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The chordal norm of Kleinian groups
Harushi Furusawa(Kanazawa Gakuin Univ.)

Let M6b denote the group of all orientation preserving mobius transformations of the
extended complex plane C' = C' U {co}. We associate with each

az+b
cz+d

flz)= € Méb,ad —be=1,

the martix

A= (Z 2) € SL(2, C)

and set tr(f) = tr(A), where tr(A) denote the trace of A. Note that tr( f) is defined up
to sign. The matrix norm m(f) is defined by

mU%ﬂA—A4W=MGCW+MW+MdP

The quantity m(f) is independent of the ch01ce of A representing f
For each f and g in M6b we let [f, g] denote the multiplicative commutator fgf—1g~1.
We call the three complex numbers

B(f) = tr*(f) — 4, 8(g) = tr2(g) — 4,7(f,g) = tr((f, ) — 2,

the parameters of the two generator group < f,g >. These parameters are independent
of the choice of representative matrices for f and g, and they determine < f,g > up to
conjugacy whenever v(f,g) # 0. We derive a lower bound for the distance in the metric

of ' .
(1) d(f,g) = sup{g(f(2),9(2)); 2 € C}

where < f, g> is a Kleinian group generated by f,g in M&b and q denotes the chordal
distance in C,

4]z — w|? |
|21? + 1) (jw]? + 1)

,q@m0=(

A mobius transformation A is said to be a chordal isometry if

q(h(2), h(w)) = q(z,w)

for all z,w € & , then m(f) is invariant with respect to conjugation by chordal isometries.
If f € Mob with fiz(f) = {21, 22},then
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Lemma 1. Let f be loxodromic or elliptic with fiz(f) = {21, 22} then

) 20| = 22 smi )

Proof. All quantities in (2)'are invariant with respect to conjugation by chordal isome-
tries. Therefore by means of such a conjugation we may arrange that z; = —rand 2, =1
where 0 < r < 1. Then f is represented by

a br
A: b2: 2— .
(br‘l a)’ @ -1

and m(f)? =|| A— A~ ||>= (r? + r~2)|2b/>. Thus we

72+1 £}

Henceb,B(f) - 4b%,q(—r,7) =

have '

8—g(=nr)
g(—r,1)?

Lemma 2. Suppose that f is in Méb \ {id} with d(f,id) < 2. If f has two fixed points
and if 20 is the argument of its multiplier, then

m(f)? =2 1B(f)I-

2 | 2 d(fa Zd)z
(3) . m(f)* < 8cos HWY

with equality if and only if f has antipodal fixed points.

Lemma 3. If f is elliptié of order n,then
@ o d(fid) 2 2sin(D)

with equality if and only if n = 2 or f is primitive with antipodal fixed points.
Proof. If f has order n and fiz(f) = {—r,r}, then m(f)? = 4(r? + r~2)sin® § where
0 =kn/n and 1 < k < n. Thus if d(f,id) < 2, we have

16(r? + r~2) sin® 0
= 8cos? 6+ 4(r2 + r—2)sin®§ ~

> 45in% 6

d(f,id)* >
from Lemma 2, and the right hand side of above inequality is an incresing in (r®+r~2). We
derive d(f,id)? > 4sin? @ > 4sin® 7/n with equality when n > 2 if and only if r = k = 1.
Lemma 4. If f and g are in M&b, then

. L %
4y(f,9)l2
Y
2+ (f,9)I2

Proof. If A and B are in SL(2,C), then || AB—BA|?)< 3 || A=A |} B—B7! ||~
Suppose that f and g are represented by A and B in SL(2,C), then we have |v(f, g)| =

(5) mex{d(f,id), (g, id)} > {
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ltr({4, B]) = 2| = |det((AB)(BA)™" — I)| = |det(AB — BA)| < } || AB — BA ||2< I
A—-A|*| B—- B 2= xm(f)? ( )2.It is easily seen that

8d(f, id)?
m(f)? < Z—-_d(m)—i’

from Lemma 2 where equality holds if f is either the identity or hyperbolic with antipodal
fixed points. Without loss of generality, set m(g) < m(f), then we have

82
4—d?

(£, 9)1F < m(f)m(g) < m(f)? <
Therefore we have the result.

Lemma 5 Suppose that f and g are in Méb and that f(H) = g(H) = H: If f and g
are hyperbolic with v(f,g) < 0, then there exists h in M6b such that h(H) = H and

26(f1) = m(f1)%,28(g1) = m(g1)?, where f, = hfh‘l,gl = hgh~! and each of f1,gl have
antipodal fixed points.

Theorem 6 Suppose that < f,g > is a Kleinian subgroup of Mob and that f and g have
no common fixed point and are not both of order 2. Then

(6) max{d(f,g),d(f 1,7} > ki

where ki is an absolute constant, 0.853 < k; < 0. o11.. v -
Proof. Let v = v(f,g) = 7(fg~',g7") and § = ﬂ(fg‘l) = B(g7'f). If fg7'is
of order n and where n = 2,3,4, or 6, then d(f,g9) = d(fg~!,id) > 2sin(r/n) from
Lemma 3. If v(fg~',g7Y) = B(fg™'), then [M2] lmplies that fg~! is elliptic of or-
der 2,3,4,0or 6 or g is elliptic of order 2. Therefore we assume that v # §,and con-
sider the subgroup < fg71,g7!'f >=< fg g (fgl)g > of < fg~',¢g7! > with
Y(fg 9 ) =v(fg g W {v(fg g — B(fg")} = (v — B) # 0.Thus we have

(7) | (fg~t g7 )] > 2 — 2cos(n/7)

Therefore we have

max{d(f,g),d(f",¢""} = max{d(fg™",id),d(g™",id)}
[4(2cos(F) —2cos(F) + 1)
2005( ) — 2cos(§) + 3

1
2
) > 0.853.

From now on, we show an upper bound ford, let < ¢, > denote the (2,3,7) triangle group
acting on the upper half plane H with ¢? = ¢3 = (¢))" = id and set f = ¢ and g = ¢
Then v = tr([¢,v]) — 2 = 2 cos(%) —1,8= ‘trz([cﬁ, ¥]) —4 = 2(cos(&) +cos(2)—1) >0
where fg™! = [#,¢].Hence fg~! and g~ f are hyperbolic with v(fg~1,g71f) = v(v—8) <
0. Then Lemma 5 show that there exists a mobius transformation h of H such that
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fix(hfg~1h™1) = {21, 2} and fix(hg~1fh~1) = {wi,ws} where g(21,22) = q(w1,ws) = 2.
Then 28(hfg 'h~') = m(hfg~*h )%, 28(hg*fh7!) = m(hg~'fh=1)? and hfg~'h7!
and hg~!fh~! are both hyperbolic with antipodal fixed points. Therefore we have the

result
2 T 1\ 3
o - aira= (SR
COS 2n O my %
d(f g™ = dlg7'f,id) =2 (COSE : ; iZo:E;—; + 1)

from Lemma 2 and hence that k; < 0.911.

Theorem 7 Suppose that f and g are elements of a Kleinian subgroup G of Méb which
are not both of order 2,3,4,or 6. Then f and g commute or

®) max{d(f,g),d(f ", g} = ki

Proof. It suffices to consider the case Where"y( f,g9)=0and fg# gf ,then

fiz(f) 0 fizlg) # ¢, fiz(f) # fiz(g)

Then < f,g > is elementary and h = [f,g] is parabolic. We complete the proof by
showing that fg=! is elliptic of order n(= 2,3,40r6) and d(f,g) = d(fg~*,id) > 1.

Suppose that fiz(h) = {co}. If f or g, say f, is parabolic, then g is elliptic of order
2,3,4 or 6 and an elementary calculation shows that thevsame is true of fg~L.If f and ¢
are both elliptic, then :

[(@) =vetagls)=ps+afgie) = ate
where P = p? = (£)"=1,p,q € {2,3,4,6} and r € {1,2,3,4,6}. By hypothesis p # q,
v # pand fg~! is of order 2,3,4,6.

Example. If f(z) = Az and g(2) = Az — ¢ where \? = 1,0 < |¢| £ 2 and p = 2,3, 4or6,
then < f,g > is discrete while

8c|

d(f,9) =d(f 17" = Tl

asc— 0. It is necessary to make the hypothems that f and g are not both of oder 2,3,4
or 6 in Theorem 7.

Remark. For each 1 < b < a < oo let f = fogo and g = go where

B+ 1)z+2b

fo(2) = a’2,90(2) T Ozt (BBt 1)
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Then < f, g > is'nonelementary Kleinian while

®  do-dp=2(5) -0

a®?+1
as a — 1 . Hence there exists no universal lower bound for d(f, g) and d(f~,g71).

These theorems give a geometric estimate of how different two mobius transformations
must be in order to generate a nonelementary Kleinian group.

Theorem 8 Suppose that < f,g > is a Kleinian group and f and g have no common
fixed point and are not both of order 2. If fg is also not of order 2, then

(10) max{d(fg, ), d((f9)™", () )} > k.

Proof. Suppose that g is not of order 2 and let v = v(f,g) and 8 = B(fg). f vy =8,
then B([f,9]) = v(v + 4) = —3, —4 and thus that [f, g| is elliptic of order 2 or 3. Hence

d(fg,9f) = d([f,g],id) > V3.

Otherwise < fg,9f >=< fg,9(fg)g™! > is Kleinian with

Y(f9,9F) = v(f9,9{(f9,9) — B(fg)} = v(v = B) #0,

then k; > 0.853 from Theorem 6. Next let < f,g > be the group which (6) holds with
equality in Theorem 6. Then f = ¢ and g = ¥¢ where < ¢,9 > is the triangle group
with ¢? = ¢3 = ()" = id and we obtain

d(f,g) =d(f',g7") = 0.911.
from Theorem 5. Hence the group < ¢, > shows that k; < 0.911.

- Gehring and Martin showed that if < f,g > is a nonelementary Kleinian subgroup of
Méb , then

au m(f)m(g)24(\/§f1):1.656..,

follows from J ¢ rgensen’s inequality and the proof of Lemma 4. In the proof of Lemma
4, we have 16|y(f, g)| < m(f)*m(g)? and if < f,g > is a nonelementary Kleinian group
then , m(f)m(g) > 44/|7(f, g)| > 1.780. ,

The following result shows that the average of the chordal norms of the generators
f and g is always bounded below by a constant k; and d(g,id) — 2 as d(f,id) — 0

uniformly in the collection of all nonelementary Kleinian groups < f,g >.

Theorem 9 Suppose that < f, g > is nonelementary Kleinian group of M ob. Thén

(12) d(f,id) + d(g,id) > 2ky,2d(f,id) + d(g,id) > 2
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Proof. We may assume that 2a = d(f,id) + d(g,id) < 2 in the proof for both parts of
(12) and that d(g,id) < d(f,id) in the proof for the first inequality in (12). Next above
assumption together with the first inequality in (12) imply 2 < 23{d(f,id) + d(g,id)} <
2d(f,id) + d(g, id) whenever d(f,id) > d(g,id), hence we may also assume that d(f,id) <
d(g,id) in the proof for the second inequality in (12). Then d ( f,id) = a—z and d(g, ’Ld)

a + r where 0 < z < a and we obtain

from Lemma 4. Let ¢(z) = {4(a—z)2—1}{4(a+z)~2—1} and ¢(z) < 4{2—2cos(m/7)}
by Cao. Since $(z) is increasing with respect to [0,a) where 0 < a <1 and we have

- ( yh(f,9)l )2
2

+4/h(£, 91/

This establishes the first part of (12) with k; > 0.853...
- If 2 — d(g,id) > 2d(f,id), then a + z < 2{1 — (a — =)} and

$(y) = @y - ){A - )2 — 1} < §(2)

where y = a — z. By elementary calculus,

Y(y) = -8y 2(1—y) 3Gy —2)(y—2)
Ply) > ¥(2/5) > 40 > 4{2 — 2cos(m/7)}}

for 0 < y < 1 and we have a contradiction. This establiéhes the second part of (12).
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