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Abstract. We study a higher order unification procedure based on proof
nets. In this paper, we present a higher order pre-unification algorithm
for intuitionistic implicational multiplicative fragment of proof nets and
show termination, soundness and completeness for the algorithm. It is
discussed that an extension to exponential connectives can be easily done.
Moreover, comparisons of Cerversalo and Pfenning’s work are also dis-
cussed.

1 Introduction

Higher-order unification has been studied in many literatures, e.g., [Hue75, SG89,
Wo193]. As a part of implementations of theorem provers, it has been used
[Pau86](more precisely, higher-order pre-unification algorithm has been used).
Higher-order unification is a procedure that when two lambda terms $s$ and $t$

are given, find a substitution $\theta$ for terms such that $\theta s$ and $\theta t$ is equal under a
equality relation. The idea of the procedure is described as folows: at first, try
to unify the heads of $s$ and $t$ , and if it succeeds, then try to unify all arguments
of $s$ and $t$ .
In this paper, we study higher order unification procedure based on proof nets.
In this paper, we only consider intuitionistic fragment of MELL proof net by
using Danos-Regnier polarity. An attempt to restrict higher order unification to
a weaker fragment was done in [Mi191]. This system is called $L_{\lambda}$ . Our study is
also a similar attempt. While higher order unification on $L_{\lambda}$ is a decidable and
deterministic system, our higher order unification without exponential connec-
tives is a decidable and nondete.rministic system.
Recently, higher order unification via explicit substitutions has been proposed
[DHK95]. Obviously our system is simpler than that w.r.t the definition of sub-
stitutions and unification procedure and like their system our system with ex-
ponential connectives can also simulate higher order unification based on simply
typed lambda calculus (via Girard’s translation from intuitionistic logic to Linear
Logic).

2 IIMELL proof nets

In this section, we introduce proof nets for implicational intuitionistic multi-
plicative exponential fragment with $\mathrm{T}$ of Linear Logic with (IIMELL). IIMELL
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$\mathrm{w}\mathrm{i}\dot{\mathrm{t}}\mathrm{h}\mathrm{o}\mathrm{u}\mathrm{t}$ exponential connectives is called IIMLL.
We assume that readers are familiar with proof nets of the multiplicative expo-
nential fragment of Linear Logic (MELL). As references, we list [ $\mathrm{G}\mathrm{i}\mathrm{r}95\mathrm{b}$ , Laf95].
We only list links which we use in this paper.

$\mathrm{I}\mathrm{D}$ -links
$\overline{AA^{\perp}}$

Cut links $\frac{AA^{\perp}}{\mathrm{C}\mathrm{u}\mathrm{t}}$ times links $\frac{AB}{A\otimes B}$ par links $\frac{AB}{A\wp B}$

$\mathrm{d}$-links $\frac{A}{?A}$
$\mathrm{w}$-links ?A $\mathrm{c}$-links $\frac{?A\cdots?A}{?A}$

Deflnition 1 (polarized formulas). A formula of IIMELL is a pair $\langle A,p\rangle$

where $A$ is a formula of MELL in the usual sense and $p$ is a element of $\{+$ , - $\}$ .
$+\mathrm{a}\mathrm{n}\mathrm{d}$ –are called Danos-Regnier polarity. A formula $\langle A,p\rangle$ can be written as
$A^{p}$ . A formula of IIMELL is called polarized formula. A formula $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}+(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}$ .
-) polarity is $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{d}+$ -formula or positive formula (resp. –formula or negative
formula).

Definition 2. For each formula $X^{+}$ (or $X^{-}$ ) of IIMELL, we define its dual for-
mula $(X^{+})^{*}$ (or $(X^{-})^{*}$ ) inductively as folows (notice that we omit the definition
of the dual for.mulas that we do not use in IIMELL proof nets actually):

1. If $p$ is an atomic formula (in the usual sense), then $(p^{+})^{*}\equiv(p^{\perp})^{-}$ and
$((p^{\perp})^{-)}*\equiv p^{+};$

2. $((B\otimes C)-)*\equiv(B^{*}\wp C*)^{+};$

3. $((B\wp C)^{+})^{*}\equiv(B^{*}\otimes c*)^{-};$

4. $((!B)^{+})^{*}\equiv(?B^{*})^{-};$

5. $((?B)^{-)^{*}\equiv}(!B*)^{+}$ .

Definition 3. An IIMELL proof net is an MELL proof net $\Theta=(V,E)$ except
that

1. $V$ is a multiset of polarized formulas;
2. $\mathrm{I}\mathrm{D}$ -links and Cut-links are changed to

$\mathrm{I}\mathrm{D}$-links
$\overline{AA^{*}}$

Cut links $\frac{AA^{*}}{\mathrm{C}\mathrm{u}\mathrm{t}}$ ;

3. Any signs of formulas in $V$ and links in $E$ must satisfy one of following
conditions:
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$\mathrm{I}\mathrm{D}$-links
$\overline{+-}$ $\overline{-+}$

Cut links $\frac{+-}{\mathrm{C}\mathrm{u}\mathrm{t}}$ $\frac{-+}{\mathrm{C}\mathrm{u}\mathrm{t}}$

times links
$\underline{+-}$ $\underline{-+}$

par links $\frac{-+}{+}$ $\frac{+-}{+}$

$\mathrm{d}$-links – $\mathrm{w}$-links $\mathrm{c}$-links $–\cdots--$

Theorem 4. IIMELL proof nets are sequentializable $w.r.i$ . IIMELL sequent cal-
culus.

Proof. By using sequentialization theorem for MELL proof nets. $\square$

Proposition 5. Any IIMELL proof net $\Theta$ has exacdy one $+$ -formula in the
multiset of conclusions of $\Theta$ .

3 Higher Order Unification Based on IIMELL Proof Nets

3.1 Preliminaries

In this subsection, we define higher order unification problems for IIMELL proof
nets.
By Proposition 5 in Section 3, any IIMELL proof net $\Theta$ has exactly one $+-$

formula in the multiset of the conclusions $\mathrm{o}\mathrm{f}\ominus$ .

Deflnition 1. For any two IIMELL proof nets $\Theta_{1}$ and $\Theta_{2}$ , if $\mathrm{t}\mathrm{h}\mathrm{e}+$-formula $A^{+}$

in the conclusions of $\Theta_{1}$ is the same formula as that of $\Theta_{2}$ , then we say that $\Theta_{1}$

and $\Theta_{2}$ have the same type $A$ .

Definition 2. –formulas in the conclusions of an IIMELL proof net $\Theta$ are
called free ports of $\Theta$ . $\mathrm{T}\mathrm{h}\mathrm{e}+$-formula in the conclusions of an IIMELL proof net
$\Theta$ is called the principal port of $\Theta$ . If $\Theta$ does not have any free port, then we say
that $\Theta$ is closed.

Free ports in $\Theta$ may be regarded as free variables in lambda terms.

Definition 3. For each IIMELL formula $A^{-}$ , we assume given a countably infi-
nite set of names of the formula, denoted $PN_{A}$ , and let $PN=$ $\cup$ $PN_{A}$ .

$A$ is an IIMELL formula
An object proof net is an IIMELL proof net $\Theta$ with a set of names from $PN$

such that to each free port in $\Theta$ , distinct name from each other is assigned. Let
us call the set of names of free ports in an object proof net $\Theta$ be $\mathcal{F}PN(\Theta)$ .
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Definition 4. A substitution $\theta$ is a set of IIMELL object proof nets with set
of names $\mathrm{f}_{\mathrm{r}}^{-}\mathrm{o}\mathrm{m}PN$ such that to each principal port of proof nets in $\theta$ , distinct
name from each other is assigned.

Deflnition 5. If $\Theta$ is an IIMELL proof net and $\theta$ a substitution, then $\theta\Theta$ is
defined as follows: if the dual of a free port $A^{-}$ in $\Theta$ is the same type as the
principal port $B^{+}$ of a proof net $\Lambda$ in $\theta$ and the name of $A^{-}$ is the same name
as that of $B^{+}$ , then connect $\Lambda$ with $\Theta$ via $A^{-}$ and $B^{+}$ by using a Cut-link.

Fig. 1. a substitution on proof nets

Deflnition 6. A proof net pair is a pair of object proof nets $\Theta_{1}$ and $\Theta_{2}$ with
the same type denoted by $\langle\Theta_{1}, \Theta_{2}\rangle$ . A substitution $\theta$ is called a unifier of a pair
$\langle\ominus_{1},\Theta_{2}\rangle$ if $\theta\Theta_{1}=\theta\Theta_{2}$ . A proof net system $S=\{\langle\Theta_{1}^{i}, \Theta_{2}^{i}\rangle|1\leq i\leq n\}$ is a
multiset of proof net pairs. A unifier of a proof net system $S$ if it unifies each
pair of $S$ .

An unification problem is the problem that find unifiers of a proof net system
$S$ .
We assume that for any proof net system $S=\{\langle\Theta_{1}^{i}, \Theta_{2}^{i})|1\leq i\leq n\}$ from
which we start unification procedure, for any $1\leq i,j\leq n$ and $1\leq k,\ell\leq 2$ ,
$\mathcal{F}PN(\Theta_{k}^{i})\cap \mathcal{F}PN(\Theta_{\ell}^{i})=\emptyset$ .

Notice that a name from $PN$ must not occur in a proof net more than two
times but may occur in a proof net system more than two times.

The equality $=\mathrm{w}.\mathrm{r}.\mathrm{t}$ . IIMELL proof nets we consider is equality modulo ID-
reduction, multiplicative-reduction, four exponential $\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}-\mathrm{d}_{-\mathrm{r}\mathrm{e}}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ ,
$\mathrm{w}$-reduction, $\mathrm{c}$-reduction and $!_{-}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ –and $\overline{\eta}$-reduction. Moreover, every
\dagger -box is regarded as all equal.’
Figure 2 represents $\overline{\eta}$-reduction and Figure 3 represents $\mathrm{I}\mathrm{D}$-reduction and Multiplicative-
reduction. Figure 4 represents exponential-reductions.

When $\Theta$ is an IIMELL proof net, let $\Theta’$ be an IIMELL proof net obtained
by applying the above eight reductions from $\Theta$ until the reductions do not apply
to $\Theta’$ and call $\Theta’$ the $\overline{\eta}$-normal form of $\Theta$ . The strong normalization theorem for

4



Fig. 2. $\overline{\eta}$-reduction on proof nets

Fig. 3. ID and Multiplicative reductions

this system is obtained from basic proof theory.
As in the same manner $0\dot{\mathrm{f}}$ higher order unification based on lambda terms, con-
stants may be considered. Constants are regarded as one-node proof nets:

$f$ : $A^{+}$

The one node proof net must has $\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{y}+$ , and must be labeled by labels
that are distinct from $PN$. We denote labels for constants by $f,g$ and $h$ . In an
IIMELL proof net, several constants with the same label may be occurred.
Figure 5 shows any normal form $\Theta$ of IIMELL proof nets.

A formula $(X^{-}\wp \mathrm{Y}^{+})^{+}$ is abbreviated by $(X-\mathrm{o}\mathrm{Y})^{+}$ and $(X^{+}\otimes \mathrm{Y}^{-})^{-}$ is
abbreviated by $(X-\mathrm{o}\mathrm{Y})^{-}$ .
In Figure 5,

1. $p$ is an atomic formula.
2. Each $e_{i}(1\leq i\leq m)$ is an IIMELL proof net with $A_{i}^{+}$ as the principal port.
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Fig. 4. Exponential reductions

Fig. 5. normal forms of IIMLL proof nets
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3. $B_{1}^{-},$ $\ldots,B_{n}^{-}$ may occur in ( $A_{1}-\mathrm{O}\ldots-0A_{m}-\mathrm{o}p\mathrm{I}^{-}$ (in only former figure) or
in free ports of $e_{1},$ $e_{2},$ $\ldots$ or $e_{m}$ . The principal port of $\Theta$ is $(B_{1}-\mathrm{o}B_{2n}-0\cdots-\mathrm{o}B-\mathrm{o}p)+$ .

4. The free ports of $\Theta$ are $(A_{1}-0\ldots-\mathrm{o}A_{m}-\infty p)-$ ( $\mathrm{i}\mathrm{n}$ only former figure) and
free ports of $e_{1},$ $e_{2},$ $\ldots$ , $e_{m}$ except for $B_{1}^{-},$ $\ldots$ , $B_{n}^{-}$ .

5. $(A_{1}-\mathrm{O}\ldots-\mathrm{o}A_{m}-\mathrm{o}p)-\mathrm{i}\mathrm{n}$ former figure and $f$ : $(A_{1m}-0\ldots-0 A-\mathrm{o}p)+\mathrm{i}\mathrm{n}$

latter figure are called the head of $\Theta$ . $e_{1},$ $\ldots,$ $e_{m}$ are called arguments of $\Theta$ .
6. $B_{1}^{-},$ $\ldots,B_{n}^{-}$ are called bound ports of $\Theta$ . If a bound port $B_{i}(1\leq i\leq n)$ is

a free port of $e_{j}$ for some $1\leq j\leq m$ , then we say that $B_{i}$ belongs to $e_{j}$ and
if $B_{i}$ is the head $(A_{1}-\mathrm{O}\cdots-0A_{m}-\mathrm{o}p)-_{\mathrm{O}}\mathrm{f}\Theta$ , we say that $B_{i}$ belongs to the
head of $0$ .

Deflnition 7 (lengths of formulas). The length of an IIMLL formula $\xi=$

$B_{1^{-0\cdots-0}}B_{n}-\mathrm{o}p$ is $n$ , where $p$ is an atomic formula. In $\xi,$ $B_{i}(1\leq i\leq n)$ is
called an argument of $\xi$ .

Definition 8 (the base atomic formulas). The base atomic formula of a for-
mula $A_{1}-0\cdots-0A_{n}-\mathrm{o}p$ (where $p$ is an atomic formula) is $p$ .

Definition 9 (rigid and flexible proof nets). If the head of $\Theta$ is a bound
port or constant, then we say that $\Theta$ is a rigid proof net and if it is a free port,
then we say that $\Theta$ is a flexible proof net.

Definition 10. The depth of a normal proof net $\Theta$ is inductively defined as
follows:

1. $ID$-links have depth 1.
2. If $\Theta$ has the arguments $e_{1},$ $\ldots$ , $e_{m}$ and the depth of each $e_{i}$ is $d_{i}$ , then the

depth of $\Theta$ is $m+ \sum_{1\leq i\leq m}d_{i}$ .

3.2 Higher Order Uniflcation Algorithm

In this subsection, we describe our higher order unification algorithm.

Deflnition 11 (partial bindings). We define partial bindings for two proof
nets $\Theta_{1}$ and $\Theta_{2}$ with the same formulas w.r.t. the principal port (let the formula
be $C_{1}-\mathrm{O}\cdots-0C\ell-\mathrm{o}p$). Let the head of $\Theta_{1}$ be $A_{1}-0\cdots-\mathrm{o}A_{m_{1^{-\mathrm{O}}}}p$ and that of
$\Theta_{2}$ be $B_{1}-0\cdots-\mathrm{o}Bm_{2}-\infty p$.

Partial bindings are classified in the folowing way:

1. flexible-flexible imitation partial bindings:
If both heads of $\Theta_{1}$ and $\Theta_{2}$ are free ports, then the partial bindings can be
available.
For each of $\Theta_{1}$ and $\Theta_{2}$ the unique partial binding is determined: $\mathrm{T}$-box proof
net.
Let the unique partial binding of $\Theta_{1}$ (resp. $\Theta_{2}$ ) be $\theta_{1}$ (resp. $\theta_{2}$ ).
The principal port of $\theta_{1}$ (resp. $\theta_{2}$ ) is $A1^{-0\cdots-0}Am1-\infty p$ (resp. $B_{1^{-0\cdots-0}p)}B_{m_{2^{-0}}}$ .
Figure 6 show $\theta_{1}$ and $\theta_{2}$ .
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Fig. 6. partial bindings constructed by using $\mathrm{T}$-boxes for $\Theta_{1}$ and $\Theta_{2}$

2. flexible-rigid imitation partial bindings:
If one head of $\Theta_{1}$ or $\Theta_{2}$ is a free port and the other head is a constant,
then the partial bindings can be available. Let $\Theta_{2}$ have a constant head (let
the constant be $f$ ). Then partial bindings $\theta$ for $\Theta_{1}$ are constructed non-
deterministically in the folowing way. The heads of $\theta$ must be the same
formula as the head of $\Theta_{2}$ and The principal port of $\theta$ must be the dual of
the head of $\Theta_{1}$ . Moreover for the arguments $e_{1},$ $\cdots,$ $e_{n}$ of the partial binding
(then, the length of the head is $n$), free port of $e_{i}$ is only the head of $e_{i}$ and
the free ports have new names from $PN$ and for the other ports of $e_{i}$ , any
bound ports of the partial binding must belong to them and the arguments
of $e_{i}$ must be $\overline{\eta}$-normal forms of ID-links.
Figure 7 shows any flexible-rigid imitation partial binding.

3. projection partial bindings:
If a head $A_{1^{-0\cdots-0}}$ $Am-\mathrm{o}p$ of $\Theta_{1}$ or $\Theta_{2}$ is a free port (let the proof net be
$\Theta_{1})$ and in the head, a argument $A_{i}$ is a form $\mathit{0}1^{-\mathrm{O}\cdots-0}Ck^{-arrow}p$ , then the
partial binding can be available. In this case, partial bindings $\theta$ are substi-
tuted for the head of $\Theta_{1}$ . $\theta$ is a proof net with $(A_{1^{-\mathrm{O}}}\cdots-\mathrm{o}Am-\mathrm{o}p)+\mathrm{a}\mathrm{S}$ the
principal port such that the head of $\theta$ must be the form $C_{1^{-\mathrm{O}\cdots-\mathrm{O}}}C_{k}-\mathrm{o}p$

and the i-th bound port of $\theta$ must belong to the head and for the arguments
$e_{1},$ $\cdots,e_{n}$ of the partial binding (then, the length of the head is $n$), free port
of $e_{i}$ is only the head of $e_{i}$ and the free ports have new names from $PN$ and
for the other ports of $e_{i}$ , any bound ports of the partial binding must belong
to them and the arguments of $e_{i}$ must be the $\overline{\eta}$-normal forms of ID-links.
Figure 8 shows any projection partial binding.

Definition 12 (SIMPLE procedure). We define SIMPLE procedure for the
pair of two proof nets $\langle\Theta_{1},\Theta_{2}\rangle$ with the same head (let the head be $A_{1}-0\cdots-\mathrm{o}Am-\mathrm{o}p$)
and the same principal port. The result of SIMPLE procedure for $\langle\Theta_{1}, \ominus_{2}\rangle$

is denoted by SIMPLE$(\langle\Theta 1, \Theta_{2}))$ . Let the principal port of $\Theta_{1}$ (resp. $\Theta_{2}$ ) be
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Fig. 7. a flexible-rigid imitation partial binding $\theta$ for $\Theta_{1}$

$B_{1}-0\cdots-\mathrm{o}B_{n}-\infty p$ (resp. $C_{1}-0\cdots-\mathrm{o}C_{n^{-\infty}}p$ ) (of course, though $B_{i}=C_{i}$ as
IIMLL formulas, since $B_{i}$ and $C_{i}$ may play different roles in $\Theta_{1}$ and $\Theta_{2}$ , we
named them different names). $B_{i}$ (resp. $C_{i}$ ) is a bound port of $\ominus_{1}$ (resp. $\Theta_{2}$ ).
Let the arguments of $\Theta_{1}$ (resp. $\Theta_{2}$ ) be $e_{1},$ $\ldots,$ $e_{m}$ (resp. $f_{1},$

$\ldots$ , $f_{m}$ ) and let the
principal port of $e_{i}$ and $f_{i}$ be $A_{i}^{+}$ . If $\Theta_{1}$ and $\Theta_{2}$ satisfy the following condition,
then SIMPLE procedure applies: if any bound port $B_{i}$ belongs to $e_{j}$ for some $j$ ,
then $C_{i}$ must belongs to $f_{j}$ , vice versa and if any bound port $B_{i}$ belongs to the
head of $\Theta_{1}$ , then $C_{i}$ must belongs to the head of $\Theta_{2}$ , vice versa. If $\Theta_{1}$ and $\Theta_{2}$

satisfy the above condition, then the following SIMPLE procedure applies:

$\langle\Theta_{1}, \Theta_{2}\rangle\Rightarrow 1\leq i\leq\bigcup_{m}\{\langle e_{i}’, f_{i}’\rangle\}$

where $e_{i}’$ (resp. $f_{i}’$ ) is the proof net which is constructed by connecting any
bound port in $\Theta_{1}$ (resp. $\Theta_{2}$ ) which belongs to $e_{i}$ (resp. $f_{i}$ ) by using $\wp$-link and
by an appropriate order in $e_{i}$ (resp. in $f_{i}$ ). Otherwise, $\mathrm{s}\mathrm{I}\mathrm{M}\mathrm{P}\mathrm{L}\mathrm{E}(\langle\Theta 1, \Theta_{2}))$ returns
failure.

Deflnition 13. Let $A$ be an IIMELL formula and $\mathrm{F}$ be an free port name from
$PN$ . Let $\Lambda$ be the $\mathrm{I}\mathrm{D}$-link that has $A^{+}$ and $A^{-}$ as conclusions and $A^{-}$ has $F$

as the fre.e port name. Let us call $\overline{\eta}$-normal form of $\Lambda\overline{\eta}(A, F)$ . In the below
algorithm, we identify a name of a free port with the formula with the name.
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Fig. 8. a projection partial binding $\theta$ for $\Theta_{1}$

Deflnition 14 (solved forms). Let $S=\{\langle\Theta_{1}^{1}, \Theta^{1}2\rangle, \ldots, \langle\Theta_{1}^{n}, \Theta_{2}^{n})\}$ be a system
of IIMLL proof nets. A pair $\langle\Theta_{1}i, \Theta_{2}i\rangle$ for some $1\leq j\leq n$ in $\mathrm{S}$ is in solved form

if $\langle\Theta_{1}^{ji},\Theta_{2}\rangle=\langle\overline{\eta}(A,F), \Theta\rangle$ and $F\not\in \mathcal{F}PN(S-\langle\overline{\eta}(A, F), \Theta\rangle)$, or both $\Theta_{1}$ and $\Theta_{2}$

have the unique one argument of $\mathrm{T}$ -box. $S$ is a solved system if each proof net
pair $\langle\Theta_{1}^{i}, \Theta_{2}^{i}\rangle(1\leq i\leq n)$ in $S$ is in solved form.

Definition 15 (higher order uniflcation algorithm). Let $S$ be a system of
IIMLL proof nets. We have the following transformation. The folowing cases
are chosen non-deterministically except for some restrictions that are stated in
$\mathrm{t}\mathrm{h}^{-}\mathrm{e}$ below definition.

1. Case that $S$ contains a pair of the same proof nets $\Theta$ (removal):

$\{\langle\Theta,\Theta\rangle\}\cup s’\Rightarrow S’$ .

2. Case that $S$ contains a pair $\langle\Theta_{1}, \Theta_{2}\rangle$ that is a solved pair (let us assume $\Theta_{2}$

is the $\overline{\eta}$-normal form of an $\mathrm{I}\mathrm{D}$-link). Then $\Theta_{2}$ has exactly one free port. Let
the name of the free port be $F$ ) (variable elimination):

$\{\langle\Theta_{1}, \Theta_{2})\}\cup S’\Rightarrow\{\langle\Theta_{1}, \Theta_{2})\}\cup\{\Theta_{1}’\}S’$ .
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Then, $\{\Theta_{1}’\}$ is the substitution by the transformation, where $\Theta_{1}’$ is $\Theta_{1}$ except
that the principal port of $\Theta_{1}’$ has the name $F$ .
Note that $\{\Theta_{1}’\}$ only applies to one solved pair because of linearity of free
ports.

3. Case that $S$ contains a pair $\langle\Theta_{1}, \Theta_{2}\rangle$ in which the heads of $\dot{\mathrm{b}}$oth proof nets
have the same type and the following cases for the heads apply:
$.(\mathrm{a})$ Case that both heads are the same constants, bound ports or free ports

(SIMPLE):

$\{\langle\Theta_{1}, \Theta_{2}\rangle\}\cup S’\Rightarrow \mathrm{S}\mathrm{I}\mathrm{M}\mathrm{P}\mathrm{L}\mathrm{E}(\langle\Theta 1, \Theta_{2}\rangle)\cup S’$ .
(b) Case that both heads are different constants:

return ’failure’

(c) Case that one head is a bound port and the other is a constant:

return ’failure’

4. Case that there is a pair $\langle$ $\Theta_{1},$ $\Theta_{2})$ in which both heads of the proof nets have
different type, or free ports with the same type.
The following cases for the heads apply: .

(a) Case that one head is a constant and the other is a bound port:

return ’failure’

(b) Case that $\langle$ $\Theta_{1},$ $\Theta_{2})$ is not a solved pair:

$\mathrm{i}$ . (flexible-rigid pair)
Case that one head is a bound port or constant (let the proof net be
$\Theta_{2})$ and the other is a formula A with a free port name $F$ (in $\Theta_{1}$ ):
A partial (flexible-rigid imitation or projection) binding $\theta$ is substi-
tuted for the free port:

$\{\langle\Theta_{1},\Theta_{2}\rangle\}\cup S’\Rightarrow\{\langle\theta,\overline{\eta}(A,p)\rangle,\langle\Theta_{1},\Theta 2\rangle\}\cup S’$.
$\mathrm{i}\mathrm{i}$ . Case that both heads are free ports (flexible-flexible pair):

Let the head of $\Theta_{1}$ (resp. $\Theta_{2}$ ) has a formula $A$ (resp $B$ ) with a free
port name $F$ (resp. $F$). And let the unique partial binding of T-box
for $\Theta_{1}$ (resp. $\Theta_{2}$ ) be $\theta_{1}$ (resp. $\theta_{2}$ ).

$\{\langle\Theta_{1}, \Theta_{2}\rangle\}\cup s’\Rightarrow\{\langle\theta_{1,\overline{\eta}}(A, F)), \langle\theta 2,\overline{\eta}(B, G)\rangle, \langle\Theta 1,\Theta_{2}\rangle\}\cup s’$ .

In a sequence of transformations $S\Rightarrow*S’(\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\Rightarrow*\mathrm{i}\mathrm{s}$ the reflexive-
transitive closure $\mathrm{o}\mathrm{f}\Rightarrow$ ), if $S’=\{\langle\Theta_{1}^{1}, \ominus_{2}^{1}\rangle, \ldots , \langle\Theta_{1}^{n}, \Theta_{2}^{n}\rangle\}$ is a solved system,
then the procedure successfully terminates. Then let $\sigma_{S’}$ be the substitution by
following way from $S’$ : each solved pair $\langle\Theta_{1}^{i}, \Theta_{2}^{i}\rangle$ in $S’$ , let $\Theta_{2}^{i}$ be a $\overline{\eta}$-normal form
of an $\mathrm{I}\mathrm{D}$-link. Then $\Theta_{2}^{i}$ has exactly one free port. Let the name of th.$\mathrm{e}$ free port
be $F$ . Let $\Theta_{1}^{ri}$ be $\Theta_{1}$ except that the principal port of $\Theta_{1}’$ has the name F. $\sigma_{S’}$

is $\{\Theta_{i}’|1\leq i\leq n\}$ .
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Theorem16 (Termination). If all the proof nets in a system $S$ are IIMLL
proof nets, $\dot{t}hen$ the algorithm starting from $S$ terminates.

Proof. We can define the complexity measure $d(S)$ for a system $S$ in the following
way: let the multiset of the non-solved pairs in $S$ be $\{\langle\Theta_{1}^{1}, \Theta^{1}\rangle 2’\ldots, \langle\Theta_{1}^{n},\Theta_{2}^{n}\rangle\}$.
$d(S)= \sum^{n}i=1(d(\Theta^{i}1)+d(\Theta_{2}i))$ .
Then, in any transformation of the above algorithm $S_{1}\Rightarrow S_{2}$ , we can easily

prove $d(S_{2})$ is less than $d(S_{1})$ . We show this casewisely:

1. The case of removal:
$d(S_{2})$ is $2d(\Theta)$ smaller than $d(S_{1})$ .

2. The case of variable elimination:
From our assumption of unification problems from which we start the proce-
dure about free port names, it is obvious that in IIMLL, if a free port name
occurs in a proof net system $S_{1}$ twice, then the free port name does not occur
in the free port names in $S_{0}$ from which we start the procedure and is intro-
duced by a partial binding. Iience at least one of two occurrences occurs in a

solved pair in $S_{1}$ . Thus the substitution with only one proof net in variable
elimination applies to a solved pair and does not affect the increase of the

complexity measure. By the way, $\langle$ $\Theta_{1},$ $\Theta_{2})$ in variable elimination become in

solved after the transformation. Hence $d(S_{2})$ is $d(\Theta_{1})+d(\Theta_{2})$ smaller than
’ $d(S_{1})$ .

3. The case of SIMP $\dot{\iota}\mathrm{E}$:
Let both $\Theta_{1}$ and $\Theta_{2}$ has the number $n$ of arguments. Then $d(S_{2})$ is $2n$ smaller
than $d(S_{1})$ .

4.. The case of flexible-flexible pair:
Since $\langle\Theta_{1}, \Theta_{2}\rangle$ become in solved, two new introduced proof nets pairs become
in solved soon by variable elimination and these pairs affect only $\langle\Theta_{1}, \Theta_{2}\rangle$ in
substitutions, $d(S_{2})$ is $d(\Theta_{1})+d(\Theta_{2})$ smaller than $d(S_{1})$ .

5. The case of flexible-rigid pair:
We must consider two cases.
(a) The case of imitation binding:

The new introduced pair $\langle\theta,\overline{\eta}(A, F)\rangle$ become in solve soon by vari-
able elimination. The problem here is the different between $d(\langle\Theta_{1}, \Theta_{2}\rangle)$

and $d(\langle\theta\Theta_{1}, \Theta_{2}))$ . Let $d(\Theta_{1})=m_{1}+d(e_{1})+\cdots d(e_{m_{1}})$ . Then since
$d(\theta\Theta_{1})=m2+m_{1}+d(e_{1})+\cdots d(e_{m\iota}),$ $d(\langle\theta\Theta_{1}, \Theta_{2}\rangle)$ may be greater than
$d(\langle\Theta_{1}, \Theta_{2}\rangle)$ . But note that after the application of the imitation binding,
SIMPLE procedure must be applied to $d(\langle\theta\Theta_{1}, \Theta_{2}\rangle)$ . Thus The problem
here is reduced to the different between $d(\langle\Theta_{1}, \Theta_{2}))$ and $d(\mathrm{S}\mathrm{I}\mathrm{M}\mathrm{P}\mathrm{L}\mathrm{E}(\langle\theta\Theta 1, \Theta 2\rangle))$.
Then $d(\mathrm{S}\mathrm{I}\mathrm{M}\mathrm{P}\mathrm{L}\mathrm{E}(\langle\theta\Theta 1,\Theta 2\rangle))=(m_{1}+d(e_{1})+\cdots+d(em1))+(d(\Theta_{2})-$

$m_{2})<d(\Theta_{1}+\Theta_{2})$ .
(b) The case of projection:

The new introduced pair $\langle\theta,\overline{\eta}(A, F)\rangle$ become in solve soon by variable
elimination. The problem here is the different between $d(\langle\Theta_{1},\Theta_{2}))$ and
$d(\langle\theta\Theta_{1},\Theta_{2}\rangle)$ . Let $d(\Theta_{1})=m_{1}+d(e_{1})+\cdots d(e_{m\iota})$ . And assume i-th
argument $e_{i}$ is projected. Since in the process of normalization of $\theta\Theta_{1}$

12



$e_{1},$ $\ldots,$ $ei-1,$ $ei+1,$ $\ldots,$ $em_{1}$ are appended to the bound ports of $e_{i}$ with
free port names $H_{1}$ and... and $H_{k}$ ,
$d(\theta\Theta_{1})=(m_{1}-1.)+d(e_{i})+d(e_{1})+\ldots+d(ei-1)+d(e_{i+1})+\ldots+d(e_{m}1)<$

$d(\Theta_{1})$

$\square$

Theorem17 (Soundness). If for a given system $S$ , the algorithm terminates
in a system $S’$ , then $S’$ is a solved pair and $\sigma_{S’}|_{F\mathcal{P}N(}s$ ) is a unifier of $S$ (where
$\sigma_{S^{J}}|_{fPN()}S$ is a substitution obtained from $\sigma_{S^{r}}$ by restricting the domain of $\sigma_{S’}$

to $\mathcal{F}PN(s)$ .

Proof. Let the set of unifiers of a system $S$ be $U(S)$ . If the above algorithm
transforms $S$ into $S’$ , then it is easy to show that $U(S’)\subseteq U(S)$ . $\square$

Definition 18 (pre-unifiers). Let $\cong$ be the least equivalence relation under
the eight reductions and containing

{ $\langle\Theta_{1},$ $\Theta_{2}\rangle|\Theta_{1}$ and $\Theta_{2}$ has the same type and are both flexible proof nets}

defined in subsection 3.1.
A substitution $\theta$ is a pre-unifier of $\Lambda_{1}$ and $\Lambda_{2}$ with the same type if $\theta\Lambda_{1}\cong\theta\Lambda_{2}$ .

Theorem19 (Completeness for pre-unification). If $\theta$ is a pre-unifier of a
system $S$, then there is a sequence of transformations $s\Rightarrow_{*}S’$ with $S’$ in solved
form such that $\sigma_{S’}|F\mathrm{p}N(S)$ is a unifier of $S$ .

Proof. We can prove the sa.m$\mathrm{e}$ method as the approximation method in
$[\mathrm{S}\mathrm{G}89]\square$

.

Remark. In the above higher order unification, the most general unifiers may
not exist. Figure 9 shows a unification problem which has two solutions. One is
a solution which substitute a imitation binding for $H$. The other is a solution
which substitute a projection binding for $H$ .

4 Related Works

In [CP97], higher order pre-unificatioan algorithm for an intuitionistic fragment
of Linear Logic is studied independently of ours. However, the algororithm in
[CP97] is based on a kind of inference rules, not on proof nets. Moreover, com-
pared with standard Linear Logic, their system is very strange. The following
unification problem is exemplified in [CP97]:

$x:A,y:B\vdash F$ $x$ $y=c\wedge(G_{1}xy)$ $(G_{2}xy)$ : $a$

where $\wedge$ is the symbol of linear application. This problem has four solutions.
This system is different from standard Linear Logic since a term is used both
linearly and intuitionisticaly. But our unification problem based on standard
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Fig. 9. an example of unification problem with several solutions

Linear Logic does not have such a example. For example the following problems
exist in our system (if we borrow notation from them):

$x:A,y:B\vdash F\wedge x\wedge y=c\wedge(G_{1}x)$ $(G_{2}y):a$

$x:A,y:B\vdash F^{\wedge}x$ $y=c$ $(G_{1}xy)$ $G_{2}$ : $a$

But these problems just has the unique solution, which has an advantage for
practical applications since higher order unification usually is suffering from
nondetermini $\mathrm{s}\mathrm{m}$ .
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