<table>
<thead>
<tr>
<th>Title</th>
<th>Solutions of Ginzburg-Landau type systems with Higher-dimensional Zero Sets (Variational Problems and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takahashi, Futoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1025: 90-98</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61741</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Solutions of Ginzburg-Landau type systems with Higher-dimensional Zero Sets

Futoshi Takahashi (高橋 太)
Department of Mathematics, Faculty of Science
Tokyo Institute of Technology

1 Introduction

In this paper, we consider the following elliptic system of diagonal type:

$$\Delta V + \lambda (1 - |V|^2) V = 0$$ \hspace{1cm} (1)

where $V = (V^1, \ldots, V^n)$ is defined on some domain in \mathbb{R}^{n+k}, $n \geq 2$, $k \geq 1$, and $\lambda \in \mathbb{R}$ is a parameter.

Here, we construct some solutions of (1) on certain domains in \mathbb{R}^{n+k}, with boundary values, invariant under the action of a k-parameter group of isometries of \mathbb{R}^{n+k}, and having nontrivial k-dimensional zero sets.

When $n = 2$, the equation (1) is the Ginzburg-Landau system (GLS), which is used as a mathematical model for many physical phenomena, such as super-conductivity and super-fluidity. In the theory of super-conductivity, the unknown V represents an order parameter which has two degrees of freedom, and its zero set, called vortices, corresponds to the region of the normal state in super-conductors. So, especially our result produces an example of solutions of the GLS in \mathbb{R}^3 with curved vortex lines.

Some results concerning the isolated zeros of solutions of the GLS in \mathbb{R}^2 are known([1], [2]), however there seems to be no explicit example of solutions with higher-dimensional nontrivial zero sets.

Our proof is based on the "equivariant construction" method due to N.Smale [9], in which the examples of minimal hypersurfaces in Euclidean spaces with higher-dimensional singularities are shown. Later, the same method was used to construct examples with higher-dimensional singularities, of harmonic maps [4], and of solutions of a certain non-linear elliptic equation [6].

Main result of this paper can be extended to equations with other type of nonlinearities, but we do not pursue here for simplicity of description.

2 Notations and statement of the main result

We follow the setting of "equivariant construction" method described in the papers [9],[4] and [6]: Let $n \geq 2$, $k \geq 1$ be two integers. Let $\mathcal{U} \subset \mathbb{R}^k$ be an open set containing $\{0\} \in \mathbb{R}^k$ and assume that there is a C^∞ group action

$$\Phi : t \in \mathcal{U} \longrightarrow \Phi(t) \in \text{Isom}(\mathbb{R}^{n+k}),$$
here $\text{Isom}(\mathbb{R}^{n+k})$ means the group of isometries of \mathbb{R}^{n+k}. We will denote $\Phi(t)$ by G_t.

We define
\[
\begin{align*}
\Gamma &= \{ G_t(0) : t \in \mathcal{U} \}, \\
\tilde{B}^n &= B^n_1(0) \times \{ 0 \} \times = \{ (x, 0) \in \mathbb{R}^n \times \mathbb{R}^k, |x| < 1 \}, \\
\Omega &= \{ G_t(\mathbb{B}^n) : t \in \mathcal{U} \}.
\end{align*}
\]

So, Γ is the orbit of $\{ 0 \} \in \mathbb{R}^{n+k}$ of the group action Φ, and Ω is the unit n-disc bundle over Γ obtained by moving \tilde{B}^n along Γ by G_t, $t \in \mathcal{U}$. On the group action Φ, we make the following assumptions: Γ is a properly embedded k-dimensional submanifold in \mathbb{R}^{n+k} and whenever $G_t(0) = 0$, we must have $G_t(\tilde{B}^n) = \mathbb{B}^n$ for any $t \in \mathcal{U}$, that is, the isotropy group of 0 is the same as the one of \mathbb{B}^n. Furthermore, when $G_t = O(t) + v_t$ is the decomposition of the element of $\text{Isom}(\mathbb{R}^{n+k})$, where $O(t) \in O(n + k)$, the orthogonal group of \mathbb{R}^{n+k}, and $v_t \in \mathbb{R}^{n+k}$, we define the group action
\[
\Phi_\epsilon : t \in \mathcal{U} \longrightarrow G_t^\epsilon \in \text{Isom}(\mathbb{R}^{n+k}),
\]
and
\[
\begin{align*}
\Gamma_\epsilon &= \{ G_t^\epsilon(0) : t \in \mathcal{U} \} = (\frac{1}{\epsilon}) \Gamma, \\
\Omega_\epsilon &= \{ G_t^\epsilon(\mathbb{B}^n) : t \in \mathcal{U} \},
\end{align*}
\]
where $G_t^\epsilon = O(t) + \frac{1}{\epsilon} v_t$. Note that under the assumption of the group action Φ, Ω_ϵ is well-defined and then Ω_ϵ is the unit n-disc bundle over Γ_ϵ obtained by moving \tilde{B}^n along Γ_ϵ by G_t^ϵ, $t \in \mathcal{U}$. Note also that when $\epsilon > 0$ is sufficiently small, Ω_ϵ is close locally the trivial product bundle $B^n_1(0) \times \mathbb{R}^k$ over $\{ 0 \} \times \mathbb{R}^k$. Finally, for a map $U : \mathbb{R}^{n+k} \rightarrow \mathbb{R}^n$, we denote by $\Gamma(U)$ the set of zeros of U, namely, $\Gamma(U) = \{ x : U(x) = 0 \in \mathbb{R}^n \}$.

Now we state the main result of this paper.

Theorem. For any $\lambda \in \mathbb{R}$, there exists an open domain $\tilde{\Omega} \subset \mathbb{R}^{n+k}$ containing Γ, on which there are infinitely many solutions of (1) with boundary values, whose zero set is Γ.

In the proof of the theorem, we will show that there exists $\epsilon > 0$ sufficiently small, such that for any $0 < \epsilon < \tilde{\epsilon}$, there is a solution U of
\[
\Delta U + \lambda \epsilon^2 (1 - |U|^2) U = 0 \quad \text{in} \quad \Omega_\epsilon,
\]
\[
\Gamma(U) = \Gamma_\epsilon
\]
with a boundary data fixed up to a finite dimensional space, and U is invariant under the action Φ_ϵ, i.e., $U(G_t^\epsilon(\tilde{x})) = U(\tilde{x})$ for all $\tilde{x} \in \tilde{B}^n$ and $t \in \mathcal{U}$.

We will find a solution U of (2) by solving the appropriate fixed point problem. We make essential use of the invariant condition of U, thanks to which, we can think of (2) as a PDE on each fibers of the disc bundle Ω_ϵ, especially on \tilde{B}^n for $t = 0$. Note that the nonlinear term of (2) is well controlled when ϵ is small enough, so we can get a solution as a perturbation of the \mathbb{R}^n-valued harmonic function $v_0 : B^n_1(0) \rightarrow \mathbb{R}^n, v_0(x) = x$. Taking $\tilde{\Omega} = \epsilon \cdot \Omega_\epsilon$, and $V(y) = U(\frac{y}{\epsilon})$ for $y \in \tilde{\Omega}$ will give the desired result. The domain $\tilde{\Omega}$ so obtained, is the bundle over Γ of the n-dimensional discs of radius ϵ, so looks like locally a thin perturbed tube of radius ϵ with center axis Γ.

Now we describe our coordinate of Ω_ϵ: For $y \in \Omega_\epsilon$, there exists $x \in B^n_1(0)$ and $t \in \mathcal{U}$ such that $y = G_t^\epsilon(\tilde{x})$, then let us denote $F : B^n_1(0) \times \mathcal{U} \rightarrow \Omega_\epsilon$, $F(x, t) = G_t^\epsilon(\tilde{x})$. we will introduce the local coordinate system by this map, and identify y with (r, θ, t) where (r, θ) are polar coordinates for $x \in B^n_1(0)$. So, functions defined on Ω_ϵ can naturally be
considered as functions on $B^n_1(0) \times \mathcal{U}$ by F. Note for $\varepsilon > 0$ sufficiently small, r also is the distance to Γ_ε.

In the sequel we use the following function spaces: For $\nu \in \mathbb{R}, \alpha \in (0,1), m = 0, 1, 2$, define
\[
C^{m,\alpha,\nu}(\Omega_\varepsilon; \mathbb{R}^n) = \{ u \in C^{m,\alpha}_{loc}(\Omega_\varepsilon \setminus \Gamma_\varepsilon; \mathbb{R}^n) : |u|_{m,\alpha,\nu} < +\infty \},
\]
where $| \cdot |_{m,\alpha,\nu}$ is the norm
\[
|u|_{m,\alpha,\nu} = \sup_{0 < r \leq 1/2} \left(\sum_{j=0}^{m} |\nabla^j u|_{0,s} s^{-\nu} + \sum_{j=0}^{m} |\nabla^j u|_{(\alpha),s} s^{j+\alpha-\nu} \right).
\]
Here, ∇ and ∇^2 denote the gradient and Hessian respectively on Ω_ε, and $|\eta|_{0,s,2s}$ and $|\eta|_{(\alpha),s,2s}$ are the sup norm and the α-th Hölder seminorm of a function (or a section) η on Ω_ε over the set $\{ y = y(r, \theta, t) \in \Omega_\varepsilon : s \leq r \leq 2s \}$. These are Banach spaces under the norm $| \cdot |_{m,\alpha,\nu}$, and if $u \in C^{m,\alpha,\nu}(\Omega_\varepsilon; \mathbb{R}^n)$, then $|u|$ decays like r^ν near Γ_ε.

Furthermore, let us define the closed subspace of $C^{m,\alpha,\nu}(\Omega_\varepsilon; \mathbb{R}^n)$ as
\[
C^{m,\alpha,\nu}_G(\Omega_\varepsilon; \mathbb{R}^n) = \{ u \in C^{m,\alpha,\nu}(\Omega_\varepsilon; \mathbb{R}^n) : u(G_\varepsilon^t(\tilde{x})) = u(\tilde{x}) \quad \text{for all } \tilde{x} \in B^n_1(0), \ t \in \mathcal{U} \},
\]
that is, maps in $C^{m,\alpha,\nu}$ which are Φ_ε-invariant. We also denote $C^{m,\alpha}(\partial \Omega_\varepsilon; \mathbb{R}^n)$ for the space of Φ_ε-invariant boundary data in $C^{m,\alpha}(\partial \Omega_\varepsilon; \mathbb{R}^n)$.

Weighted Hölder spaces like above are now widely used for other nonlinear problems, see [9], [10], [4], [6], [8], [5], [3].

3 Proof of the Theorem

In this section, we seek for a solution of (2) satisfying (3) by the same technique as in [9], [4], [6]: linearization and solving the appropriate fixed point problem. First, we construct the approximate solution. We fix $\varepsilon > 0$. Let $v_0 : B^n_1(0) \to \mathbb{R}^n$ be the identity map $v_0(x) = x$; so evidently $\Gamma(v_0) = \{ 0 \} \subset \mathbb{R}^n$ and $\Delta_{B^n} v_0 = 0$, where Δ_{B^n} means the Laplace operator on $B^n_1(0)$. Now we define the approximate solution $u_\varepsilon : \Omega_\varepsilon \to \mathbb{R}^n$ by
\[
u(\nu^t(\tilde{x})) = v_0(\tilde{x}) \quad \text{for } \tilde{x} \in B^n_1(0), \ t \in \mathcal{U}
\]
where $\tilde{x} = (x, 0) \in \tilde{B}^n$. By definition of Ω_ε and by our assumption on the group action Φ, u_ε is well-defined and invariant under the action Φ_ε. The zero set of u_ε satisfies $\Gamma(u_\varepsilon) = \Gamma_\varepsilon$.

We wish to find a solution of (2) of the form
\[
U(u) = u_\varepsilon + u
\]
where the perturbation u is assumed to be invariant under the action Φ_ε and to decay rapidly near Γ_ε, so as to ensure that $\Gamma(U(u)) = \Gamma_\varepsilon$.

Let $N(u)$ be the left hand side of (2) for $U(u)$, that is,
\[
N(u) = \Delta U(u) + \lambda \varepsilon^2 (1 - |U(u)|^2) U(u).
\]
We make a Taylor expansion of $N(u)$ about $u = 0$ to get
\[
N(u) = N(0) + Lu + Q(u),
\]
where L is a linear operator determined by $\Delta U(u)$ and $Q(u)$ is a quadratic form determined by $\lambda \varepsilon^2 (1 - |u|^2)$. The linear operator L is also strongly ε-invariant, which ensures $\Gamma(Lu) = \Gamma(Lu)$, as well as the quadratic form $Q(u)$ being strongly ε-invariant.
where
\[
N(0) = \Delta u_{\epsilon} + \lambda \epsilon^2 (1 - |u_{\epsilon}|^2) u_{\epsilon},
\]
\[
Lu = \frac{d}{dt} N(tu)|_{t=0} = \Delta u + \lambda \epsilon^2 \{ (1 - |u_{\epsilon}|^2) u - 2(u_{\epsilon} \cdot u) u_{\mathcal{E}} \},
\]
\[
Q(u) = \int_0^1 (1-t) \frac{d^2}{dt^2} N(tu) dt = (-2 \lambda \epsilon^2) \int_0^1 (1-t) \{|u|^2 u_{\zeta} + 2(u_{\epsilon} \cdot u) u + 3t|u|^2 u\} dt = (-\lambda \epsilon^2) \{|u|^2 u_{\epsilon} + 2(u_{\epsilon} \cdot u) u + |u|^2 u\},
\]
here \(\Delta\) means the Laplace operator on \(\Omega_{\epsilon}\). Now, if we define the linear operators
\[
R = \Delta - \Delta_{B^n}
\]
and
\[
\xi u = \lambda \epsilon^2 \{ (1 - |u_{\epsilon}|^2) u - 2(u_{\epsilon} \cdot u) u_{\mathcal{E}} \},
\]
then the equation \(N(u) = 0\) can be rewritten as
\[
\Delta_{B^n} u = -N(0) - Ru - \xi u - Q(u) \tag{4}
\]
which we solve by contraction mapping argument on some weighted Hölder space. Note that if \(u\) is invariant under the action \(\Phi_{\epsilon}\), all of the terms in (4) are also \(\Phi_{\epsilon}\)-invariant, so we can consider (4) as a PDE on the slice \(\tilde{B}^n\). This is crucial for our subsequent arguments.

To estimate the terms in the right hand side of (4), we need the following lemma due to R.Mazzeo and N.Smale [5].

Lemma 1 Under the local coordination by \(F\), we have
\[
\Delta = \Delta_{B^n} + \Delta_{R^n} + e_1 \nabla^2 + e_2 \nabla, \tag{5}
\]
where \(\Delta\) and \(\nabla\) are the Laplace operator and gradient on \(\Omega_{\epsilon}\), \(e_1 \in C^\infty((\text{Sym}^2 \Omega_{\epsilon})^*)\), \(e_2 \in C^\infty(T^* \Omega_{\epsilon})\) are smooth sections and satisfy
\[
|e_1(x,t)| \leq C_0 \epsilon, \quad |e_2(x,t)| \leq C_0 \epsilon, \quad |e_1|_{(\alpha),[s,2s]} s^\alpha \leq C_0 s \epsilon, \quad |e_2|_{(\alpha),[s,2s]} s^\alpha \leq C_0 \epsilon
\]
for some constant \(C_0\) independent of \(\epsilon > 0\) and \(\alpha \in (0,1)\).

For functions \(u\) invariant under \(\Phi_{\epsilon}\), the factor \(\Delta_{R^n}\) in (5) drops out.

Using this lemma, we have

Lemma 2 If \(\epsilon > 0, 1 < \nu < 2\), and \(u \in C^2_{G}(\Omega_{\epsilon}; \mathbb{R}^n)\), then \(N(0), Ru, \xi u, Q(u)\) are all in \(C^0_{G}(\Omega_{\epsilon}; \mathbb{R}^n)\) and the following estimates hold:
\[
|N(0)|_{0,\alpha,\nu-2} \leq C_1 \epsilon (1 + |\lambda| \epsilon), \quad |Ru|_{0,\alpha,\nu-2} \leq C_1 \epsilon |u|_{2,\alpha,\nu},
\]
\[
|\xi u|_{0,\alpha,\nu-2} \leq C_1 |\lambda| \epsilon^2 |u|_{2,\alpha,\nu}, \quad |Q(u)|_{0,\alpha,\nu-2} \leq C_1 |\lambda| \epsilon^2 (|u|_{2,\alpha,\nu}^2 + |u|_{2,\alpha,\nu}^3)
\]
for some constant \(C_1 > 0\) independent of \(\epsilon\) and \(\lambda\).
Proof Since u_ϵ and u are Φ_ϵ-invariant, so are also all terms appeared in the right hand side of (4), and can be considered as functions of $B_r^\alpha(0)$. By definition, the map u_ϵ satisfies $\Delta_{B^\alpha} u_\epsilon = 0$, so we have

$$N(0) = \Delta u_\epsilon + \lambda \epsilon^2 (1 - |u_\epsilon|^2) u_\epsilon = (\Delta - \Delta_{B^\alpha}) u_\epsilon + \lambda \epsilon^2 (1 - |u_\epsilon|^2) u_\epsilon.$$

Then using Lemma1 and the fact that $|\nabla u_\epsilon(x)| + |\nabla^2 u_\epsilon(x)| \leq C$ and $|u_\epsilon(x)| \leq 1$ for some constant C independent of ϵ and $x \in B_r^\alpha(0)$, we have

$$|N(0)(x)| \leq |e_1 \nabla^2 u_\epsilon(x)| + |e_2 \nabla u_\epsilon(x)| + |\lambda| \epsilon^2 (1 - |u_\epsilon|^2)|u_\epsilon|$$

for $s \leq |x| \leq 2s$. Taking the supremum over the set $\{x : s \leq |x| \leq 2s\}$ and multiplying $s^{2-\nu}$, we get

$$|N(0)|_{0,[s,2s]}^{s^{2-\nu}} \leq s^{2-\nu} \cdot C \epsilon(1 + |\lambda| \epsilon),$$

since $1 < \nu < 2$ and $0 < s \leq 1/2$. H"older seminorm estimate for $N(0)$ has the same form, then by taking the supremum over $s \leq 1/2$, we have the first estimate of the lemma.

Similarly by Lemma1,

$$Ru = (\Delta - \Delta_{B^\alpha}) u = e_1 \nabla^2 u + e_2 \nabla u,$$

so we have

$$|Ru|_{0,[s,2s]}^{s^{2-\nu}} \leq C s \epsilon |\nabla^2 u|_{[s,2s]} + C |\nabla u|_{[s,2s]} s^{1-\nu}$$

for $0 < s \leq 1/2$. H"older seminorm estimate is also similar, then taking the supremum over $s \leq 1/2$ yields the estimate for Ru.

As for the estimates for ξu and $Q(u)$, by using the basic properties of the H"older seminorm

$$|\mu + \eta|_{(\alpha)} \leq |\mu|_{(\alpha)} + |\eta|_{(\alpha)}$$

and

$$|\mu \eta|_{(\alpha)} \leq |\mu|_{(0)}|\eta|_{(\alpha)} + |\mu|_{(\alpha)}|\eta|_{(0)},$$

as in the above computation, we can derive the following bounds:

$$|\xi u|_{[s,2s]} \leq C |\lambda| \epsilon^2 |u(x)|, \quad x \in B_r^\alpha(0) \quad (6)$$

$$|\xi u|_{[s,2s]} \leq C |\lambda| \epsilon^2 \left(|u|_{[s,2s]} + |u|_{(\alpha),[s,2s]} \right), \quad (7)$$

$$|Q(u)|_{[s,2s]} \leq C |\lambda| \epsilon^2 \left(|u(x)|^2 + |u(x)|^3 \right), \quad x \in B_r^\alpha(0) \quad (8)$$

$$|Q(u)|_{[s,2s]} \leq C |\lambda| \epsilon^2 \left(|u|_{[s,2s]} + |u|_{[s,2s]} + |u|_{[s,2s]} \right), \quad (9)$$

If we multiply both sides of (6) and (8) by $s^{2-\nu}$, or of (7) and (9) by $s^{2-\nu+\alpha}$ and take the supremum over $s \leq 1/2$, we immediately have

$$\sup_{0 < s \leq 1/2} (|\xi u|_{[s,2s]} s^{2-\nu} + |Q(u)|_{[s,2s]} s^{2-\nu+\alpha}) \leq C |\lambda| \epsilon^2 |u|_{[0,\alpha,\nu]}.$$
\[
\sup_{0<s\leq 1/2} (|Q(u)|_{s}, [s, 2s] s^{2} - \nu + |Q(u)|_{[s, 2s]} s^{2} - \nu + \alpha) \leq C|\lambda| \epsilon^{2} (|u|_{0}^{2}, |\lambda|^{\alpha} |y + |u|_{0, \alpha}^{3}, |u|_{0, \alpha})^{\nu}
\]

which complete the proof of the lemma. \(\square\)

Now, to find solutions of (4), we first recall the unique solvability result for the linear problem \(\Delta_{B^n} u = f\) on \(B_1^n(0)\), for \(f \in C^{0, \alpha, \nu-2}_{G}(\Omega_{\epsilon}; \mathbb{R}^{n})\) with some appropriate boundary conditions.

Let us take the sequence of eigenvalues of \(\Delta_{S^{n-1}}\) acting on \(C^{\infty}(S^{n-1}; \mathbb{R}^{n})\), \(\mu_{j}, 0 = \mu_{1} \leq \mu_{2} \leq \cdots\) (counting multiplicity), \(\mu_{j} \rightarrow \infty\), and corresponding sequence of \(L^{2}\) normalized eigenmaps \(\phi_{j} \in C^{\infty}(S^{n-1}; \mathbb{R}^{n})\) such that \(\Delta_{S^{n-1}} \phi_{j} + \mu_{j} \phi_{j} = 0, j = 1, 2, \cdots\).

Let \(\lambda_{j}\) and \(\lambda_{j}(-)\) be two real solutions of the equation \(\lambda^{2} + (n-2)\lambda - \mu_{j} = 0\), that is \(\lambda_{j} = \frac{2-n}{2} + \sqrt{\frac{(n-2)^{2}}{4} + \mu_{j}}\) and \(\lambda_{j}(-) = \frac{2-n}{2} - \sqrt{\frac{(n-2)^{2}}{4} + \mu_{j}}\).

We now fix \(\nu\) so that \(1 < \nu < 2\) and choose an positive integer \(J\) such that \(\lambda_{J} < \nu < \lambda_{J+1}\).

For this \(J\), we define \(\Pi_{J} : L^{2}(S^{n-1}; \mathbb{R}^{n}) \rightarrow \{\phi_{1}, \phi_{2}, \cdots, \phi_{J}\}^{\perp}\) be the orthogonal projection.

Then we have:

Lemma 3 If \(f \in C^{0, \alpha, \nu-2}_{G}(\Omega_{\epsilon}; \mathbb{R}^{n})\) and \(\psi \in C^{2}_{G}(\partial \Omega_{\epsilon}; \mathbb{R})\) with \(0 < \alpha < 1\), then there exists a unique \(u \in C^{2, \alpha, \nu}_{G}(\Omega_{\epsilon}; \mathbb{R}^{n})\) such that

\[
\begin{align*}
\Delta_{B^n} u &= f \quad \text{on } \Omega_{\epsilon} \setminus \Gamma_{\epsilon}, \\
\Pi_{J}(u|_{\partial \Omega_{\epsilon}}) &= \Pi_{J}(\psi).
\end{align*}
\]

Furthermore, we have the estimate

\[
|u|_{2, \alpha, \nu} \leq C_{2} (|f|_{0, \alpha, \nu-2} + |\psi|_{2, \alpha})
\]

for some constant \(C_{2}\) depending only on \(\alpha\).

Proof The proof of this is done by separation of variables and now quite standard (see [3], [9], [4], [6]), so we make only few comments.

If we write

\[
\begin{align*}
u(r, \theta) &= \sum_{j=1}^{\infty} u_{j}(r) \phi_{j}(\theta), \\
f(r, \theta) &= \sum_{j=1}^{\infty} f_{j}(r) \phi_{j}(\theta), \\
\psi(\theta) &= \sum_{j=1}^{\infty} \psi_{j} \phi_{j}(\theta),
\end{align*}
\]

then each \(u_{j}\) must be the solution of the following ODE with boundary conditions:

\[
\begin{cases}
\frac{d^{2}u_{j}(r)}{dr^{2}} + \frac{n-1}{r} \frac{du_{j}(r)}{dr} - \frac{\mu_{j}}{r^{2}} = f_{j}(r), \\
a^{\nu}(r) = \psi_{j} \quad \text{for} \quad j > J, \\
|a(r)| \leq C r^{\nu}.
\end{cases}
\]
By elementary ODE argument, Caffarelli, Hardt and Simon [3] showed that

\[
 u_{j}(r) = r^{\lambda_{j}} \int_{0}^{r} s^{1-n-2\lambda_{j}} \int_{0}^{s} \tau^{n-1+\lambda_{j}} f_{j}(\tau) d\tau ds, \quad (j = 1, 2, \ldots, J)
\]

\[
 u_{j}(r) = \psi_{j} r^{\lambda_{j}} - r^{\lambda_{j}} \int_{r}^{1} s^{1-n-2\lambda_{j}} \int_{0}^{s} \tau^{n-1+\lambda_{j}} f_{j}(\tau) d\tau ds,
\]

\[
 (j = 1, 2, \cdots, J)
\]

are the unique solutions. Thus the map \(\sum_{j=1}^{\infty} u_{j} \phi_{j} \) formally solves the equation \(\Delta_{B^{n}} u = f \) on \(B_{1}^{n}(0) \) with \(\Pi_{J}(u|_{\partial \Omega}) = \Pi_{J}(\psi) \), and in fact \(C^{2} \) classical sense on \(B_{1}^{n}(0) \setminus \{0\} \).

To prove the estimate, note that we are dealing with the system of PDE, but in the same situation this was done in [4] using the local supremum estimates of [8] and the standard Schauder estimates in [7].

We now apply Lemma 2 and Lemma 3 to find fixed points of (4). Fix \(\alpha \in (0, 1) \) and \(\nu \in (1, 2) \) as before. For \(K > 0 \) and \(\epsilon > 0 \), let us define

\[
 B_{K\epsilon, \alpha, \nu} = \{ u \in C^{2, \alpha}_{G}(\Omega_{\epsilon}; \mathbb{R}^{n}) : |u|_{2, \alpha, \nu} \leq K\epsilon \}.
\]

Then we prove

Lemma 4 For any \(\lambda \in \mathbb{R} \), there exists \(K > 0 \) and \(0 < \bar{\epsilon} < 1 \) such that if \(\epsilon < \bar{\epsilon} \), \(v \in B_{K\epsilon, \alpha, \nu} \) and \(\psi \in C^{2, \alpha}_{G}(\partial \Omega_{\epsilon}; \mathbb{R}^{n}) \) satisfying \(|\psi|_{2, \alpha} \leq \epsilon \), then the problem: to find \(u \in B_{K\epsilon, \alpha, \nu} \) such that

\[
 \begin{align*}
 \Delta_{B^{n}} u &= -N(0) - Rv - \xi v - Q(v) \\
 \Pi_{J}(u|_{\partial \Omega}) &= \Pi_{J}(\psi)
 \end{align*}
\]

has a unique solution.

Proof The problem above has a unique solution \(u \in C^{2, \alpha}_{G}(\Omega_{\epsilon}; \mathbb{R}^{n}) \) by Lemma 2 and Lemma 3. Furthermore according to Lemma 2, Lemma 3 and \(|v|_{2, \alpha, \nu} \leq K\epsilon \), we have

\[
 |u|_{2, \alpha, \nu} \leq C_{2} (|\psi|_{2, \alpha} + |N(0)|_{0, \alpha, \nu} - 2 + |Rv|_{0, \alpha, \nu} - 2 + |\xi v|_{0, \alpha, \nu} - 2 + |Q(v)|_{0, \alpha, \nu} - 2) \\
 \leq C_{2} (\epsilon + C_{1} \epsilon (1 + |\lambda|\epsilon) + C_{1}\epsilon \cdot K\epsilon + |\lambda|\epsilon^{2} \cdot K\epsilon + |\lambda|\epsilon^{2} (K^{2}\epsilon^{2} + K^{3}\epsilon^{3})) \\
 \leq C_{3} (\epsilon + |\lambda|\epsilon^{2} + K\epsilon^{2} + |\lambda|\epsilon^{2} (K\epsilon + K^{2}\epsilon^{2} + K^{3}\epsilon^{3}))
\]

for some constant \(C_{3} > 0 \).

So, if we can take \(K \) and \(\epsilon \) such that

\[
 C_{3} \left(\frac{1 + |\lambda|\epsilon}{K} + \epsilon + |\lambda|\epsilon^{2} (1 + K\epsilon + K^{2}\epsilon^{2}) \right) \leq 1,
\]

then the proof will be completed. This can be done as follows: First, fix \(K > 0 \) sufficiently large so that

\[
 \frac{(1 + |\lambda|)}{K} < \frac{1}{2C_{3}},
\]

and then, fix \(\bar{\epsilon} \in (0, 1) \) sufficiently small so that

\[
 \bar{\epsilon} + |\lambda|\epsilon^{2} (1 + K\bar{\epsilon} + K^{2}\epsilon^{2}) < \frac{1}{2C_{3}},
\]

\[\square\]
Now, fix \(\psi \in C^{2,\alpha}_{G}(\partial \Omega_{\varepsilon} ; \mathbb{R}^{n}) \) so that \(|\psi|_{2,\alpha} \leq \varepsilon(\varepsilon) \). Let us denote \(T(v) \) the unique solution of (11) for \(v \in B_{K\varepsilon,\alpha,\nu} \). Then, by Lemma 4, \(T \) defines a self-map of \(B_{K\varepsilon,\alpha,\nu} \). To show that \(T \) is indeed a contraction, we need

Lemma 5 There is a constant \(C_{4} > 0 \) independent of \(u, v \in C^{2,\alpha,\nu}_{G}(\Omega_{\varepsilon} ; \mathbb{R}^{n}) \), \(\varepsilon \) and \(\lambda \) such that

\[
|Q(u) - Q(v)|_{0,\alpha,\nu-2} \leq C_{4}\varepsilon^{2}|u - v|_{2,\alpha,\nu} + |v|_{2,\alpha,\nu} + (|u|_{2,\alpha,\nu} + |v|_{2,\alpha,\nu})^{2}
\]

holds.

Proof This is obtained quite easily by elementary computation and basic property of Hölder seminorms, if we write

\[
Q(u) - Q(v) = (-\lambda \varepsilon^{2}) (I_{1} + 2I_{2} + I_{3}),
\]

where

\[
I_{1} = [(u - v) \cdot (u + v)] u_{\varepsilon},
I_{2} = (u_{\varepsilon} \cdot u)(u - v) + [u_{\varepsilon} \cdot (u - v)] v,
I_{3} = |u|^{2}(u - v) + [(u - v) \cdot (u + v)] v.
\]

Let \(u_{1} = T(v_{1}) \) and \(u_{2} = T(v_{2}) \) are the unique solution of (11) for fixed \(\psi \), given by Lemma 4. Then by Lemma 3, Lemma 2 and Lemma 5, we have

\[
|T(v_{1}) - T(v_{2})|_{2,\alpha,\nu} \leq C_{2}|R(v_{1} - v_{2})|_{0,\alpha,\nu-2} + C_{3}|\varepsilon(v_{1} - v_{2})|_{0,\alpha,\nu-2} + C_{2}|Q(v_{1}) - Q(v_{2})|_{0,\alpha,\nu-2}
\]

\[
\leq C_{2}C_{1}\varepsilon|v_{1} - v_{2}|_{2,\alpha,\nu} + C_{2}C_{1}|\varepsilon^{2}|v_{1} - v_{2}|_{2,\alpha,\nu}
\]

\[
+ C_{2}C_{4}|\varepsilon^{2}|v_{1} - v_{2}|_{2,\alpha,\nu} + |v_{2}|_{2,\alpha,\nu} + (|v_{1}|_{2,\alpha,\nu} + |v_{2}|_{2,\alpha,\nu})^{2}
\]

\[
\leq C_{5} \varepsilon + |\varepsilon|^{2} + |\lambda|^{2} (K\varepsilon + K^{2}\varepsilon^{2}) |v_{1} - v_{2}|_{2,\alpha,\nu}.
\]

So if we retake \(\varepsilon \) small enough so that \(C_{5} \varepsilon + |\varepsilon|^{2} + |\lambda|^{2} (K\varepsilon + K^{2}\varepsilon^{2}) < 1 \), the map \(T \) defines a contraction on the closed subset of a complete metric space, then it has a fixed point \(u \). Thus we have found a map \(U = u + u_{\varepsilon} \) satisfying (2), at least in \(\Omega_{\varepsilon} \cap \Gamma_{\varepsilon} \).

Note that when \(1 < \nu < 2 \), we can extend \(u \in C^{2,\alpha,\nu}_{G}(\Omega_{\varepsilon} ; \mathbb{R}^{n}) \) (as thought of a map defined on \(B_{1}^{n}(0) \setminus \{0\} \) to 0 in \(B_{1}^{n}(0) \) so that \(u(0) = 0 \) and \(|\nabla u(0)| = 0 \), then the map \(U \) is indeed a smooth solution of (2) on each fibers of \(\Omega_{\varepsilon} \). Moreover if we require \(\varepsilon \) small enough such that \(K\varepsilon \leq 1/2 \), then \(|U(x)| \geq |u_{\varepsilon}(x)| - |u(x)| \geq (1/2)|x| \) for any \(x \in B_{1}^{n}(0) \), so \(\Gamma(U) = \Gamma(u_{\varepsilon}) = \Gamma_{\varepsilon} \). As noted earlier, simple rescaling by a factor of \(\varepsilon \) completes the proof of Theorem.

References

