $m_{d}(E)=0$ . By the $5\mathrm{r}$-covering theorem (cf. e.g. p.23 of
Mattila [5] $)$ we can find a coutable subcollection of $\mathcal{U}$ consisting mutually disjoint balls
$U_{i}\in \mathcal{U}$ such that

$G= \cup U\subset U\in \mathcal{U}\bigcup_{*}$.
$5U_{i}$ .

Since $E\subset G$

$m_{d}(f(E)) \leq m_{d}(f(\bigcup_{i}5Ui)\mathrm{I}=m_{d}(\bigcup_{i}f(5U_{i})\mathrm{I}$

$\leq\sum_{i}m_{d}(f(5U_{i}))\leq\sum_{i}(K^{\frac{d}{d-p}}+\epsilon)m_{d}(5Ui)$

$= \sum_{i}(K^{\frac{d}{d-p}}+\epsilon)5^{d}m_{d}(U_{i})=5^{d}(K^{\frac{d}{d-p}}+\epsilon)m_{d}(\bigcup_{i}U_{i})$

$\leq 5^{d}(K^{\frac{d}{d-p}}+\epsilon)m_{d(G})\leq 5^{d}(K^{\frac{d}{d-p}}+\epsilon)(m_{d}(E)+\epsilon)$ .

Hence by $m_{d}(E)=0$ we obtain

$m_{d}(f(E)) \leq 5^{d}(K\frac{d}{d-p}+\epsilon)\epsilon$ .
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On letting $\epsilon\downarrow 0$ we conclude that $m_{d}(f(E))=0$ and therefore (13) holds.
Next we consider the case $m_{d}(E)>0$ . By the Vitali covering theorem we can find a

countable subcollection of $\mathcal{U}$ consisting of mutually disjoint balls $U_{i}\in \mathcal{U}$ such that

$m_{d}(F)=0$ $(F:=E \backslash \bigcup_{i}U_{i})$ .

As we have seen above $m_{d}(F)=0$ implies $m_{d}(f(F))=0$ . Since $f(E)=f( \bigcup_{i}U_{i}\cdot)\cup f(F)$ ,
we have

$m_{d}(f(E))=md(f( \bigcup_{i}U_{i})\mathrm{I}=m_{d}(\bigcup_{i}f(U_{i}))$

$= \sum_{1}$. $m_{d}(f(U_{i})) \leq(K^{\frac{d}{d-p}}.+\epsilon)\sum m_{d}(U_{i}i)$

$=(K^{\frac{1}{d-p}}+ \epsilon)m_{d}(\bigcup_{i}U_{i})\leq(K^{\frac{d}{d-p}}+\epsilon)md(G)$.

Hence we conclude that

$m_{d}(f(E))\leq(K^{\frac{d}{d-p}}+\epsilon)(m_{d}(E)+\epsilon)$ .

On letting $\epsilon\downarrow 0$ in the above inequality, the validity of (13) follows. $\square$

14. Area distortions. We continue to study analytic properties of mappings in $Q_{p}(K, \delta)$ .
Here we consider how the $(d-1)$-dimensional measures or areas are distorted under map-
pings in $Q_{p}(K, \delta)$ . For any positive $\mathrm{n}\mathrm{u}.\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\epsilon>0$ and an.y set $X\subset \mathrm{R}^{d}$ we use the notation
$(X)_{\epsilon}$ for the set $\{x:\mathrm{d}\mathrm{i}\mathrm{S}\mathrm{t}(x, x)<\epsilon\}$ .

15. LEMMA. Given an $f\in Q_{p}(K, \delta),$ $(1\leq p<d)$ , any relatively compact open set $W$ with
$\overline{W}\subset D$ , and an arbitrary positive number $\eta>0$ . Then there exists a positive number $\alpha>0$

with the followng Properties: for any $P\in W$ and any $a\in(0, \alpha)_{y}\overline{U}\subset D(U=B(P, a))$

and there exist8 an open polyhedron $G’$ such that first
(16) $f(U)\subset G’\subset(f(U))_{\eta}$

and second

(17) $m_{d-1}(\partial G^{J})\leq c_{1}K^{\frac{d-1}{d-p}}m_{d-1}(\partial U)$ $(c_{1}:=2^{d}/d)$ .

PROOF: We choose a postive number $\alpha>0$ so $\mathrm{s}\mathrm{m},\mathrm{a}\mathrm{l}\mathrm{l}$ that the fo.llowi.n$\mathrm{g}$ three conditions
are fulfilled. First we requir $\alpha$ to satisfy

$0<\alpha<\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(W, \partial D)/2$ .
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As a result of this we. have $\overline{B}(P, 2a)\subset D$ for any $P\in W$ as far as $a\in(0, \alpha)$ . By the

uniform continuity of $f$ on $\overline{W}$ , we can choose $\alpha>0$ small so as to satisfy

$f(B(P, 2\alpha))\subset B(f(P), \eta)$

for every $P\in\overline{W}$. Let $R=\{x : a<|x-P|<2a\}$ for a positive number $a>0$ . Then
$\mathrm{C}\mathrm{a}\mathrm{p}_{\mathrm{P}}R=\omega_{d}|(2^{q}-1)/q|^{1}-pda-P(q=(p-d)/(p-1))$ for $1<p<d$ and $\mathrm{c}\mathrm{a}\mathrm{p}_{1}R=\omega_{d}ad-1$ .

Then we can choose $\alpha>0$ so small that

$\mathrm{c}\mathrm{a}\mathrm{p}_{p}R<\delta$

for any $P$ and for every $a\in(0, \alpha)$ . Thus we can fix a positive nunber $\alpha>0$ satisfying

simultaneously the above three displayed conditions.
Since $V(R)=\tau_{d}((2a)d-a)d,$ $A(R)=\omega_{d}a^{d}-1$ , and $L(R)=a$ , We have $V(R)/A(R)L(R)=$

$\tau_{d}a^{d}(2^{d}-1)/(\omega_{d}a^{d-1}\cdot a)=(\tau_{d}/\omega_{d})(2^{d}-1)=(2^{d}-1)/d=:c_{0}$. Hence we see that

$L(R)=V(R)/c_{0}A(R)$ .

Next by the right hand side inequality in (8), we see that $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R\leq V(R)/L(R)^{p}=$

$V(R)/(V(R)/c_{0}A(R))^{P}=dA(R)^{p}/V(R)^{p-1}$ , i.e.

$\mathrm{c}\mathrm{a}\mathrm{p}_{p}R\leq ae\frac{A(R)^{p}}{V(R)^{p-1}}$ .

Observe that $A(f(R))^{p}/V(R)^{p^{-}1}=(V(f(R))/V(R))^{p^{-}1}\cdot(A(f(R))^{p}/V(f(R))^{p^{-}1})$ . The first

factor on the right is dominated by $(K^{d/(d)}-p)^{p1}-$ in view of (13) and the second factor on
the right is dominated by $\mathrm{c}\mathrm{a}_{\mathrm{P}_{p}f}(R)$ by the left hand side inequality of (8). Thus

$\frac{A(f(R))^{p}}{V(R)^{p-1}}\leq K^{\frac{d(p-1)}{d-p}}\mathrm{c}\mathrm{a}\mathrm{P}_{p}f(R)$ .

Since $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R<\delta,$ $f\in Q_{p}(K, \delta)$ implies that $\mathrm{c}\mathrm{a}\mathrm{p}_{p}f(R)\leq K\mathrm{c}\mathrm{a}\mathrm{p}_{p}R$ . Hence $A(f(R))^{p}/V(R)^{p}-1$

$\leq K^{d()}p-1/(d-p)$ . $K\mathrm{c}\mathrm{a}\mathrm{p}_{p}R=K^{p(d-}1$
) $/(d-P)\mathrm{c}\mathrm{a}\mathrm{p}_{p}R\leq K^{P(d-1)}/(d-p)dA(R)p/V(R)p-1$ . Then

$A(f(R))^{p}\leq ffl(K^{(-}d1)/(d-p))^{p}A(R)p$ so that

$A(f(R)) \leq C_{0}K\frac{d-1}{d-p}A(R)$ .

By the definition of $A(f(R))$ and by $c_{0}<c_{1}$ we can find a polyhedral surface $\Sigma’$ in $f(R)$

separating $f(c_{0})$ and $f(C_{1})$ , where $C_{0}$ and $C_{1}$ are com.plementary components of $R^{c}$ , such
that

$m_{d-1}(\Sigma/)\leq c_{1}K^{\frac{d-1}{d-p}A(}R)=c_{1}K^{\frac{d-1}{d-p}}m_{d-1}(\partial U)$ .

Let $G’$ be the complementary component of $\Sigma’$ containing $f(U)$ . Then it is easily seen that
$G’$ satisfies (16) and (17). $\square$
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18. LEMMA. Given an $f\in Q_{p}(K, \delta)(1\leq p<d)$ , any compact set $E\subset D$ with $m_{d-1}(E)>$

$0$ , and any positive number $\epsilon>0$ . Then there exists an open polyhedron $G’$ such that first
(19) $f(E)\subset G’\subset(f(E))_{\epsilon}$

and second

(20) $m_{d-1}(\partial G/)\leq c_{2}K^{\frac{d-1}{d-p}}m_{d1}-(E)(c_{2}:=2c1\omega_{d}\tau d^{-}-11)$.

PROOF: By the local uniform continuity of $f$ and by the compactness of $E$ , we can find a
relatively compact open set $W$ with $E\subset W\subset\overline{W}\subset D$ such that

$f(E)\subset f(W)\subset\overline{f(W)}\subset(f(E))_{\epsilon}$ .

Fix positive numbers $\beta>0$ and $\eta\in(0, \epsilon)$ so as to satisfy $(E)_{2\beta}\subset W$ and $(f(W))_{\eta}\subset$

$(f(E))_{\epsilon}$ . Then choose a positive number $\alpha>0$ determined by. Lemma 15 w.ith respect to
the above $W$ and $\eta.$ Fina-lly $\mathrm{l}\mathrm{e}\dot{\mathrm{t}}\gamma:=\min(\alpha, \beta)$ .

Since $m_{d-1}(E)>0$ and $E$ is compact, we can find a finite collection $(U_{i})_{i}$

.
of $\mathrm{o}\mathrm{p}$.en balls

$U_{i}:=B(P_{i}, a_{i})$ such that $0<a_{i}<\gamma,$ $E \subset\bigcup_{i}U_{i}$ , and

$\sum_{1^{\backslash }}\tau_{d-}1a_{i}^{d-}1<2m_{d-1}(E)$ .

Here we can clearly assume that $U_{i}\cap E\neq\emptyset$ so that by $a_{i}\leq\beta$ we have $U_{i}=B(P_{i}, a_{i})\subset$

$(E)_{2\beta}\subset W$ , i.e. $U_{i}\subset W\subset D$ . Then, by Lemma 15, there exists an open polyhedoron $G_{i}’$

such that
$f(U_{i})\subset G_{i}’\subset(f(U_{i}))_{\eta}$

and
$m_{d-1}( \partial G/)i\leq C1K\frac{d-1}{d-p}m_{d1}-(\partial U_{i})$ .

Set $G’:= \bigcup_{i}G_{i}’$ and then $\partial G’\subset\bigcup_{i}\partial G_{i}’$ . We have

$m_{d-1}( \partial G/)\leq\sum_{:}m_{d1}-(\partial G_{i}’)\leq C_{1}K^{\frac{d-1}{d-p}}\sum_{1}$

.
$m_{d-1}(\partial U_{i})$

$=c_{1}K^{\frac{d-1}{d-p}} \sum_{i}\omega da_{i^{-}}^{d}=c11K^{\frac{d-1}{d-p}}\omega d\mathcal{T}d^{-1}-1\sum \mathcal{T}_{d1}-aiid-1$

$\leq c_{1}K^{\frac{d-1}{d-\mathrm{p}}-}\omega_{d}\tau_{d-}11^{\cdot}2md-1(E)=(2c_{1d^{\mathcal{T}^{-})K}}\omega d-11\frac{d-1}{d-p}m_{d-}1(E)$ ,

which is. nothing but (20). To see $G’$ satisfies (19). we proceed as follows:

$f(E) \subset f(\bigcup_{i}U_{i})=\bigcup_{i}f(U_{i})\subset\bigcup_{i}G_{i}’$
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$\subset..\bigcup_{i_{\backslash }}(f(Ui))_{\eta}\subset(f(W. ))_{\eta}\subset(f(E))_{\epsilon}$

and thus $G’= \bigcup_{i}G_{i}’$ satisfies (19), as desired. $\square$

21. Quasiconformality. Our main concern is about the class $Q_{p}(K, \delta)(1\leq P<d)$ .
However we need to consider the class $Q_{d}(K, \infty)$ as an auxiliary class to clarify $Q_{p}(K, \delta)$

$(1\leq p<d)$ . It is known that a homeomorphism $f$ of $D$ onto $D’$ is a quasiconformal
mapping if and only if $f\in Q_{d}(K, \infty)$ for some $K>0$ . Often this fact itself is taken as a
definition of quasiconformal mappings (cf. e.g. V\"ais\"al\"a [9]). In this section we prove the
following result.

22. LEMMA. If $f$ and $f^{-1}$ belong to $Q_{p}(K, \delta)(1\leq p<d)$ , then $f$ and $f^{-1}$ belong to
$Q_{d}(K_{0,\infty})$ , where $K_{0}=(2^{d+1}\omega_{d}d^{-1_{\mathcal{T}}}-1K2(d-1)/d-1(d-p))^{d}$ is a constant depending only on $d$ ,
$p$ , and $K$ .

Obseve that $K_{0}$ does not depend on $\delta>0$ . This result is obtained for the class $Q_{p}(K, \infty)$

not only for $1\leq p<d$ but also for $d<p<\infty$. in Gehring [3] as Theorem.l-. As already
stated we are- not interested in the $d<p\leq\infty$ case from the view point $\dot{\mathrm{o}}\mathrm{f}$ the application of
the main theorem to our final $\mathrm{p}\mathrm{u}\mathrm{r}\mathrm{p}_{\overline{\mathrm{O}}}\mathrm{s}\mathrm{e}$ and actually the above lemma is not true in general
for the $d<p\leq\infty$ case.

PROOF: We only have to show that $f\in Q_{d}(K_{0}, \infty)$ since the proof for $f^{-1}\in Q_{d}(K_{0}, \infty)$

is identical by symmetry. Hence, for any spherical ring $R=\{x : a<|x-P|<b\}$ with
$\overline{R}\subset D$ , we only have to prove that cap$df(R)\leq K_{0}\mathrm{c}\mathrm{a}\mathrm{p}dR$ . As an obvious result of the fact
that $R$ is a spherical ring, it is seen that not only $R$ but also $f(R)$ are approximable from
outside in the sense of Section 7 (cf. e.g. Lemma 6 in Gehring [3]; see also Chapter 2 in
Heinonen et al. [4] $)$ . Hence by (10) we have

Capd$f(R)= \sup_{\emptyset\in\Psi(f(R))}\frac{A(\phi,f(R))^{d}}{V(\phi,f(R))^{d-1}}$ .

With each $\psi\in\Psi(R)$ we associate $\phi\in\Psi(f(R))$ by $\psi=\phi \mathrm{o}f$ . Then $\Psi(R)=\Psi(f(R))\circ f$ .
We will evaluate $A(\phi, f(R))$ from above by $A(\psi, R)$ and $V(\phi, f(R))$ from below by $V(\psi, R)$ .
We start with $A(\phi, f(R))$ . Take an arbitrary positive number $\epsilon>0$ and any polyhedral
surface $\Sigma\subset R$ separating two complementary components $C_{0}$ and $C_{1}$ of $R$ . By the uniform
continuity of $\psi$ on $\Sigma$ , we can express $\Sigma$ as a finite union of Borel sets $E_{i}$ , i.e. $\Sigma=\bigcup_{i}E_{i}$ , such
that $m_{d-1}(E_{i})>0$ , Osc$E_{i}\psi^{d-1}<\epsilon$ , and $m_{d-1}(E_{i}\cap E_{j})=0(i\neq j)$ . Clearly Oscf$(E_{i})\phi d-1<$

$\epsilon$ . We apply Lemma 18 to each $f(E_{i})$ . Then there exists an open polyhedron $G_{i}’$ such
that $f(E_{i})\subset G_{i}’\subset\overline{G_{i}’}\subset f(R),$ $\mathrm{O}_{\mathrm{S}}\mathrm{c}_{ci}\overline,\phi^{d1}-<\epsilon$ , and $m_{d-1}(\partial G’i)\leq c_{2}K^{(}d-1)/(d-p)md-1(E_{i})$ .

Obviously $\bigcup_{i}\partial G_{i}’$ contains a polyhedral surface $\Sigma’\subset f(R)$ separating $f(c_{0})$ and $f(C_{1})$ .
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Then
$A( \phi, f(R))\leq\int_{\Sigma’}\phi^{d-1}dmd-1\leq\sum_{i}\int_{\partial G_{i}’}\phi d-1dmd-1$

$\leq\sum_{i}(\psi^{d-}1(P_{i})+\epsilon)m_{d-1}(\partial.G’.)i\leq c_{2}K^{\frac{d-1}{d-\mathrm{p}}}\sum_{i}(\psi(Pi)^{d}-1+\epsilon)md-1(E_{i})$

$\leq c_{2}K^{\frac{d-1}{d-p}}\sum_{i}\int_{E_{i}}(\psi^{d-1}+2\epsilon)dmd-1=c_{2}K^{\frac{d-1}{d-p}}\int_{\Sigma}(\psi^{d1}-+2\in)dm_{d-}1$ ,

where $P_{i}\in E_{i}$ is an arbitrarily fixed point for each $i$ . Since $\epsilon>0$ and $\Sigma$ are arbitrary, we
deduce

$A( \phi, f(R))\leq c_{2}K\frac{d-1}{d-\mathrm{p}}A(\psi, R)$ .

Next we turn to $V(\psi, f(R))$ . Take an arbitrary positive number $\epsilon>0$ . By the local
uniform continuity of $\psi$ on $R$ we can express $R$ as a countable union of Borel sets $E_{i}$ ,
i.e. $R= \bigcup_{i}E_{i}$ , such that $m_{d}(E_{i})>0,$ $\mathrm{O}\mathrm{s}\mathrm{c}_{E_{i}}\psi^{d}<\epsilon$ , and $m_{d}(E_{i}\cap E_{j})=0(i\neq j)$ .
Clearly $\mathrm{O}_{\mathrm{S}\mathrm{C}_{E_{i}}}\psi^{d}<\epsilon$ implies $\mathrm{O}\mathrm{s}\mathrm{C}_{f(}E_{i}$ ) $\phi^{d}<\epsilon$ . By (13), $m_{d}(E_{i}\cap E_{j})=0(i\neq j)$ assures
that $m_{d}(f(E_{i})\cap f(E_{j}))=0(i\neq j)$ . Observe that, since $f$ and $f^{-1}\in Q_{p}(K, \delta)$ , the
inequality (13) valid for $f\in Q_{p}(K, \delta)$ and $E\subset D$ must also be valid for $f^{-1}\in Q_{p}(K, \delta)$

and $f(E)\subset f(D)=D’$ so that we also have $m_{d}(E)\leq K^{d/()}d-pm_{d}(f(E))$ . Using this
inequality we proceed as follows:

$V( \psi, R)=\sum_{i}\int_{E_{i}}\psi^{d}dm_{d}\leq\sum_{i}(\psi(P_{i})d\epsilon+)md(Ei)$

$\leq K^{\frac{d}{d-p}}\sum_{1}$

.
$(\phi(f(P_{i}))^{d}+\epsilon)md(f(Ei))$

$\leq K^{\frac{d}{d-p}}\sum_{i}\int_{f(E_{i})}(\phi^{d}+2\epsilon)dmd=K^{\frac{d}{d-p}}\int_{f(R)}(\phi^{d}+2\epsilon)dm_{d}$ ,

where $P_{i}\in E_{i}$ is an arbitrarily fixed point for each $i$ . Since $\epsilon>0$ is arbitrary, we deduce

$V( \psi, R)\leq K\frac{d}{d-p}V(\phi, f(R))$ .

Fix an arbitrary $\phi\in\Psi(f(R))$ . Then

$\frac{A(\phi,f(R))^{d}}{V(\phi,f(R))^{d-1}}\leq\frac{(c_{2}K^{\frac{d-1}{d-p}A(}\psi,R))^{d}}{(K^{\frac{-d}{d-p}}V(\psi,R))^{d1}-}$

$=c_{2}^{d}K^{\frac{2d(d-1)}{d-p}} \frac{A(\psi,R)^{d}}{V(\psi,R)^{d-1}}\leq C_{2}^{d}K^{\frac{2d(d-1)}{d-p}}$ cap$dR$,

where the last inequality follows from (10). Taking the supremum of the leftmost side term
in the above inequality with respect to $\phi\in\Psi(f(R))$ , we deduce, by (10), that

$\mathrm{c}\mathrm{a}\mathrm{p}_{d}f(R)\leq K_{0^{\mathrm{C}\mathrm{a}_{\mathrm{P}}}}Rd$

’
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where the constant $K_{0}$ is given by $K_{0}=c_{2}^{d}K^{2d}(d-1)/(d-p)=(2c_{1}\omega d^{\mathcal{T}^{-}}d-11K2(d-1)/(d-p))^{d}=$

$(2^{d+1}\omega_{d}d-112(\mathcal{T}_{d}^{-}-1Kd-1)/(d-p))^{d}$ . $\square$

23. The proof for the main result. Compiling the results stated thus far in the
preceding sections we can now prove the main result of this paper. For the purpose we
need to consider one more quantity $H(P, f)$ associated with any homeomorphism $f$ of $D$

onto $D’$ and any point $P$ in $D$ :

$H(P, f):= \lim_{r\downarrow}\sup_{0}\frac{|\max_{x-P|=r}|f(_{X})-f(P)|}{|x-P|\min_{=r}|f(x)-f(P)|}$ .

It is known (cf. e.g. \S 22 in V\"ais\"al\"a [9]) that $f$ is a quasiconformal mapping if and only if
$\sup_{P\in D}H(P, f)<\infty$ .

PROOF OF THE MAIN THEOREM. By Lemma 22 we have $f\in Q_{d}(K_{0,\infty})$ . Hence we see
that

$H(P, f)\leq\exp((K_{0^{\frac{\omega_{d}}{t_{d}}}})^{\frac{1}{d-1})}=:H$ $(P\in D)$

(see e.g. \S 22 in $\mathrm{V}\ddot{\mathrm{a}}\mathrm{i}_{\mathrm{S}\ddot{\mathrm{a}}}1\ddot{\mathrm{a}}[9]$ ), where we recall that $t_{d}$ is the capacity of the Teichm\"uller ring
$R_{T}$ introduced in Section 2. By (12) we have

$\sup_{P\in D}J(P, f)\leq K^{\frac{1}{d-p}}$ .

With each $r>0\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathfrak{g}_{\mathrm{i}}\prime \mathrm{n}\mathrm{g}\overline{B}(P, r)\subset D$ for any fixed $P\in D$ we associate a positive
number $b(r)>0$ such that

$m_{d}(f(B(P, r)))=\tau_{d}b(r)^{d}$ .

Clearly $( \min_{|x-p_{1}}|f(X)-f(P)|)/b(r)\leq 1$ . Therefore we have

$\frac{||\max_{x-P=r}|f(_{X})-f(P)|}{r}\leq\frac{||\max_{x-P=r}|f(_{X})-f(P)|}{|x-P|\min_{=r}|f(x)-f(P)|}$ . $( \frac{\tau_{d}b(r)^{d}}{\tau_{d}r^{d}})^{\frac{1}{d}}$

and a fortiori, by taking the superior limit as $r\downarrow \mathrm{O}$ of both sides of the above inequality,
we deduce

$L(P, f)\leq H(P, f)\cdot J(P, f)^{\frac{1}{d}}$ .

Hence we conclude that
$L(P, f)\leq H\cdot K^{\frac{1}{d-p}}=:K_{1}$

on $D$ and $K_{1}$ can be explicitly given as in the statement of the main theorem. Repeating
the same argument for $f^{-1}$ instead of $f$ we can deduce $f^{-1}\in Lip(K_{1})$ in addition to
$f\in Lip(K_{1})$ .
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The proof of the main theorem is herewith complete. $\square$

24. Appendix. For convenience we record here the proofs of the first and the last identity
in (3) for $R=\{x:a<|x|<b\}(0<a<b<\infty)$ .

As is well known, if $u\in ACL(R)\cap C(R)$ , then the usual gradient $\nabla u$ of $u$ exists $m_{d^{-}}\mathrm{a}.\mathrm{e}$ .
on $R$ and $|\nabla u|$ is a Borel function on $R$ . By the standard mollifier method, it is shown
that, if $|\nabla u|\in L^{p}(R)(1\leq p<\infty)$ in addition to that $u\in ACL(R)\cap C(R)$ , then there
exists a sequence $(u_{i})_{i\geq 1}$ in $C^{\infty}(R)$ such that

(25) $||u-u_{i};L\infty(R)||+||\nabla u-\nabla u_{i};L^{p}(R)||arrow 0(iarrow\infty)$ .

Based on this fact, the class $W(R)$ of competing functions for calculating $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R$ may be
replaced by $W(R)\cap C^{\infty}(R)$ , which often makes the computation for $\mathrm{c}\mathrm{a}\mathrm{p}_{p}R$ much easier
$(1 \leq p<\infty)$ . In this regard we must be careful. The fact (25) is no longer true for $p=\infty$

so that $W(R)\dot{\cap}C^{\infty}(R)$ is not dense in $W(R)$ with $.\mathrm{r}$espect to the norm $||v;L^{\infty}||+||\nabla v;L^{\infty}||$

for $v\in W(R)$ .
However (25) for $1\leq p<\infty$ is still useful even for $p=\infty$ in the following sense. Let

$u\in ACL(R)\cap C(R)$ with $|\nabla u|\in L_{loc}^{1}(R)$ . We denote by $x=r\xi$ the polar coordinate
expression of $x\in \mathrm{R}^{d}\backslash \{0\}:r=|x|$ and $\xi=x/|x|\in S^{d-1}$ . In terms of $x=r\xi$ , we have the
identity

(26) $| \nabla u(r\xi)|^{2}=|u_{r}(r\xi)|2+\frac{1}{r^{2}}|\nabla\xi u(r\xi)|^{2}$ ,

where $u_{r}=\partial u/\partial r$ and $\nabla_{\xi}$ indicates the gradient operation for functions on $S^{d-1}$ with re-
spect to the natural Riemannian metric on $S^{d-1}$ . Using the localized version of (25) we can
show that $r\mapsto u(r\xi)$ is absolutely continuous on $(a, b)$ for $m_{d-1^{-}}\mathrm{a}.\mathrm{e}$ . $\xi\in S^{d-1}$ . Therefore
we can use tha following fact in the proofs below:

FACT. If $u\in W(R)$ satisfies $|\nabla u|\in L^{p}(R)$ ($p=1$ or $p=\infty$), then $r\vdasharrow u(r\xi)$ is absolutely
continuous on $[a, b]$ for $m_{d-1^{-}}a.e$ . $\xi\in S^{d-1}$ .

This is of course true for every $1\leq p\leq\infty$ .
We now proceed to the proof of the first identity in (3), i.e. we will prove

(27) $\mathrm{c}\mathrm{a}\mathrm{p}_{1}R=\omega dad-1$ .

For the purpose we first show that $\mathrm{c}\mathrm{a}\mathrm{p}_{1}R\geq\omega_{d}a^{d-1}$ . Take an arbitrary $u\in W(R)$ and
we will show that $\omega_{d}a^{d-1}\leq||\nabla u;L^{1}(R)||\leq\infty$. We may then suppose that $\nabla u\in L^{1}(R)$ .
By the fact mentioned above, there exists a subset $E_{u}\subset S^{d-1}$ with $m_{d-1}(E_{u})=0$ such
that $r\mapsto u_{r}(r\xi)$ is absolutely continuous on $[a, b]$ for every fixed $\xi\in S^{d-1}\backslash E_{u}$ so that we
see, by (26), that

$1=u(b \xi)-u(a\xi)=\int_{a}^{b}u_{r}(r\xi)dr$
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$\leq\int_{a}^{b}|u_{r}(r\xi)|dr\leq\int_{a}^{b}|\nabla u(r\xi)|dr$

$= \int_{a}^{b}\frac{1}{r^{d-1}}|\nabla u(r\xi)|r^{d}-1dr\leq\int_{a}^{b}\frac{1}{a^{d-1}}|\nabla u(r\xi)|r^{d}-1dr$

since $1/r^{d-1}\leq 1/a^{d-1}$ for every $r\in[a, b]$ . Thus we have shown that

$a^{d-1} \leq\int_{a}^{b}|\nabla u(r\xi)|r-dd1r$

for $m_{d-1^{-}}\mathrm{a}.\mathrm{e}$ . $\xi\in S^{d-1}$ . Integrating both sides of the above inequality over $S^{d-1}$ with

respect to $dm_{d-1}(\xi \mathrm{I}$ , we obtain

$\int_{S^{d-1}}a^{d}-1dmd-1(\xi)\underline{<}\int_{S^{d}}-1(\int_{a}^{b}|\nabla u(r\xi)|r-1dd\mathrm{I}rdmd-1(\xi)$ .

Applying the Fubini theorem to the right hand side term of the above and changing the

polar coordinate to the Cartesian coordinate, we deduce

$\omega_{d}a^{d-\mathrm{i}}\leq\int_{R}|\nabla u(X)|dmd(x)$ .

Hence $\omega_{d}a^{d-1}\leq\inf_{u\in W(R)}\int_{R}|\nabla u(x)|dmd(x)=\mathrm{c}\mathrm{a}\mathrm{p}_{1}R$ as desired.
To complete the proof of (27) we have to show that $\mathrm{c}\mathrm{a}\mathrm{p}_{1}R\leq\omega_{d}a^{d-1}$ . For the purpose

take an arbitrary $c\in(a, b)$ which will be ultimately made to tend to $a$ and define a function
$u(x)=u_{c}(x)\cdot$ on $\overline{\mathrm{R}}^{d}$ by

$u(x):=\{$

$0$ $(|x|\leq a)$ ,

$\frac{|x|-a}{c-a}$ $(a<|x|<c)$ ,

1 $(c\leq|x|\leq\infty)$ .

It is easy to see that $u\in W(R)$ and

$|\nabla u(r\xi)|=|u_{r}(r\xi)|=\{$

$\frac{1}{c-a}$ $(a<r<c)$ ,

$0$ $(_{C\leq r}<\infty)$

for every $\xi\in S^{d-1}$ . Hence we have

$\int_{R}|\nabla u(x)|dmd(x)=\int_{S^{d-1}}(\int_{a}^{b}|\nabla u(r\xi)|r^{d-1}dr\mathrm{I}dmd-1(\xi)$

$= \omega_{d}\int_{a}^{c}\frac{1}{c-a}r^{d-1}dr=\omega d^{\frac{1}{d}\frac{c^{d}-a^{d}}{c-a}}$ .
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Since $\mathrm{c}\mathrm{a}\mathrm{p}_{1}R\leq\int_{R}|\nabla u(x)|dmd(x)$ , we conclude that

$\mathrm{c}\mathrm{a}\mathrm{p}_{1}R\leq\omega d\frac{1}{d}\frac{c^{d}-a^{d}}{c-d}$

for every $c\in(a, b)$ . On letting $c\downarrow a$ in the above inequality, $\lim_{c\downarrow a}(c^{dd}-a)/(c-a)=da^{d}-1$

implies that $\mathrm{c}\mathrm{a}\mathrm{p}_{1}R\leq\omega_{d}a^{d-1}$ , which completes the proof of (27). $\square$

We next give the proof for the last identity (3), i.e. we will prove

(28) $\mathrm{c}\mathrm{a}\mathrm{p}_{\infty^{R=\frac{1}{b-a}}}$.

First we show that $\mathrm{c}\mathrm{a}\mathrm{p}_{\infty}R\geq 1/(b-a)$ . In order to do this we only have to prove that
$||\nabla u;L\infty(R)||\geq 1/(b-a)$ for every $u\in W(R)$ . Contrary to the assertion, assume the
existence of a $u\in W(R)$ such that

$|| \nabla u;L^{\infty}(R)||<\frac{1}{b-a}$ .

On setting $\delta:=(1/(b-a)-||\nabla u;L\infty(R)||)/2>0$ , we consider the set

$x:= \{_{X\in R} : |\nabla u(x)|<\frac{1}{b-a}-\delta\}$ ,

which is a Borel subset of $R$ since $|\nabla u|$ is a Borel function on $R$ . By the definition of $\delta$ ,
$||\nabla u;L\infty(R)||<1/(b-a)-\delta$, which implies that $m_{d}(.R\backslash X)=0$ . Let $X_{\xi}$ be the $\xi$-section
of $X$ in the porlar coordinate for each $\xi\in S^{d-1}$ :

$X_{\xi}:=\{r : a\leq r\leq b, r\xi\in X\}$ $(\xi\in S^{d-1})$ .

Observe that the $\xi$-section $(R\backslash X)_{\xi}$ of $R\backslash X$ is $R_{\xi}\backslash X_{\xi}=[a, b]\backslash X_{\xi}$ . By the Fubini theorem,
$X_{\xi}$ is Borel measurable for $m_{d}- \mathrm{a}.\mathrm{e}$ . $\xi\in S^{d-1}$ and

$0=m_{d}(R \backslash X)=\int_{R}\backslash Xddm(X)=\int_{S^{d}}-1(\int_{(R\backslash X)}r^{d1}-dr\mathrm{I}\epsilon dmd-1(\xi)$ ,

th.a.t $\mathrm{i}.\mathrm{S},$ we. $\mathrm{o}\mathrm{b}$.tain
$\int_{S^{d-1}}(\int_{[a,b]}\backslash \mathrm{x}_{\epsilon}-r^{d}1dr\mathrm{I}^{dm}d-1(\xi)=0$ ,

which implies that
$I_{[a,b]}\backslash \mathrm{x}_{\epsilon}r^{d-}1dr=0$

for $m_{d-1^{-}}\mathrm{a}.\mathrm{e}$ . $\xi\in S^{d-1}$ . Since $r^{d-1}\geq a^{d-1}>0$ , the above identity yields

$m_{1}([a, b]\backslash X_{\xi})=0$
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for $m_{d-1^{-}}\mathrm{a}.\mathrm{e}$ . $\xi\in S^{d-1}$ . By the fact mentioned before (27), the function $r\mapsto u(r\xi)$ is

absolutely continuous on $[a, b]$ for $m_{d-1^{-}}\mathrm{a}.\mathrm{e}$ . $\xi\in S^{d-1}$ . Hence there exists at least one
$\eta\in S^{d-1}$ with the following three properties: $X_{\eta}$ is a Borel subset of $[a, b]$ ;

$m_{1}([a, b]\backslash X)\eta=0$ ;

$r\mapsto u(r\eta)$ is absolutely continuous on the interval $[a, b]$ . Then we have, by (26),

$1=u(b \eta)-u(a\eta)=\int_{a}^{b}u_{r}(r\eta)dr=\int_{X_{\eta}}u_{r}(r\eta)dr$

$\leq\int_{X_{\eta}}|u_{r}(r\eta)|dr\leq\int_{X_{\eta}}|\nabla u(r\eta)|dr\leq\int_{X_{\eta}}(\frac{1}{b-a}-\delta)dr$

$= \int_{a}^{b}(\frac{1}{b-a}-\delta)dr=1-\delta(b-a)$ ,

i.e. $1\leq 1-\delta(b-a)$ , which is clearly a contradiction. Thus the proof of $\mathrm{c}\mathrm{a}\mathrm{p}_{\infty}R\geq 1/(b-a)$

is herewith complete.
Finally we need to show $\mathrm{c}\mathrm{a}\mathrm{p}_{\infty}R\leq 1/(b-a)$ to complete the proof of (28). This is an

easy task compared with the latter half of the proof of (27) since we only have to consider
the function $u(x)$ on $\overline{\mathrm{R}}^{d}$ given by

$u(x)$ $:=$

$0$ $(|x|\leq a)$ ,

$\frac{|x|-a}{b-a}$ $(a<|x|<b)$ ,

$\langle$

1 $(b\leq|x|\leq\infty)$ .

Clearly $u\in W(R)$ and, for $x=r\xi$ ,

$|\nabla u(x)|=|\nabla u(r\xi)|=|u_{r}(r\xi)|=\{$

$\frac{1}{b-a}$ $(a<r<b)$ ,

$0$ $(0\leq r<a, b<r<\infty)$

for every $\xi\in S^{d-1}=1/(b-a)$ and for every $x\in \mathrm{R}^{d}\backslash \partial R$. Hence we have $||\nabla u;L^{\infty}(R)||=$

$1/(b-a)$ . This with $\mathrm{c}\mathrm{a}\mathrm{p}_{\infty}R\leq||\nabla u;L^{\infty}(R)||$ yields $\mathrm{c}\mathrm{a}\mathrm{p}_{\infty}R\leq 1/(b-a)$ , which completes
the whole proof of the identity (28). $\square$

References

[1] F. W. GEHRING: Extremal length definitions for the conformal capacity of rings in
space, Mich. Math. J., 9(1962), 137-150.

[2] F. W. GEHRING: Inequalities for condensers, hyperbolic capacity, and extremal lengths,
Mich. Math. J., 18(1971), 1-20.

134



[3] F. W. GEHRING: Lipschitz mappings and the $p$ -capacity of rings in $n$-space, Annals
of Mathematics Studies, 66(1971), 175-193.

[4] J. HEINONEN, T. KILPEL\"AINEN, AND O. MARTIO: Nonlinear Potential Theory of
Degenerate Elliptic Equations, Oxford Univ. Press, 1993.

[5] P. MATTILA: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ.
Press, 1995.

[6] M. NAKAI: Existence of $quasii_{S}omet\dot{n}c$ mappings and Royden compactifications, in
preparation.

[7] M. NAKAI AND H. TANAKA: Existence of quasiconformal mappings between Rie-
mannian manifolds, Kodai Math. J., 5(1982), 122-131.

[8] H. M. REIMANN: Uber harmonische Kapazit\"at und quasikonforme Abbildungen in
Raum, Comm. Math. Helv., 44(1969), 284-307. ... .

[9] J. V\"AIS\"AL\"A: Lectures on $n$-dimensional Quasiconformal Mappings, Lecture Notes in
Math. 229, Springer, 1971.

[10] W. P. ZIEMER: Extremal length and con.formal capacity, Trans. Amer. Ma.t $\mathrm{h}$ . Soc.,
126(1967), 460-473.

Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa, Nagoya 466
Japan

Currently:

Department of Mathematics
Daido Institute of Technology
Daido, Minami, Nagoya 457
Japan
$e$-mail: nakai@daido-it. $ac$ .jp

Mailing Address:
Mitsuru Nakai
52 Eguchi, Hinaga
Chita 478
Japan

135


