<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>ハリシェンダ オムオメルンレ に対する サンバラン キアチモヨ に対する について 無限次元測度論と無限次元群の表現論</td>
</tr>
<tr>
<td>著者(s)</td>
<td>NAITO, SATOSHI</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1997), 1017: 54-69</td>
</tr>
<tr>
<td>発行日</td>
<td>1997-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61639</td>
</tr>
<tr>
<td>ボランティア</td>
<td>岩戸隆司</td>
</tr>
<tr>
<td>バージョン</td>
<td>publisher</td>
</tr>
<tr>
<td>取扱版</td>
<td>岩戸隆司</td>
</tr>
<tr>
<td>取扱版</td>
<td>岩戸隆司</td>
</tr>
<tr>
<td>取扱版</td>
<td>岩戸隆司</td>
</tr>
<tr>
<td>取扱版</td>
<td>岩戸隆司</td>
</tr>
</tbody>
</table>
INTRODUCTION

Let \(\mathfrak{g}(A) \) be the complex contragredient Lie algebra associated to a symmetrizable real square matrix \(A = (a_{ij})_{i,j \in I} \) indexed by a finite set \(I \) (see [K1] and [KK] for details). In [K2], Kac introduced a complex associative algebra \(\hat{U}_F(\mathfrak{g}(A)) \), which can be thought of as a certain completion of the universal enveloping algebra \(U(\mathfrak{g}(A)) \) of the contragredient Lie algebra \(\mathfrak{g}(A) \). In it he showed that there exists an isomorphism \(H \) (called the Harish-Chandra homomorphism) between the center \(Z_F \) of the algebra \(\hat{U}_F(\mathfrak{g}(A)) \) and the algebra \(\mathcal{F} \) of complex-valued functions on the set \(\mathfrak{h}^* \setminus L \), where \(L \) is the union of certain infinitely many affine hyperplanes in the algebraic dual \(\mathfrak{h}^* \) of the Cartan subalgebra \(\mathfrak{h} \) of \(\mathfrak{g}(A) \).

Moreover, he studied the "holomorphicity" of the elements of the algebra \(Z_F \) as "vector-valued" functions on the interior \(K \) of the complexified Tits cone \(X_C \) in the case where \(\mathfrak{g}(A) \) is the symmetrizable Kac-Moody algebra (i.e., the matrix \(A = (a_{ij})_{i,j \in I} \) is a symmetrizable generalized Cartan matrix).

In this paper, we generalize his results in [K2] to the case where \(\mathfrak{g}(A) \) is the symmetrizable generalized Kac-Moody algebra (i.e., the complex contragredient Lie algebra associated to a certain symmetrizable real matrix \(A = (a_{ij})_{i,j \in I} \), called a GGCM).
1. HARISH-CHANDRA HOMOMORPHISM

In this section we briefly review the setting and some results in [K2], which are valid for arbitrary symmetrizable contragredient Lie algebras over \(\mathbb{C} \), hence for symmetrizable generalized Kac-Moody algebras over \(\mathbb{C} \).

1.1. A completion of the universal enveloping algebra. Let \(g(A) \) be the symmetrizable generalized Kac-Moody algebra (GKM algebra for short) over \(\mathbb{C} \). Then the Lie algebra \(g(A) \) is nothing but the contragredient Lie algebra associated to a symmetrizable real matrix \(A = (a_{ij})_{i,j \in I} \) (called a GGCM) indexed by a finite set \(I \) satisfying the following conditions:

(C1) either \(a_{ii} = 2 \) or \(a_{ii} \leq 0 \) for \(i \in I \);

(C2) \(a_{ij} \leq 0 \) if \(i \neq j \), and \(a_{ij} \in \mathbb{Z} \) for \(j \neq i \) if \(a_{ii} = 2 \);

(C3) \(a_{ij} = 0 \iff a_{ji} = 0 \).

Note that this definition of GKM algebras is due to Kac (see [K1, Chap. 11]), and slightly different from the original one by Borcherds in [B1]). From now on we follow the notation of [K1], and freely use results in it (see also our previous papers [N1] – [N3]).

Let \(\mathfrak{h} \) be the Cartan subalgebra of the GKM algebra \(g(A) \). Then, since we have been assuming that the GGCM \(A = (a_{ij})_{i,j \in I} \) is symmetrizable, there exists a nondegenerate symmetric \(\mathbb{C} \)-bilinear form \((\cdot|\cdot) \) on the dual \(\mathfrak{h}^* \) of \(\mathfrak{h} \), which is invariant under the action of the Weyl group \(W \). (Here recall that the Weyl group \(W \) of the GKM algebra \(g(A) \) is by definition the subgroup of \(GL(\mathfrak{h}^*) \) generated by the fundamental reflections \(r_i \) with \(a_{ii} = 2 \).)

Now, for \(\alpha \in Q = \sum_{i \in I} \mathbb{Z} \alpha_i \), we define the affine linear function \(T_\alpha(\cdot) \) on \(\mathfrak{h}^* \) by:

\[
T_\alpha(\lambda) = 2(\lambda + \rho|\alpha) - (\alpha|\alpha) \quad (\lambda \in \mathfrak{h}^*),
\]

where \(\rho \in \mathfrak{h}^* \) is a fixed element of \(\mathfrak{h}^* \) such that...
$2(\rho|\alpha_i) = (\alpha_i|\alpha_i)$ for $i \in I$. Then we put

$$L := \bigcup_{\gamma \in Q} \{ \lambda \in \mathfrak{h}^* | T_{n\beta}(\lambda + \gamma) = 0 \}.$$

Let \mathcal{F} be the algebra of \mathbb{C}-valued functions defined on $\mathfrak{h}^* \setminus L$. Because the set $\mathfrak{h}^* \setminus L$ is dense in \mathfrak{h}^* in the usual metric topology, there exists a canonical embedding $\iota: S(\mathfrak{h}) \rightarrow \mathcal{F}$, where $S(\mathfrak{h})$ is viewed as the algebra of polynomial functions on \mathfrak{h}^*. Here we define the action π of the universal enveloping algebra $U(\mathfrak{g}(A))$ of the GKM algebra $\mathfrak{g}(A)$ on the algebra \mathcal{F} by:

$$\pi(e_{\beta})\varphi(\cdot) = \varphi(\cdot + \beta)$$

for $\varphi(\cdot), e_{\beta} \in U(\mathfrak{g}(A))$, where $h(e_{\beta}) = \beta(h)e_{\beta} (\beta \in Q, h \in \mathfrak{h})$. By using the action π of $U(\mathfrak{g}(A))$ on \mathcal{F}, we can define the structure of an associative algebra on the vector space $U(\mathfrak{g}(A)) \otimes_{\mathbb{C}} \mathcal{F}$ by:

$$(e_{\alpha} \otimes \varphi(\cdot))(e_{\beta} \otimes \psi(\cdot)) := e_{\alpha}e_{\beta} \otimes (\pi(e_{\beta})\varphi(\cdot)\psi(\cdot)),$$

for $\varphi(\cdot), \psi(\cdot) \in \mathcal{F}$ and $e_{\alpha}, e_{\beta} \in U(\mathfrak{g}(A))$ with $\alpha, \beta \in Q$. Let $U_{\mathcal{F}}(\mathfrak{g}(A))$ be the quotient algebra of this associative algebra $U(\mathfrak{g}(A)) \otimes_{\mathbb{C}} \mathcal{F}$ by the two-sided ideal generated by the elements $f \otimes 1 - 1 \otimes i(f)$ for $f \in S(\mathfrak{h})$. Then the associative algebra $U_{\mathcal{F}}(\mathfrak{g}(A))$ is generated by the algebra \mathcal{F} and $U(\mathfrak{g}(A))$, and the following relation holds in it:

$$\varphi(\cdot)e_{\beta} - e_{\beta}\varphi(\cdot) = e_{\beta}(\varphi(\cdot + \beta) - \varphi(\cdot)),$$

where $\varphi(\cdot) \in \mathcal{F}$ and $e_{\beta} \in U(\mathfrak{g}(A))$, with $\beta \in Q$. Moreover this algebra $U_{\mathcal{F}}(\mathfrak{g}(A))$ decomposes into the tensor product of vector spaces as:

$$U_{\mathcal{F}}(\mathfrak{g}(A)) = U(n_{-}) \otimes_{\mathbb{C}} \mathcal{F} \otimes_{\mathbb{C}} U(n_{+}),$$

and canonically contains the algebra $U(\mathfrak{g}(A)) = U(n_{-}) \otimes_{\mathbb{C}} S(\mathfrak{h}) \otimes_{\mathbb{C}} U(n_{+})$.

By putting $\deg(e_i) = 1$ and $\deg(f_i) = -1$ for $i \in I$, and $\deg(\mathcal{F}) = 0$, we have a \mathbb{Z}-gradation of $U_{\mathcal{F}}(\mathfrak{g}(A))$ as:

$$U_{\mathcal{F}}(\mathfrak{g}(A)) = \bigoplus_{j \in \mathbb{Z}} U_{\mathcal{F}}(\mathfrak{g}(A))_j, \quad U_{\mathcal{F}}(\mathfrak{g}(A))_j := \bigoplus_{m-k=j} U_{-k}(n_{-}) \otimes_{\mathbb{C}} \mathcal{F} \otimes_{\mathbb{C}} U_m(n_{+}),$$
so that we can "complete" it in a canonical way as:

\[\hat{U}_F(\mathfrak{g}(A)) := \bigoplus_{j \in \mathbb{Z}} \hat{U}(\mathfrak{g}(A))_j := \prod_{m-k=j, k,m \geq 0} U_{-k}(\mathfrak{n}_-) \otimes_{\mathbb{C}} \mathcal{F} \otimes \mathbb{C} U_m(\mathfrak{n}_+), \]

where \(U_m(\mathfrak{n}_+) \) (resp. \(U_{-k}(\mathfrak{n}_-) \)) is the subspace of \(U(\mathfrak{n}_+) \) (resp. \(U(\mathfrak{n}_-) \)) of degree \(m \) (resp. \(-k \)). Note that the multiplication in \(\hat{U}_F(\mathfrak{g}(A)) \) extends to \(\hat{U}_\mathcal{F}(\mathfrak{g}(A)) \), so that \(\hat{U}_\mathcal{F}(\mathfrak{g}(A)) \) is an associative algebra containing \(\hat{U}_F(\mathfrak{g}(A)) \).

Moreover, if \(V(\Lambda) \) is a highest weight \(\mathfrak{g}(A) \)-module with highest weight \(\Lambda \in \mathfrak{h}^* \setminus L \), then the action of \(U(\mathfrak{g}(A)) \) on \(V(\Lambda) \) can be extended to the action of the algebra \(\hat{U}_\mathcal{F}(\mathfrak{g}(A)) \), while the algebra \(\mathcal{F} \) acts on \(V(\Lambda) \) by:

\[\varphi(\cdot)(v_\tau) = \varphi(\tau)v_\tau, \]

where \(\varphi(\cdot) \in \mathcal{F} \) and \(v_\tau \in V(\Lambda)_\tau \) is a weight vector of weight \(\tau \in \mathfrak{h}^* \).

1.2. Harish-Chandra homomorphism. We denote by \(Z_\mathcal{F} \) the center of the associative algebra \(\hat{U}_\mathcal{F}(\mathfrak{g}(A)) \).

Now we prepare some notation. Let \(\tilde{\Delta}_+ \) be the multiset in which every positive root \(\alpha \in \Delta_+ \) appears with its multiplicity. For \(\beta \in Q_+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i \), denote by \(\text{Par} \beta \) the set of maps \(k: \tilde{\Delta}_+ \rightarrow \mathbb{Z}_{\geq 0} \) such that \(\beta = \sum_{\alpha \in \tilde{\Delta}_+} k(\alpha) \alpha \), and put \(\text{Par} := \bigcup_{\beta \in Q_+} \text{Par} \beta \).

For each \(\beta \in Q_+ \), we can choose a basis \(\{F^k\}_{k \in \text{Par} \beta} \) of the vector space \(U(\mathfrak{n}_-)_{-\beta} \) consisting of elements of the form \(F^k = \prod_{\alpha \in \tilde{\Delta}_+} f_\alpha^{k(\alpha)} \) (finite product) for \(k = (k(\alpha))_{\alpha \in \tilde{\Delta}_+} \in \text{Par} \beta \), where \(f_\alpha \in \mathfrak{g}_- \alpha \) is a root vector for a root \(\alpha \in \tilde{\Delta}_+ \) such that \(\mathfrak{g}_- \alpha = \oplus \mathbb{C} f_\alpha \). Then elements of \(\hat{U}_\mathcal{F}(\mathfrak{g}(A)) \) are expressed in the form

\[\sum_{k,m \in \text{Par}} F^k \varphi_{k,m}(F^m) \] (infinite sum),

with \(\varphi_{k,m} \in \mathcal{F} \) and \(|\deg(F^m) - \deg(F^k)| < \text{constant} \).

In [K2], Kac proved the following theorem. (Here we also record the full proof by Kac for later use.)
Theorem 1 ([K2, Theorem 1]). Let \(\varphi \in \mathcal{F} \) be a function on \(\mathfrak{h}^* \setminus L \). Then there exists a unique element \(z_\varphi = \sum_{\beta \in Q_+} \sum_{k,m \in \text{Par}_\beta} F^k \varphi_{k,m} \sigma(F^m) \) in \(Z_\mathcal{F} \) with \(\varphi_{k,m} \in \mathcal{F} \) such that \(\varphi_{0,0} = \varphi \). Here \(\sigma \) is the involutive anti-automorphism of \(U(\mathfrak{g}(A)) \) determined by \(\sigma(e_i) = f_i, \sigma(f_i) = e_i \) for \(i \in I \), and \(\sigma(h) = h \) for \(h \in \mathfrak{h} \).

Proof. First we note that an element \(x \in \hat{U}_\mathcal{F}(\mathfrak{g}(A)) \) is zero if and only if it acts as a zero operator on each Verma module \(M(\Lambda) \) with highest weight \(\Lambda \in \mathfrak{h}^* \setminus L \) (cf. the proof of Proposition 1 below). So the element \(z_\varphi \in \hat{U}_\mathcal{F}(\mathfrak{g}(A)) \) of the form \(z_\varphi = \sum_{\beta \in Q_+} \sum_{k,m \in \text{Par}_\beta} F^k \varphi_{k,m} \sigma(F^m) \) with \(\varphi_{k,m} \in \mathcal{F} \) is in the center \(Z_\mathcal{F} \) if \(z_\varphi \) acts as the scalar \(\varphi_{0,0}(\Lambda) \) on each Verma module \(M(\Lambda) \) with highest weight \(\Lambda \in \mathfrak{h}^* \setminus L \). Therefore, we will choose \(\varphi_{k,m} \in \mathcal{F} \) with \(k,m \in \text{Par} \) by induction on \(\beta \in Q_+ \) in such a way that \(z_\varphi \) acts as the scalar \(\varphi_{0,0}(\Lambda) = \varphi(\Lambda) \) on the weight space \(M(\Lambda)_{\Lambda-\beta} \) for each \(\beta \in Q_+ \). Here we use a partial ordering \(\leq \) on \(\mathfrak{h}^* \) defined by: \(\lambda \leq \mu \iff \mu - \lambda \in Q_+ \).

We denote by \(G_\gamma^\beta(\Lambda) \) the matrix of the operator \(\sum_{k,m \in \text{Par}_\gamma} F^k \varphi_{k,m} \sigma(F^m) \) on \(M(\Lambda)_{\Lambda-\beta} \) in the basis \(\{F^s(v_\Lambda)\}_{s \in \text{Par}_\beta} \) for \(\beta, \gamma \in Q_+ \), where \(v_\Lambda \in M(\Lambda) \) is a highest weight vector of weight \(\Lambda \in \mathfrak{h}^* \setminus L \). Let us fix \(\beta \in Q_+ \). Assume that we have already chosen the functions \(\varphi_{k,m} \) with \(k,m \in \text{Par} \) for \(\gamma < \beta \), so that we know the matrices \(G_\gamma^\beta(\Lambda) \) for \(\gamma < \beta \) and \(\Lambda \in \mathfrak{h}^* \setminus L \). For the matrix \(G_\gamma^\beta(\Lambda) \), we have that

\[
G_\gamma^\beta(\Lambda) = \Phi_\beta(\Lambda) B_\beta^\Lambda, \quad \Phi_\beta(\Lambda) := (\varphi_{k,m}(\Lambda))_{k,m \in \text{Par}_\beta}, \quad B_\beta^\Lambda := (B_\beta^k(F^k, F^m))_{k,m \in \text{Par}_\beta}.
\]

Here \(B_\beta^\Lambda(F^k, F^m) \in \mathbb{C} \) is determined by \(\sigma(F^k)F^m(v_\Lambda) = B_\beta^k(F^k, F^m)v_\Lambda \). Moreover, the condition that \(z_\varphi \) acts on \(M(\Lambda)_{\Lambda-\beta} \) as the scalar \(\varphi(\Lambda) \) can be written as:

\[
(\ast) \quad \Phi_\beta(\Lambda) B_\beta^\Lambda + \sum_{\gamma \leq \beta} G_\gamma^\beta(\Lambda) = \varphi(\Lambda) \text{Id},
\]

since \(G_\gamma^\beta(\Lambda) = 0 \) for \(\gamma \nleq \beta \). Here we recall from [KK, Theorem 1] that the determinant \(\det B_\beta^\Lambda \) can be written as:

\[
\det B_\beta^\Lambda = \prod_{\alpha \in \Delta_+} \prod_{n=1}^{\infty} T_{n\alpha}(\Lambda)^{\#(\text{Par}(\beta-n\alpha))},
\]
up to a nonzero constant factor independent of Λ. Because $\Lambda \in \mathfrak{h}^* \setminus L$, we have $\det B_\beta^\Lambda \neq 0$, so that $\varphi_{k,m}(\Lambda)$ for $\Lambda \in \mathfrak{h}^* \setminus L$, $k, m \in \text{Par } \beta$ is determined. \qed

Conversely we have the following proposition.

Proposition 1. An element $x \in \hat{U}_F(\mathfrak{g}(A))$ lies in the center Z_F only if it is of the form

$$x = \sum_{\beta \in Q_+} \sum_{k, m \in \text{Par } \beta} F^k \varphi_{k,m} \sigma(F^m)$$

for some $\varphi_{k,m} \in \mathcal{F}$.

Proof. Let $x = \sum_{k, m \in \text{Par } \beta} F^k \varphi_{k,m} \sigma(F^m)$ with $\varphi_{k,m} \in \mathcal{F}$ and $|\deg(F^m) - \deg(F^k)| < \text{constant}$ be an element of the center Z_F. It is clear that, for a highest weight vector v_Λ of the Verma module $M(\Lambda)$ with highest weight $\Lambda \in \mathfrak{h}^* \setminus L$, we have $x(v_\Lambda) \in \mathbb{C} v_\Lambda$.

So x acts as a scalar on each Verma module $M(\Lambda)$ with highest weight $\Lambda \in \mathfrak{h}^* \setminus L$. Note that, in the summation above for the expression of x, m is an element of the set $\text{Par } = \bigcup_{\beta \in Q_+} \text{Par } \beta$. We will show by induction on β that if $m \in \text{Par } \beta$, then $\varphi_{k,m} = 0$ for $k \notin \text{Par } \beta$.

Let us fix $\beta \in Q_+$ and $\Lambda \in \mathfrak{h}^* \setminus L$. The element x acts as a scalar (independent of β) on the weight space $M(\Lambda)_{\Lambda - \beta}$. Now fix an arbitrary $m_0 \in \text{Par } \beta$. Because the matrix $B_\beta^\Lambda = (B_\beta^\Lambda(F^k, F^m))_{k, m \in \text{Par } \beta}$ is nonsingular for $\Lambda \in \mathfrak{h}^* \setminus L$, we can choose an element $v \in M(\Lambda)_{\Lambda - \beta}$ such that $\sigma(F^{m_0})(v) = cv_\Lambda$ for some nonzero $c \in \mathbb{C}$, and $\sigma(F^m)(v) = 0$ for any $m \neq m_0 \in \text{Par } \beta$. Then we have

$$M(\Lambda)_{\Lambda - \beta} \ni \mathbb{C} v \ni x(v) = \sum_{k \in \text{Par } \gamma < \beta} \sum_{m \in \text{Par } \gamma} F^k \varphi_{k,m} \sigma(F^m)(v) + \sum_{k \in \text{Par } \gamma} c \varphi_{k,m_0}(\Lambda) F^k(v_\Lambda),$$

where $F^k \varphi_{k,m} \sigma(F^m)(v) \in M(\Lambda)_{\Lambda - \beta}$ for $m \in \text{Par } \gamma$ with $\gamma < \beta$ by the inductive assumption. Therefore, we deduce that $\varphi_{k,m_0}(\Lambda) = 0$ for any $k \notin \text{Par } \beta$ since the vectors $\{F^k(v_\Lambda)\}_{k \in \text{Par } \gamma}$ are linearly independent. This means that $\varphi_{k,m_0} = 0$ as an element of \mathcal{F} for $k \notin \text{Par } \beta$. \qed

From Theorem 1 and Proposition 1, we see that there exists an algebra isomorphism $H : Z_F \to \mathcal{F}$ defined by $z_\varphi \mapsto \varphi = \varphi_{0,0}$. we call this isomorphism H the Harish-Chandra homomorphism.
2. Holomorphicity of the Functions $\varphi_{k,m}$

2.1. The Tits cone of GKM algebras. From now on, we assume that the GKM algebra $g(A)$ over \mathbb{C} is the complexification of the GKM algebra $g(A)_{\mathbb{R}}$ over \mathbb{R} (i.e., $g(A) = \mathbb{C} \otimes_{\mathbb{R}} g(A)_{\mathbb{R}}$). So the Cartan subalgebra \mathfrak{h} over \mathbb{C} is also the complexification of the Cartan subalgebra $\mathfrak{h}_{\mathbb{R}}$ (i.e., $\mathfrak{h} = \mathbb{C} \otimes_{\mathbb{R}} \mathfrak{h}_{\mathbb{R}}$), and the set of simple roots $\Pi = \{\alpha_i\}_{i \in I}$ is a linearly independent subset of the algebraic dual $\mathfrak{h}_{\mathbb{R}}^*$ of $\mathfrak{h}_{\mathbb{R}}$ over \mathbb{R}. Further there exists a nondegenerate W-invariant symmetric \mathbb{R}-bilinear form $(\cdot | \cdot)$ on $\mathfrak{h}_{\mathbb{R}}^*$, whose complexification on \mathfrak{h}^* is also denoted by $(\cdot | \cdot)$.

Here we define the fundamental chamber C and the Tits cone X of the GKM algebra $g(A)$. We put

$$C := \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* | (\lambda | \alpha_i) \geq 0 \text{ for } i \in I \},$$

and then $X := W \cdot C = \bigcup_{w \in W} w \cdot C$. We denote by X° (resp. X^-) the interior (resp. the closure) of X in the usual metric topology of $\mathfrak{h}_{\mathbb{R}}^*$.

Remark 1. In [B3] and [K1], the fundamental chamber was defined to be the set

$$C^{re} := \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* | (\lambda | \alpha_i) \geq 0 \text{ for } i \in I \text{ with } a_{ii} = 2 \},$$

and the the Tits cone was defined to be $X^{re} := W \cdot C^{re}$. However this definition is not appropriate for our purpose here.

The proof of the following lemma is almost the same as in the case of Kac-Moody algebras (see [K1, Chap. 3] and [W, Chap. 4]).

Lemma 1. (1) The fundamental chamber C is a fundamental domain for the action of W on X, i.e., any orbit $W \cdot \lambda$ of $\lambda \in X$ intersects C in exactly one point. Moreover, W operates simply transitively on chambers.

(2) $X = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* | (\lambda | \alpha) < 0 \text{ for only a finite number of } \alpha \in \Delta_+ \}$. In particular, X is a convex cone.

(3) $X^\circ = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* | (\lambda | \alpha) \leq 0 \text{ for only a finite number of } \alpha \in \Delta_+ \}$.
Here we prepare some more notation for GKM algebras. Let $\Pi^r := \{\alpha_i \in \Pi \mid a_{ii} = 2\}$ be the set of real simple roots, and $\Pi^{im} := \{\alpha_i \in \Pi \mid a_{ii} \leq 0\}$ the set of imaginary simple roots, $\Delta^r := W \cdot \Pi^r$ the set of real roots, and $\Delta^{im} := \Delta \setminus \Delta^r$ the set of imaginary roots. We know from [K1, Chap. 11] that $\Delta^{im} \cap \Delta_+ = W \cdot N$, where

$$N = \{\alpha \in \mathbb{Q}_+ \setminus \{0\} \mid (\alpha|\alpha_i) \leq 0 \text{ for } i \text{ with } a_{ii} = 2, \text{ and } \text{supp}(\alpha) \text{ is connected}\} \setminus \bigcup_{j \geq 2} j \cdot \Pi^{im}.$$

In particular, the set $\Delta^{im}_+ := \Delta_+ \cap \Delta^{im}$ is W-stable.

Now we have the following lemma.

Lemma 2. (1) $X^- \subset \{\lambda \in \mathfrak{h}_R^* \mid (\lambda|\alpha) \geq 0 \text{ for all } \alpha \in \Delta^{im}_+\}$.

(2) $X^0 \subset \{\lambda \in \mathfrak{h}_R^* \mid (\lambda|\alpha) > 0 \text{ for all } \alpha \in \Delta^{im}_+\}$.

Proof. (1) Let $X' := \{\lambda \in \mathfrak{h}_R^* \mid (\lambda|\alpha) \geq 0 \text{ for all } \alpha \in \Delta^{im}_+\}$. Then it is clear that the set X' is a W-stable closed subset of \mathfrak{h}_R^* since Δ^{im}_+ is W-stable. Because $C \subset X'$ from the definition, we have $X \subset X'$, so that $X^- \subset X'$.

(2) Put $l := \dim_R \mathfrak{h}_R^*$, and take a basis $\{v_i\}_{i=1}^l$ of \mathfrak{h}_R^*. Let $\lambda \in X^0$. Then there exists $\epsilon > 0$ such that $\lambda \pm \epsilon v_i \in X$ for $1 \leq i \leq l$. For any $\alpha \in \Delta^{im}_+$, there exists some v_i such that $(v_i|\alpha) \neq 0$. If $(v_i|\alpha) > 0$, we have $(\lambda|\alpha) \geq \epsilon (v_i|\alpha) > 0$ since $(\lambda - \epsilon v_i|\alpha) \geq 0$ by (1). If $(v_i|\alpha) < 0$, we have $(\lambda|\alpha) \leq -\epsilon (v_i|\alpha) > 0$ since $(\lambda + \epsilon v_i|\alpha) \geq 0$. □

Let $X_C := X + \sqrt{-1} \mathfrak{h}_R^* = \{x + \sqrt{-1} y \mid x \in X, y \in \mathfrak{h}_R^*\}$ be the complexified Tits cone, and denote by K the interior of X_C in the usual metric topology of \mathfrak{h}^*. It is obvious that $K = X^0 + \sqrt{-1} \mathfrak{h}_R^*$.

From the lemmas above, we get the following lemma which will be used later.

Lemma 3. (1) Let $\alpha \in \Delta^{im}_+$ and $n \in \mathbb{Z}_{\geq 1}$. Then the affine hyperplane $T_{n\alpha}(\cdot) = 0$ does not intersect the domain $-\rho + K$.

(2) Let $\alpha \in \Delta^r_+$ and $n \in \mathbb{Z}_{\geq 1}$. If $\lambda \in -\rho + K$ and $T_{n\alpha}(\lambda) = 0$, then $\lambda - n\alpha \in -\rho + K$.

Proof. (1) Let $\lambda \in -\rho + K$, and suppose that $2(\lambda + \rho|\alpha) = n(\alpha|\alpha)$. Obviously we may assume that $\lambda \in -\rho + X^0$. We show that $(\alpha|\alpha) \leq 0$. Because $\Delta^{im}_+ = W \cdot N$, we may
assume that $\alpha = \sum_{i \in I} k_i \alpha_i \in N \subset Q_+$. Then we have $(\alpha | \alpha) = \sum_{i \in I} k_i (\alpha_i | \alpha_i) \leq 0$, since $(\alpha | \alpha_i) \leq 0$ for $\alpha_i \in \Pi^{re}$ by the definition of N and $(\alpha_j | \alpha_i) \leq 0$ ($j \in I$) for $\alpha_i \in \Pi^{im}$. Now the equality above contradicts part (2) of Lemma 2.

(2) Because $\alpha \in \Delta^{re} = W \cdot \Pi^{re}$, we can write $\alpha = w \cdot \alpha_i$ for some $w \in W$ and $\alpha_i \in \Pi^{re}$. In particular $(\alpha | \alpha) = (\alpha_i | \alpha_i) > 0$. Here note that the reflection r_α of \mathfrak{h}^* with respect to α is defined by $r_\alpha(\lambda) := \lambda - (2(\lambda | \alpha)/(|\alpha| \alpha)) \alpha$ for $\lambda \in \mathfrak{h}^*$ and can be written as $r_\alpha = wr_i w^{-1}$, so that $r_\alpha \in W$. Now we have $r_\alpha(\lambda + \rho) = \lambda + \rho - (2(\lambda + \rho) | \alpha)/(|\alpha| \alpha)) \alpha = \lambda + \rho - n\alpha$ by the assumption. Since K is W-stable, we deduce that $\lambda - n\alpha \in -\rho + K$. ∎

2.2 Holomorphicity of the functions $\varphi_{k,m}$ on the domain $-\rho + K$. We first recall the following elementary lemma in [K2].

Lemma 4 ([K2, Lemma 2]). Let $B = (b_{ij})$ and $C = (c_{ij})$ be two $N \times N$-matrices, where b_{ij} and c_{ij} are holomorphic functions in the variables z_1, \ldots, z_N on some neighborhood U of the origin 0. Put $V := U \cap \{(z_1, \ldots, z_N) \in \mathbb{C}^N \mid z_1 = 0\}$. Suppose that B is invertible on $U \setminus V$ and that on V one has:

(a) $\det B$ has zero of multiplicity $s \in \mathbb{Z}_{\geq 1}$;

(b) $\dim (\ker B) = s$;

(c) $\ker B \subset \ker C$.

Here $\ker B = \{x \in \mathbb{C}^N \mid Bx = 0\}$ (which, in general, depends on $(z_1, \ldots, z_N) \in \mathbb{C}^N$). Then the entries of the matrix CB^{-1} can be extended to holomorphic functions on U.

We remark that the classification theorem ([K1, Theorem 4.3]) holds also in the case of indecomposable GGCMs:

(1) GGCMs of finite type are exactly GCMs of finite type;

(2) GGCMs of affine type are GCMs of affine type plus the zero 1×1 matrix.

(3) If $A = (a_{ij})_{i,j \in I}$ is a GGCM of indefinite type, then there exists a positive imaginary root $\alpha = \sum_{i \in I} k_i \alpha_i$ such that $k_i > 0$ and $(\alpha | \alpha_i) < 0$ for all $i \in I$ for the GKM algebra $g(A)$ (cf. the proof of [K1, Theorem 5.6 c]).
From now on we assume that the GGCM \(A = (a_{ij})_{i,j \in \mathcal{I}} \) is indecomposable, hence is either a GCM of finite type, a GCM of affine type, the zero \(1 \times 1 \) matrix, or a GGCM (possibly GCM) of indefinite type.

Here we recall the following well-known facts about the (ordinary) Kac-Moody algebras \(g(A) \) associated to a GCM \(A = (a_{ij})_{i,j \in \mathcal{I}} \):

1. if \(A \) is a GCM of finite type, then \(X = \mathfrak{h}_R^* \);
2. if \(A \) is a GCM of affine type, then \(X^o = \{ \lambda \in \mathfrak{h}_R^* \mid (\lambda|\delta) > 0 \} \), where \(\delta \) is the unique (up to a constant factor) element of \(Q \) such that \((\delta|\alpha_i) = 0 \) for all \(i \in \mathcal{I} \). In particular, we have \(K-Q_+ = K \) in both of these cases.

In addition, if \(g(A) \) is the GKM algebra associated to a GGCM \(A = (a_{ij})_{i,j \in \mathcal{I}} \) such that \(a_{ii} \leq 0 \) for all \(i \in \mathcal{I} \), then obviously we have \(X - \beta \subset X \) for \(\beta \in Q_+ \) since \(X = C \), \(W = \{ 1 \} \), and \(Q_+ = \sum_{\alpha_i \in \Pi^m} \mathbb{Z}_{\geq 0} \alpha_i \). Hence we have \(K - \beta \subset K \) for \(\beta \in Q_+ \), so that \(K - Q_+ = K \) in this case (including the case where \(A \) is the zero \(1 \times 1 \) matrix).

We are now in a position to state our main theorem (compare with [K2, Theorem 2]).

Theorem 2. Let \(\varphi \in \mathcal{F} \) be a function that can be extended to a holomorphic function on the domain \(-\rho + K \), and \(z_\varphi = \sum_{\beta \in Q_+} \sum_{k,m \in \text{Par} \beta} F^k \varphi_{k,m} \sigma(F^m) \) be the (unique) element of the center \(Z_\mathcal{F} \) such that \(H(z_\varphi) = \varphi \).

1. If all the functions \(\varphi_{k,m} \) can be extended to holomorphic functions on the domain \(-\rho + K - Q_+ = \cup_{\beta \in Q_+} (-\rho + K - \beta) \), then we have for \(\alpha \in \Delta_+^e \) and \(n \in \mathbb{Z}_{\geq 1} \),

\[
T_{n\alpha}(\lambda) = 0 \text{ with } \lambda \in -\rho + K \text{ implies } \varphi(\lambda) = \varphi(\lambda - n\alpha).
\]

2. Let the function \(\varphi \) satisfy the condition that for \(\alpha \in \Delta_+^e \) and \(n \in \mathbb{Z}_{\geq 1} \),

\[
T_{n\alpha}(\lambda) = 0 \text{ with } \lambda \in -\rho + K \text{ implies } \varphi(\lambda) = \varphi(\lambda - n\alpha).
\]

Then, for each \(\beta \in Q_+ \), there exists a nonempty domain \(M_{\beta} \subset K \) such that the functions \(\varphi_{k,m} \in \mathcal{F} \) with \(k, m \in \text{Par} \beta \) can be extended to holomorphic functions on the domain
$-\rho + M_\beta$. If the GGCM A is of finite or affine type, then we can take $M_\beta = K$ for all $\beta \in Q_+$. In the case of indefinite type, as M_β, we can take a domain of the form $\mu_\beta + K \subset K$ for some $\mu_\beta \in V := K \cap (-\sum_{\alpha_i \in \Pi^+, R > 0} \alpha_i)$.

Proof. (1) First note that if the GGCM A is not of indefinite type, then we have $K - Q_+ = K$ from the remarks above. Second we remark that even in the case of indefinite type, the set $-\rho + K - Q_+$ is really a connected open set in \mathfrak{h}^*. In fact it is obvious that $-\rho + K - Q_+$ is an open set since it is the union of open sets $-\rho + K - \beta$ ($\beta \in Q_+$). The connectedness of $-\rho + K - Q_+$ follows from the connectedness of K itself and the fact that $K \cap (K - \beta) \neq \emptyset$ for any $\beta \in Q_+$. The latter fact is because K is an open convex cone in $\mathfrak{h}^* = h^*_R + \sqrt{-1} h^*_I$.

Let $\lambda \in -\rho + K$. We will show that the element $z_{\varphi} \in \mathbb{U} (\mathfrak{g}(A))$ can act on the Verma module $M(\lambda)$ with highest weight λ as the scalar $\varphi(\lambda)$, or equivalently, that z_{φ} acts as the scalar $\varphi(\lambda)$ on each weight space $M(\lambda)_{\lambda-\beta}$ for $\beta \in Q_+$. It clearly suffices to show that the equation $(*)$ (is well-defined and) holds for this $\lambda \in -\rho + K$ (see the proof of Theorem 1).

Here the entries of the matrix $\Phi_\beta(\cdot) = (\varphi_{k,m}(\cdot))_{k,m \in \text{Par } \beta}$ are holomorphic on $-\rho + K$ by assumption, so are the entries of the matrix $G_{\beta}^\gamma(\cdot) = \Phi_\beta(\cdot) B_\beta$. Moreover we show that for any $\gamma < \beta$, the entries of the matrix $G_{\gamma}^\beta(\cdot)$ are holomorphic on $-\rho + K$ above. Let $\lambda \in -\rho + K$, $v \in M(\lambda)_{\lambda-\beta}$, and $s, t \in \text{Par } \gamma$. Then we have $\sigma(F^t)v \in M(\lambda)_{\lambda-(\beta-\gamma)}$, so that $F^s \varphi_{s,t}(\cdot) \sigma(F^t)v = \varphi_{s,t}(\lambda - (\beta-\gamma))F^s \sigma(F^t)v$, where $\lambda - (\beta-\gamma) \in -\rho + K - Q_+$. Because the functions $\varphi_{s,t}(\cdot)$ are holomorphic on $-\rho + K - Q_+$ by assumption, the entries of the matrix $G_{\gamma}^\beta(\cdot)$ are holomorphic at any $\lambda \in -\rho + K$.

On the other hand, for each $\lambda \in \mathfrak{h}^* \setminus L$, the equation $(*)$ holds by (the proof of) Theorem 1. Since the set $\mathfrak{h}^* \setminus L$ is dense in \mathfrak{h}^*, we can take a sequence $\{\lambda_m\}_{m=1}^\infty$ in $(\mathfrak{h}^* \setminus L) \cap (-\rho + K)$ such that $\lim_{m \to \infty} \lambda_m = \lambda$ for each $\lambda \in -\rho + K$. Because all the entries of the matrices $G_{\beta}^\gamma(\cdot)$, $G_{\gamma}^\beta(\cdot)$ are holomorphic at $\lambda \in -\rho + K$, by taking the limit as $m \to \infty$, we have the equation $(*)$ for this $\lambda \in -\rho + K$.

Now let $\Lambda \in -\rho + K$ be such that $T_{n\alpha}(\Lambda) = 0$ for some $\alpha \in \Delta^{\text{re}}_{+}$ and $n \in \mathbb{Z}_{\geq 1}$. Then we have an embedding $M(\Lambda - n\alpha) \hookrightarrow M(\Lambda)$ by [KK, Prop. 4.1 (b)]. The element z_{φ} obviously acts on the highest weight vector $v_{\Lambda - n\alpha} \neq 0 \in M(\Lambda - n\alpha)$ as the scalar $\varphi(\Lambda - n\alpha)$. Thus we have the equality $\varphi(\Lambda) = \varphi(\Lambda - n\alpha)$ for $\Lambda \in -\rho + K$ with $T_{n\alpha}(\Lambda) = 0$.

(2) First of all we remark that, in the case of indefinite type, $V \neq \emptyset$ since there exists $\alpha = \sum_{i \in I} k_{i}\alpha_{i} \in \Delta^{\text{re}}_{+}$ such that $k_{i} > 0$ and $(\alpha|\alpha_{i}) < 0$ for all $i \in I$ (see the comment above for the classification theorem of GGCMs).

Now we will take domain M_{β} by induction on $\beta \in Q_{+}$. We first take $M_{0} = K$. Note that $K - \alpha_{j} \subset K$ for $\alpha_{j} \in \Pi^{\text{re}}_{+}$ by part (3) of Lemma 1. Let us take $\beta \neq 0 \in Q_{+}$. Suppose that we have already taken domains $M_{\gamma} = \mu_{\gamma} + K \subset K$ with $\mu_{\gamma} \in V = K \cap (-\sum_{\alpha_{i} \in \Pi_{\text{re}}^{+}, \Re > 0} \alpha_{i})$ such that $M_{\gamma} - \alpha_{j} \subset M_{\gamma}$ ($\alpha_{j} \in \Pi^{\text{re}}_{+}$) for $Q_{+} \ni \gamma < \beta$. Put

$$M_{\beta}' := \bigcap_{\gamma < \beta} \bigcap_{\eta \in \sum_{\alpha_{i} \in \Pi_{\text{re}}^{+}} \mathbb{Z}_{\geq 0} \alpha_{i}} (M_{\gamma} + \eta).$$

For $\alpha_{j} \in \Pi^{\text{re}}_{+}$, we have $M_{\beta}' - \alpha_{j} \subset M_{\beta}'$ since $M_{\gamma} - \alpha_{j} \subset M_{\gamma}$ for $\gamma < \beta$ by the inductive assumption. For $\eta \in \sum_{\alpha_{i} \in \Pi_{\text{re}}^{+}} \mathbb{Z}_{\geq 0} \alpha_{i}$ with $\eta \leq \beta$, we obviously have $M_{\beta}' - \eta \subset M_{\gamma}$ for any $\gamma < \beta$. Hence we have $M_{\beta}' - \eta \subset M_{\gamma}$ for any $Q_{+} \ni \gamma < \beta$ and $Q_{+} \ni \eta \leq \beta$. We write $M_{\beta}' = \bigcap_{i=1}^{m} (v_{i} + K)$ for $v_{i} \in \sum_{\alpha_{i} \in \Pi_{\text{re}}^{+}} \mathbb{R} \alpha_{i}$. Because the set $V = K \cap (-\sum_{\alpha_{i} \in \Pi_{\text{re}}^{+}} \Re > 0 \alpha_{i})$ is an open convex cone in $\sum_{\alpha_{i} \in \Pi_{\text{re}}^{+}} \mathbb{R} \alpha_{i}$, we can write $v_{i} = x_{i} - y_{i}$ with $x_{i}, y_{i} \in V$ for each i, since $V - V = \sum_{\alpha_{i} \in \Pi_{\text{re}}^{+}} \mathbb{R} \alpha_{i}$. Then we have

$$M_{\beta}' = \bigcap_{i=1}^{m} (v_{i} + K) \supset \bigcap_{i=1}^{m} (x_{i} + K) \supset K + \sum_{i=1}^{m} x_{i},$$

since $K \supset V$ is a convex set. So we put $\mu_{\beta} := \sum_{i=1}^{m} x_{i} \in V$, and $M_{\beta} := \mu_{\beta} + K \subset K$. It is obvious that the set M_{β} is really a nonempty open connected set in \mathfrak{h}^{*}.

We proceed by induction on $\beta \in Q_{+}$. Let us fix $\beta \in Q_{+}$ and show that the functions $\varphi_{k,m} \in \mathcal{F}$ with $k, m \in \text{Par} \beta$ can be extended to holomorphic functions on the domain $-\rho + M_{\beta}$. We have $M_{\beta} - \eta \subset M_{\gamma}$ for any $\gamma < \beta$ and $\eta \leq \beta$. Therefore the entries of the
matrices $G^\beta_\gamma(\cdot)$ for $\gamma < \beta$ are holomorphic on $-\rho + M_\beta$, since the functions $\varphi_{s,t}(\cdot)$ with $s,t \in \text{Par}\gamma$ are holomorphic on $-\rho + M_\gamma$ for $\gamma < \beta$. Hence, by the equation (*) in the proof of Theorem 1, we have only to show that the functions $\varphi_{k,m}$ with $k,m \in \text{Par}\beta$ can be holomorphically extended on $-\rho + M_\beta$ across the finitely many affine hyperplanes $T_{n\alpha}(\cdot) = 0$ for $\alpha \in \Delta_+$, $n \in \mathbb{Z}_{\geq 1}$ with $n\alpha \leq \beta$. Furthermore, by part (1) of Lemma 3, we may assume that $\alpha \in \Delta_+^{re}$.

Let us fix arbitrary $\alpha \in \Delta_+^{re}$ and $n \in \mathbb{Z}_{\geq 1}$ with $n\alpha \leq \beta$, and consider the set

\{$\Lambda \in -\rho + M_\beta \mid T_{n\alpha}(\Lambda) = 0$\}. We now want to apply Lemma 4 to the case where $B = B_\beta^\Lambda$ and $C = \varphi(\Lambda)I_N - \sum_{\gamma < \beta} G^\beta_\gamma(\Lambda)$ with $N = \dim_{\mathbb{C}} M(\Lambda)_{\beta-\gamma}$ and $s = \#(\text{Par}(\beta - n\alpha))$ (remark that $\dim_{\mathbb{C}} g_\alpha = 1$ for $\alpha \in \Delta_+^{re} = W \cdot \Pi^{re}$). So we will show that for any $\Lambda \in -\rho + M_\beta$ with $T_{n\alpha}(\Lambda) = 0$, we have

$$\varphi(\Lambda)I_N = \sum_{\gamma < \beta} G^\beta_\gamma(\Lambda).$$

Because the entries of the matrices $G^\beta_\gamma(\cdot)$ with $\gamma < \beta$ are holomorphic on $-\rho + M_\beta \subset -\rho + K$, we may assume that $T_{m\alpha'}(\Lambda) \neq 0$ for all $\alpha' \neq \alpha \in \Delta_+$ and $m \in \mathbb{Z}_{\geq 1}$ (recall that $\mathfrak{h}^* \setminus L$ is dense in \mathfrak{h}^*). Then, by [KK, Prop. 4.1 (b) and the formula (4.2) on p. 106], we can deduce that the kernel $J(\Lambda)$ of the contravariant bilinear form $B^\Lambda(\cdot, \cdot)$ on the Verma module $M(\Lambda)$ is isomorphic to $M(\Lambda - n\alpha)$, where $B^\Lambda(F^kv_\Lambda, F^mv_\Lambda) = \delta_{\beta,\gamma} B^\beta_\gamma(F^k, F^m)$ for $k \in \text{Par}\beta$, $m \in \text{Par}\gamma$. Let $R := M(\Lambda)_{\beta-\gamma} \cap J(\Lambda) \cong M(\Lambda - n\alpha)_{(\Lambda - n\alpha)(\beta - n\alpha)}$. Since $J(\Lambda)$ is the kernel of the contravariant bilinear form $B^\Lambda(\cdot, \cdot)$ on $M(\Lambda)$, the matrix of the operator z_φ on R is $\sum_{\gamma < \beta} G^\beta_\gamma(\Lambda)$. We will show that the operator acts as the scalar $\varphi(\Lambda - n\alpha)$ on R. As in the proof of part (1), it suffices to show that the following equation (is well-defined and) holds for this $\Lambda \in -\rho + M_\beta$:

\[(**)
\phi_{\beta-n\alpha}(\Lambda - n\alpha)B^\Lambda_{\beta-n\alpha} + \sum_{\gamma < \beta-n\alpha} G^\beta_{\gamma-n\alpha}(\Lambda - n\alpha) = \varphi(\Lambda - n\alpha)\text{Id.}\]

(Note that $(\Lambda - n\alpha) - (\beta - n\alpha) = \Lambda - \beta$. Here we have $F^s\varphi_{s,t}(F^t)v = \varphi_{s,t}(\lambda - (\beta - n\alpha) + \gamma)F^s\sigma(F^t)v$ for $v \in M(\Lambda)_{\lambda-(\beta-n\alpha)}$ with $\lambda \in -\rho - n\alpha + M_\beta$ and $s,t \in \text{Par}\gamma$.)
with $\gamma \leq \beta - n\alpha$. So, for each $\gamma \leq \beta - n\alpha < \beta$, the entries of the matrix $G_{\gamma}^{\beta-n\alpha}(\cdot)$ (including $\Phi_{\beta-n\alpha}(\cdot)$) are holomorphic on $-\rho - n\alpha + M\beta$ by the inductive assumption, since $\lambda \in -\rho - n\alpha + M\beta$ implies $\lambda - (\beta - n\alpha) + \gamma = \lambda + n\alpha - (\beta - \gamma) \in -\rho + M\gamma$. On the other hand, for each $\lambda \in \mathfrak{h}^* \setminus L$, the equation $(\star\star)$ with Λ replaced with λ holds by (the proof of) Theorem 1. Hence, by taking the limit, we have the equation $(\star\star)$ for Λ above. Thus the operator $z \varphi$ acts on $R \cong M(\Lambda - n\alpha)_{\Lambda \beta} -$ as the scalar $\varphi(\Lambda - n\alpha)$.

Due to Lemma 4 above, we deduce that the functions $\varphi_{k,m}$ with $k, m \in \text{Par} \beta$ have a removable singularity at any $\Lambda \in \{\Lambda \in -\rho + M\beta \mid T_{n\alpha}(\Lambda) = 0, \text{ and } T_{m\alpha'}(\Lambda) \neq 0 \text{ for } \alpha' \neq \alpha \in \triangle_{+}^{re}, m \in \mathbb{Z} \geq 1 \text{ with } m\alpha' \leq \beta\}$. Then we quote the theorem (cf. [GR, Theorem 1.8]) which asserts that a function of at least two complex variables can be holomorphically extended across the intersection of finitely many (but at least two) affine hyperplanes. Therefore we have proved that the functions $\varphi_{k,m}$ with $k, m \in \text{Par} \beta$ can be extended to holomorphic functions on $-\rho + M\beta$.

Remark 2. Let $f \in S(\mathfrak{h})$ be W-invariant. Then the function $\varphi(\cdot) \in \mathcal{F}$ defined by $\varphi(\lambda) := f(\lambda + \rho)$ $(\lambda \in \mathfrak{h}^*)$ satisfies the conditions of Theorem 2 (see the proof of part (2) of Lemma 3).

Finally we consider the domain $-\rho + K - Q_+$ in part (1) and the domain $-\rho + \cap_{\beta \in Q} M\beta$ in part (2) of Theorem 2 above in the case of indefinite type.

We prepare the following lemma, which can be proved almost in the same way as in the case of Kac-Moody algebras (cf. the proof of [K1, Proposition 5.8 c])).

Lemma 5. Let $g(A)$ be the GKM algebra associated to a GGCM of indefinite type. Then we have

$$X^- = \{\lambda \in \mathfrak{h}_R^* \mid (\lambda | \alpha) \geq 0 \text{ for all } \alpha \in \triangle_{+}^{im}\}.$$

We now have the following proposition.

Proposition 2. Let $g(A)$ be the GKM algebra associated to a GGCM $A = (a_{ij})_{i,j \in I}$ of indefinite type with $a_{ii} = 2$ for some $i \in I$. Then we have $K \subsetneq K - Q_+$, and $\cap_{\beta \in Q_+} M\beta = \emptyset$.
Proof. We first show that there exists a positive imaginary root \(\alpha \in \Delta_{+}^{im} \) and a real simple root \(\alpha_{i_{0}} \in \Pi^{re} \) such that \((\alpha|\alpha_{i}) > 0 \) for all \(i \in I \). Take \(i_{0} \in I \) with \(a_{i_{0}i_{0}} = 2 \), and put \(\alpha := r_{i_{0}}(\alpha') \). We have \((\alpha|\alpha_{i_{0}}) = (r_{i_{0}}(\alpha')|\alpha_{i_{0}}) = -(\alpha'|\alpha_{i_{0}}) > 0 \), and \(\alpha \in \Delta_{+}^{im} \) since the set \(\Delta_{+}^{im} \) is W-stable.

If \(K - \alpha_{i_{0}} \subset K \) for this \(\alpha_{i_{0}} \), then we obviously have \(X^{o} - \alpha_{i_{0}} \subset X^{o} \) since \(K = X^{o} + \sqrt{-1} h_{R}^{*} \). Then we have \(X^{-} - \alpha_{i_{0}} \subset X^{-} \) since \((X^{o})^{-} = X^{-} \) from the convexity of the set \(X \). Because \(0 \in X^{-} \), we get \(-\alpha_{i_{0}} \in X^{-} \), so that \((\alpha_{i_{0}}|\alpha) \geq 0 \) by Lemma 5. This is a contradiction. Hence we have \(K - \alpha_{i_{0}} \not\subset K \), so that \(K \not\subset K - Q_{+} \).

Let \(x \in \cap_{\beta \in Q_{\rho}} M_{\beta} \). Then we have \(x - \beta \in M_{\beta} - \beta \subset K \) for all \(\beta \in Q_{+} \). Because \(K \ni x \) is an open convex cone, we can easily deduce that \(K - \beta \subset K \) for all \(\beta \in Q_{+} \), which contradicts the fact that \(K \not\subset K - Q_{+} \) just proved above. \(\square \)

REFERENCES

〒 305 つくば市天王台 1-1-1
E-mail address: naito@math.tsukuba.ac.jp