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1 . Introduction

In this paper, we consider the following elliptic system of diagona.l type:

AV +A(1=-|VH) V=0 (1)

where V = (V1,...,V™) is defined on some domain in Rt n>2 k>1,and A€Ris
a parameter.

Here, we construct some solutions of (1) on certain domains in R"** with boundary
values, invariant under the action of a k-parameter group of isometries of R™"*, and
having nontrivial k-dimensional zero sets.

When n = 2, the equation (1) is the Ginzburg-Landau system (GLS), which is used
as a mathematical model for many physical phenomena, such as super-conductivity and
super-fluidity. In the theory of super-conductivity, the unknown V represents an order
parameter which has two degrees of freedom, and its zero set, called vortices, corresponds
to the region of the normal state in super-conductors. So, especially our result produces
an example of solutions of the GLS in R? with curved vortex lines.

Some results concerning the isolated zeros of solutions of the GLS in R? are known([1],
[2]), however there seems to be no explicit example of solutions with higher-dimensional
nontrivial zero sets. . ‘

Our proof is based on the “equivariant construction ”method due to N.Smale [9], in
which the examples of minimal hypersurfaces in Euclidean spaces with higher-dimensional
singularities are shown. Later, the same method was used to construct examples with
higher-dimensional singularities, of harmonic maps [4], and of solutions of a certain non-
linear elliptic equation [6]. »

Main result of this paper can be extended to equations with other type of nonlinearl-
ities, but we do not pursue here for simplicity of description. ‘

2 Notations and statement of the main result

We follow the setting of “equivariant construction ”method described in the papers [9],[4]
and [6]: Let n > 2, k > 1 be two integers. Let U C R* be an open set containing
{0} € R* and assume that there is a C* group action

®:t el — B(t) € Isom(R™F),
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here Isom(R™**) means the group of isometries of R"+*. We will denote ®(t) by G;.
We define

I ={G:«0):teul,
B" = B} (0) x {0} = {& = (z,0) € R" x R*,|z| < 1},
Q  ={G:(B"):teuU}.

So, T is the orbit of {0} € R™* of the group action ®, and  is the unit n-disc bundle
over T' obtained by moving B" along T by Gy, t € U. On the group action ®, we make
the following assumptions: T is a properly embedded k-dimensional submamfold in R+
and whenever G;(0) = 0, we must have G,(B") = B for any t € U, that is, the isotropy
group of 0 is the same as the one of B®. Furthermore, when G; = O(t) + v; is the
decomposition of the element of Isom(R™+¥), where O(t) € O(n + k), the orthogonal
group of R™* and v; € R"**, we define the group action

®, :t €U — Gt € Isom(R™FF),

and
re= {Gi(0):teU}=(})T,
Q= {G;(B"):telU},

where G = O(t) + lv,. Note that under the assumption of the group action ®, Q, is

well-defined and then €, is the unit n-disc bundle over I', obtained by moving B" along
I'. by G%, t € U. Note also that when ¢ > 0 is sufficiently small, Q, is close locally the
trivial product bundle B}(0) x R¥ over {0}, x R¥. Finally, for a map U : R*** — R",
we denote by ['(U) the set of zeros of U, namely, I'(U) = {z : U(z) =0 € R"}.

Now we state the main result of this paper. :

Theorem For any A € R, there ezists an open domain Q Cc Rtk containing I,

on which there are infinitely many solutions of (1) with boundary values, whose zero set
isT. ’ ‘

In the proof of the theorem, we will show that there exists £ > 0 sufficiently small,
such that for any 0 < € < £, there is a solution U of

AU+ XA - |UPU =0 in Q, | (2)
I(U) =T, (3)

with a boundary data fixed up to a finite dimensional space, and U is invariant under the
action &, i.e, U(G:(2)) = U() for all Z € B” and t € U.

We will find a solution U of (2) by solving the appropriate fixed point problem. We
make essential use of the invariant condition of U, thanks to which, we can think of (2)
as a PDE on each fibers of the disc bundle Q,, especially on B" for t = 0. Note that the
nonlinear term of (2) is well controlled when ¢ is small enough, so we can get a solution as
a perturbation of the R"-valued harmonic function v : B(0) — R",vo(z) = z. Taking
Q=¢-9Q, and Vi) =U (%) fory e  will give the desired result. The domain Q so
obtained, is the bundle over I' of the n-dimensional discs of radius €, so looks like locally
a thin perturbed tube of radius € with center axis I'.

Now we describe our coordination of €2,: For y € €, there exists ¢ € B}'(0) and t € Y
_such that y = G5(Z), then let us denote F : BF(0) x U — Q., F(z,t) = Gi(z). we
will introduce the local coordinate system by this map, and identify y with (r,,t) where
(r,0) are polar coordinates for € B}(0). So, functions defined on €, can naturally be
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considered as functions on B}(0) xU by F. Note for € > 0 sufficiently small, r also is the'
distance to I';. )

In the sequel we use the following function spaces: For » € R,a € (0,1),m = 0,1,2,
define _

loc

C™ " (Q;R") = {ue C.% (U \Te; R") : |t|m 0,y < +00},

where | |m,a,, is the norm

m ‘ m
Iulm,a,u = sup (Z |V]uv|0,[,,23].5‘7_" + Z 'Vful(a),[s’23].51+a—u) )

Here, V and V? denote the gradient and Hessian respectively on ., and |n|o [s 2, and
7l(a),[s,25] are the sup norm and the a-th Holder seminorm of a function(or a section) 5
on ., over the set {y = y(r,0,t) € Q,: s < r < 2s}. These are Banach spaces under the
norm | - |m,a,v, and if u € C™*¥(Q; R™), then |u| decays like r” near T..

Furthermore, let us define the closed subspace of C™*¥(Q.; R") as

CT®"(Qe;R™) = {u € C™**(Qe; R™) : u(G§(3)) = u(z) for all z € BY(0), t €U},

that is, maps in C™®* which are ®,-invariant. We also denote Cg *(09¢; R™) for the
- space of ®, - invariant boundary data in C™ (9%, ; R™).
Weighted Holder spaces like above are now widely used for other nonlinear problems,

see [9], [10], [4], [6], (8], [5], [3]-

3 Pron of the Theorem

In this section, we seek for a solution of (2) satisfying (3) by the same technique as in
[9], [4], [6]: linearization and solving the appropriate fixed point problem. First, we
construct the approximate solution. We fix € > 0. Let v : Bf'(0) — R™ be the identity
map vg(z) = z; so evidently I'(vg) = {0} € R™ and Ag»vy = 0, where Ag» means the
Laplace operator on B}(0). Now we define the approximate solution u, : 2. — R" by

ue(G;(Z)) = vo(z) for z € BY(0), telU

where Z = (z,0) € B™. By definition of €. and by our assumption on the group action
®, u, is well-defined and invariant under the action ®,. The zero set of u. satisfies

I'(u.) =T..
We wish to find a solution of (2) of the form
U(u) =ue +u

where the perturbation u is assumed to be invariant under the action ®, and to decay
rapidly near T, so as to ensure that I' (U(u)) = T..
Let N(u) be the left hand side of (2) for U(u), that is,

N(u) = AU(u) + Ae?(1 = |U(w)|2)U(u).
We make a Taylor expansion of N(u) about u = 0 to get

N(u) = N(0) + Lu+Q(w),
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where

N@O) = Auc+ (1 - |u]P)u,,
Lu = EN(t’u)lt_—_o
= Au+ \e? {(1 — |ue*)u - 2(ue - u)ue} ,
1

ow = [a- )jtzNau)

- (_wz)/ (1= &) {JulPue + 2(ue - w)u + 3tjuftu) dt
= (=2¢?) {[uluc +2(ue - w)u+ [uf?u},

here A means the Laplace operator on Q.. Now, if we define the linear operators
R=A-Ag-
and
fu= A2 {(1 = Jue|P)u — 2(u, ‘u)ue

then the equation N(u) = 0 can be rewritten as
Apru=—-N(0) — Ru — {u — Q(u) (4)

which we solve by contraction mapping argument on some weighted Holder space. Note
that if u is invariant under the action ®., all of the terms in (4) are also ®,-invariant,
so we can consider (4) as a PDE on the slice B®. This is crucial for our subsequent
arguments. '

To estimate the terms in the right hand side of (4), we need the following lemma due
to R.Mazzeo and N.Smale [5).

Lemmal Under the local coordination by F, we have

A‘—"ABn +ARk +61v2+62v ’ ’ (5)
where A and V are the Laplace operator and gradient on Q., e; € C®((Sym2Q,)*),
e2 € C®°(T*Q,) are smooth sections and satisfy

le1(z, t)| < Core, le2(z,t)| < Coe,
le1l(a),(s,25)8% < Cose,  leal(a,s,2515% < Coe
for some constant Cy independent of e > 0 and o € (0, 1).

For functions u invariant under ®,, the factor Agx in (5) drops out.

Using this lemma, we have

Lemma2 Ife>0,1<v<?2 anduc Cza”(QE;R"), then N(0), Ru,fu,Q(u)
are all in C’0 = 2(Qe, R"™) and the following estimates hold:

IN(O)o,ap-2 < Cie(1+|Afe),

|Ruloap-2 < Cielulzaw,

'€UIO,G,U—2 S Cl[’\|€2’u|2,a,l/,
Q(Wlo,0v-2 < CilMe® (Jul} o, + [ul3q,)

for some constant C; > 0 independent of € and .
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Proof Since u. and u are ®.-invariant, so are also all terms appeared in the right
hand side of (4), and can be considered as functions of B}(0). By definition, the map u,
satisfies Agnu, = 0, s0 we have

N(0) Au, 4+ Ae(1 = |ue)?)ue

(A = Apn)ue + Ae(1 = Jue?)ue.

~ Then using Lemmal and the fact that |Vu,(z)|+ |V?u(z)| < C and |uc(z)| < 1 for some
constant C independent of ¢ and z € B'(0), we have
IN(O)(@)| < leaVPue(@)] + le2Vue(2)] + Me? (1 = Jue ) ue|

< Cse+ Ce+|\é?

for s < |z| < 2s. Taking the supremum over the set {z : s < |z| < 25} and multiplying
s277, we get

IN(O)|o,s,258*™" < 8°77 - Ce(1+|Ae)
< Ce(l+ |Xe),

since 1 < v < 2and 0 < s < 1/2. Holder seminorm estimate for N(0) has the same form,
then by taking the supremum over s < 1/2, we have the first estimate of the lemma.
Similarly by Lemmal,

Ru=(A—-Ag-)u=e;Viu+eVuy,

so we have

-V

Cselvzulg‘[,,z,]sz—" + C€|Vu|g,[3,2_,]sl_" .8

|RU|0,[5,2s]32 <
S Ce (lvzulo,[s,%]sz—” + IVU!O,[a,Zs]Sl_V) )

for 0 < s < 1/2. Holder seminorm estimate is also similar, then taking the supremum
over s < 1/2 yields the estimate for Ru.
As for the estimates for £u and Q(u), by using the basic properties of the Holder
seminorm
I+ 1l < l(a) + 17l(ay,
and
lnley < litloyInleey + 11l o),

- as in the above computation, we can derive the following bounds:

€u(@)l < CREu(@), € B(0) NG
|€u|(a),[3,2s] < ClAlEZ (|u|0,[3,23]+Iul(a),[s,Zs])a (7)
QW@ < CRIE (lu@) + [u(@)F), =€ BI() (®)

Q(W)|(a) (5,267 £ CIAJE? (iulﬂ,[s,Z.s]|u|(a),[s,23]+|u|g,[s,23]+|u|g,[s,23]lul(“):[’wz-’])'(9)

If we multiply both sides of (6) and (8) by s>=, or of (7) and (9) by s2~“** and take the
supremum over s < 1/2, we immediately have '

sup (lfulﬂ,[s,Zs]sz—V+|£u|(a),[s,2s]32-u+a) < CP‘IEZIU|0.C¥.V
0<s<1/2



0<SliP/2 (1QW)los 26357 +1Q(Wl(ay 52652~ F%) < CIAME® (|ulf o + [l av)

which complete the proof of the lemma. | O

Now, to find solutions of (4), we first recall the unique solvability result for the linear
problem Ap=u = f on B}(0), for f € CZ*”~?(Q; R™) with some appropriate boundary
conditions.

Let us take the sequence of eigenvalues of Agn-1 acting on C*®(S*~};R™) , pu;, 0 =
p1 < py < ---, (counting multiplicity), p; — oo, and corresponding sequence of L? -
normalized eigenmaps ¢; € C®°(S""1;R") such that Agn-1¢; + p;¢; =0, =1,2,--
Let A; and );(—) be two real solutions of the equation A* 4+ (n — 2)A — p; = 0, that is

2—n+ (n—2)2+
2 4

2—n n—2)2
pi and Aj(-)= -,/ + b

A= 2 4

We now fix v so that 1 < v < 2 and choose an positive integer J such that Ay < v < Aj41.
For this J, we define

I, : L3(S"" Y R™) — {¢1, é2, s }*

be the orthogonal projection.
Then we have :

Lemma3 If f € CX** %(Q.;R") and ¥ € C3%(090;R") with 0 < a < 1, then
there exists a unique u € Cé’a’"(Qe;R”) such that

Apru =f onQ.\T,,
{ Iy (ulon.) =Hs(¥). (10)

Furthermore, we have the estimate
lul2,a,u S C2 (lflO,or,v—Z + W"Z,G)

for some constant Cy depending only on a.

Proof The proof of this is done by separation of variables and now quite standard
(see [3], [9], (4], [6]), so we make only few comments.
If we write

u(r,0) = Y ui(r)é;(0), ui(r)=(u(r,),;()) pacse-1;Roys
j=1
f("‘) 9) = Ef,(r)q&,(@), fj (7’) = <f(7‘, ’)1¢j('))L3(5"“‘;R")’
i=1
$(O) = Y ¥idi(6), ¥ = (¥ 6i)rasn-1;Rny

i=1

then each u; must be the solution of the following ODE with boundary conditions:

() 4 22La(r) — 5 = (1),
a(l)=v; for j>J,
la(r)] < Cr¥.

95
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By elementary ODE argument, Caffarelli, Hardt and Simon [3] showed that

r s
uj(r) = r)‘i/o sl'”'”‘i/o ‘r"_l'*')‘ifj(r)drds, G=12---,J)

1 s
qurxi - rAJ'/ sl‘”'zAiA ‘r”‘1+’\ffj(7')d1'ds, G>2J+1)

u;(r)

are the unique solutions. Thus the map Z;‘;l u; ¢; formally solves the equation Agru = f
on BF(0) with II;(u|sq,) = II;(¥), and in fact C? classical sense on B?(0) \ {0}.

To prove the estimate, note that we are dealing with the system of PDE, but in the
same situation this was done in [4] using the local supremum estimates of [8] and the
standard Schauder estimates in [7] . 0

We now apply Lemma2 and Lemma3 to find fixed points of (4). Fix o € (0,1) and
v € (1,2) as before. For K > 0 and € > 0, let us define

| BKE»“:” = {u € Céaly(ﬂe; Rn) _: lul2,cx,u S I{E} .

Then we prove

Lemma4  For any A € R, there ezists K > 0 and 0 < £ < 1 such that if € < &,
v € Bkeau and ¢ € Cé’a(aQe;R") satisfying |Y|s.o < €, then the problem: to find
U € Bike o,y such that

Apnu = —N(0) — Rv —€&v —Q(v)
{1 1) 4y

has a unique solution.

Proof The problem above has a unique solution u € C'ZJ“’"(QE; R") by Lemma2 and
Lemma3. Furthermore according to Lemma2, Lemma3 and |v]; o, < K¢, we have

S CZ (l"/)|2,a + |N(O)]0,a,u—2 + |RU|0,a,u—2 + I€U|o,a,u—2 + lQ(v)|0,a,v—2)
< Cay(e+Cie(1+|Ae) + Cre - Ke + |Me? - Ke + |Me? (K %2 + K36%))
< Ca(e+|Ae® + Ke? + |A|e? (Ke + K2e? + K363))

[u]2,q,v

for some constant C3 > 0.
So, if we can take K and € such that

Cs (1_+I\M£ +e+|Me? (14 Ke + 1{262)> <1,

then the proof will be completed. This can be done as follows: First, fix K > 0 sufficiently
large so that ' :
ST
K 2C3

and then, fix € € (0,1) sufficiently small so that

E+[Me? (1+ Ke+ K?&?%) < —.
2C;
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Now, fix ¥ € C, (BQE,R") so that |]s4 < €(< €). Let us denote T'(v) the unique
solution of (11) for v € Bke o,v. Then, by Lemmad, T defines a self-map of Bk o,,. To
show that T is indeed a contraction, we need

Lemma5 There is a constant Cy > 0 independent of u,v € Cé’a'"(QE;R”), € and
A such that

Q) = Qo2 < CalE® = vl [[Ulz,0 + (ol + (lubnay + [vl2.as)]
holds,

Proof This is obtained quite easﬂy by elementary computation and basic property
of Holder seminorms, if we write

(’U.) - (U) = (—AEZ) (Il + 21, + 13),

~ where
L= [w—0) (ut ),
L, = (u,_. u)(u —v) + [ue - (v — v)]v,
L= [ulu-v)+ (=) (u+ o).

i

Let uy = T'(v1) and uy = T'(v3) are the unique solution of (11) for ﬁxed ¥, given by
Lemma4. Then by Lemma3, Lemma2 and Lemma5, we have

IT(v1) — T(v2)l2,a,
< CoR(v1 = v2)|o,a,0-2 + C2l€(v1 — v32)]0,a,r—2 + C2|Q(v1) = Q(v2)]0 a,v—2
< CaCiglvr — valz,a,0 + C2C1|A €% |01 — va2.00
+ CZC4|)‘|52|'01 — V2|2,00 {|v1|2,a,u +v2l2.0,0 + (JV1l2,0,0 + |v2‘2,a,u)2]
< Cs e+ e? + |Me (Ke + K2e2)] vy — v2,0,0-

So if we retake £ small enough so that Cs [£ + |A|€? + |A|e? (K€ + K2€?)] < 1, the map T
defines a contraction on the closed subset of a complete metric space, then it has a ﬁxed
point u. Thus we have found a map U = u + u, satlsfymg (2), at least in Q. \ T,.

Note that when 1 < v < 2, we can extend u € C2*”(Q,;R") ( as thought of a map
defined on BT (0) \ {0} ) to 0 € B}(0) so that u(0) = 0 and |Vu(0)| = 0, then the map
U is indeed a smooth solution of (2) on each fibers of Q.. Moreover if we require £ small
enough such that K¢ < 1/2, then |U(z)| > |uc(z)| — |u(z)| > (1/2)|2| for any z € BT(0),
so ['(U) = I'(u;) = T.. As noted earlier, simple rescaling by a factor of ¢ completes the
proof of Theorem. 0
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