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NONEXISTENCE RESULTS OF HARMONIC MAPS BETWEEN
HADAMARD MANIFOLDS

ATSUSHI TACHIKAWA

1. NONEXISTENCE RESULTS

Harmonic maps have been studied by so many mathematicians since the famous
paper by Eells-Sampson [10] was published. Especially, about the case that the
- source manifold is compact, existence problems have been studied very deeply and
we know many results today. In contrast, about harmonic maps between noncom-
pact manifolds, we do not know so many results yet. On existence, we know only
results for some special cases. For example, in the case that both (source and tar-
get) manifolds are hyperbolic spaces, we know the results by [1], [22], [23], [24] and
[2]. But, no general existence theorem is known. On the other hand, for noncom-
pact case, we can expect not only existence results but.also nonexistence results.
For example, since the notion of “ harmonic map” is a natural extension of one of
“ harmonic function”, it is very reasonable to expect “ L10uv1lle-type theorem”. In
this article we mtroduce some nonexistence results.
Let M and N be complete Riemannian manifolds of dimension m and n (m,n >
2) respectively. For a map U € C'(M, N) we define the energy density e(U)(p) of
Uatpe M by

e(U)(p) = —IldU( 7,

Where I || denotes the norm induced from the tensor product norm on Ty M ®
Ty(p)N. For a bounded domain 2 C M, we define the energy of U on Q2 by

E(U;Q) = /Q e(U)ds,

where dy stands for the volume element on M. A map U : M — N is said to be
harmonic if is of class C? and satisfies the Euler-Lagrange equation of the energy
functional. , _

As mentioned above, it seems to be reasonable to expect that a Liouville-type
theorem will hold about harmonic maps. In fact, a Liouville-type theorem has been
proved by S.Hildebrandt-J.Jost-K.-O.Widman [17]. (See also [4], [11] and [28].)

Theorem 1.1 (Hildebrandt-Jost-Widman [17]). Let U be a harmonic map of
simple or compact Riemannian manifold M of class C' into a complete Riemannian
manifold N of class C3, the sectional curvature of which is bounded from above by
a constant k? > 0. Denote by Br(q) a geodesic ball in N with radius R < 7/(2k)
which does not meet the cut locus of its center qy. Assume also that the range U(M)
of the map U is contained in Br(qo). Then U is a constant map.
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Here, a Riemannian manifold is said to be simple if it is diffeomorphic to an
Euclidean m-space R™ and furnished with a metric for which associated Laplace-
Beltrami operator is uniformly elliptic. :

For the case that the target manifold N has a pole go (1 e. the exponentlal map
at qgo gives a diffeomorphism between N and an Euclidean space) and whose radial
curvature is bounded by a sufficiently rapidly decreasing function of the distance
from the pole, L.Karp [19] proved that nonconstant harmonic maps defined on
a complete, noncompact manifold satisfy a certain growth order condition. This
result implies nonexistence of nonconstant harmonic maps under some growth order
condition.

Theorem 1.2 (Karp [19]). Let U : M — N be a harmonic map and suppose N
has a pole qo and all radial curvature at ¢ € N are smaller than or equal to K (r),
r = dist(g, o), where K : [0,00) — R satisfies 0 <1 - o rK(r)dr =68 < 1. IfU
1s not constant then

lim sup- 1;11( )/ (qo){dlst(U(a:) qo)}pdu +00

'r—»oo r2

for every F € F and every p > 2 — &, where

F={F:(0,00) — 000)|/°° Fdzr oo},

These results show nonexistence of harmonic maps under the conditions on
the growth of the maps. On the other hand, in [14] S.I.Goldberg-T Ishihara-
N.C.Petridis proved a nonexistence result of another type. (See also [13] and [27].)

Theorem 1.3 (Goldberg-Ishihara-Petridis [14]). Let M be a complete con-
nected locally flat Riemannian manifold and N a Riemannian manifold with neg-
ative sectional curvature bounded away from 0. Then a harmonic map of bounded
dilatation U : M — N is a constant.

Here, a map ¢ : (M, h) — (N, g) is said to have bounded dilatation if there exists
a number K such that for each z € M, either dyp(z) =0 or A; /A2 < K, where |

A12/\22...2)\r>0

are the positive eigenvalues of the pull-back metric ¢*g. W.S.Kendall [20] , [21]
gave probabilistic extension of this result. (See also Theorem 1.2 of [3].)

For the case that N is a Hadamard manifold whose sectional curvature is bounded
above by a nonpositive constant, in [30] the author has shown nonexistence of a
harmonic map U from an Euclidean m-space R™ to N under certain nondegeneracy
condition (1.2) below. Moreover, the above result was extended in [31].

Theorem 1.4 (Tachikawa [31]). Let M be a Riemannian m-manifold with a pole
po € M, (z!,...,™) a normal coordinate system centered at po and ky(z) the
minimum of the sectional curvature of M at x. Assume that

(1.1) . —min{kp(z),0} < O(r~?) as r = |z| — 0.
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Let N be an Hadamard n-manifold whose sectional curvature are bounded above by
a negative constant —k>. Then there exists no harmonic map U : M — N which
satisfies the following condition.

(1.2) mﬁ{gﬁﬁggﬁ}{dvxm—e@xw}z@>n

where p(z) = disty (U(0),U(z)) and e(p)(z) = h*#(z) Dap(z) Dgp(z).
Let u(z) be an expression of U(z) with respect to a normal coordinate system
(ul,...,u™) on N centered at U(py). We can see that
J

dWﬂﬂwMﬂmeﬁwm%%ﬁ

where |u(z)| = /3 1, (uw(z)?)2. Moreover, the assumption on the curvature of N
implies that

N 2 . .
|ul®gi; (u) X* X7 > {M} |X|?, for X € R™ with g;;(z)X'uw = X*u/ =0.

(See Lemma 2.1 of [31].) Thus, we get

ﬁmﬁy}w<) e(p) (@)}

i

> oh
Z h*f(z)D D[, al

Therefore, writing ¢ = u/|u| we can employ the condition

n

(1.3) e(€)(z) = Y hP(2)Dat’Dpt’ > eo/|al,

=1

instead of (1.2). This is the reason to call (1.2) a rotational nondegeneracy condi-
tion.

On the other hand, A.Ratto-M.Rigoli[26] showed a nonexistence result of similar
type for harmonic maps U from a model M™(f) to N as above. Here a model
M™(f) is a warped product manifold [0,00) x ¢ S™! i.e.

M™(g) = ([0,00) x S™71 dr? + f2(r)d§?).

Theorem 1.5 (Ratto-Rigoli[26]). Let N be a Hadamard manifold with sectional
curvature bounded above by a negative constant and M™(f) a model such that
[f]7! ¢ L'(+o00) and f' is bounded above by some positive constant. Then, there
are no nonconstant harmonic maps U : M™(f) — N such that, on {x € M™(f) :

U(z) # U(0)}
(1.4) e(é) > f%('r) for some constant ¢ > 0,
where £ is as in (1.3).
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Anyway, in these results, global conditions (1.2) or (1.4) are assumed. In the’
following theorem, the global condition (1.2) are replaced by a condition on the
asymptotic behavior of U.

Theorem 1.6 (Akutagawa-Tachikawa [3] ). Let M be a simple Riemannian
m-manifold with a pole py € M, (z!,...,2™) a normal coordinate system centered
at po and kpr(z) the minimum of the sectional curvature of M at z. Assume that
kar(z) satisfies (1.1). Let N be an Hadamard n-manifold whose sectional curvature
are bounded above by a negative constant —k2. Then there exists no harmonic map
U : M — N which satisfies the following condition. '

)) (e(U)(&) - e(p)(x»} >0,

1. lim i .
(15) Igfg{.g.f(loglxl){lwl (s

where p(z) = disty(U(z), o) for an arbitrarily fized point go € N.

Now, to state the next result, let us introduce some notations.
For a Riemannian manifold P = (P?,7), (, )(q) denotes the inner product on

the tangent space T,P with respect to the metric v and || X|ly(q) = /(X X)4(q)-
. If P has a pole go, let 0(qo,q)(t) be the geodesic curve such that o(go,q)(0) = qo
and o(qo, q)(1) = q, Kp(g; ™) the sectional curvature of P at g with respect to the
plane section 7 and kprad(q ;qo) the maximum of the radial curvature of P at g,
i.e.

(1.6) kprad(g 590) := max{Kp(g ;) : 7 3 0'(q0,¢)(1)}.

Moreover, let us define the minimum eigen value of y(q) with respect to the tangent
vectors which are orthogonal to the o'(go,q)(1), Ap(g; g0) by

@7 Ap(gia0) =t {J€R ) /IE1 5 (6,0"(a0, (D)) =0}

Here and in the sequel, | | denotes the standard Euclidean norm.
For the case that the source manifold M is an Euclidean space, the assumption
on the curvature of the target manifold N can be weaken as follows.

Theorem 1.7 ([32]). Let N = (N",g) be a Hadamard n-manifold. Assume that
(1.8) {dist(po,p)}*|kn raa(p ; p0)| 2 & > 0 as dist(po, p) — 0.

Then there exists no harmonic map U : R™ — N which satisfies the following
condition.

im i 2 ! —e(p)(z
a9 min {of () (0@ - @) | >0

where p(z) = disty (U(z), qo) for some qo € N.

Remark. The case that N satisfies the curvature condition in Theorem 1.6, we
can take

2
AN(U(2);90) = (%sinh f<a|u(a:)l) .

Therefore, the difference between the conditions.(1.5) and (1.9) is only log |z|.
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In the next section, we show the outline of the proof of Theorem 1.7.

2. OUTLINE OF THE PROOF OF THEOREM 1.7

First of all, we need some differential geometric estimates which are based on
Rauch’s comparison theorem (cf. Lemma 6 of [17]).

Lemma 2.1. Let N be a Riemannian n-manifold with a pole qo, (y*, -+ ,y") a
normal coordinate system centered at qo and (g;;(y)) the metric tensor wzth respect
to the normal coordinate system. Let f be a function of class C? (IR+,]R+) which
satisfy

(2.1) lim f—iﬁ =1, f(t) > 0Vt € (0,00).

Assume that

0
(22) » kN,rad(07 :l,/) S - f(t) ) |
where t = |y| = Z;.L:l(yj)z. Then we have the following estimates
@Y XX T 2 K + e e
. . 2
(24 s x'0 2 1P+ LD,

for ally, X € R™, where t = |y|, ( = (X,y)y/t? and £ = X — (.

The estimates as (2.3) are used very often to estimates nonlinear terms of the
equations of harmonic maps.

Let u = (u!(z), -+ ,u™(z)) be the expression of a harmonic map U : R™ — N
in terms of a normal coordinate system centered at any fixed point go in N. Then
u satisfies the following equation of weak form.

(2.5)/Rm Z 9ii{Dot’ Dop® + @*T% Dou! Doul}dz = 0, Vg € CP(R™,R™).
=1

Proposition 2.2. Let N, f be as in Lemma 2.1 and u the expression of a harmonic
map U : R™ — N with respect to a normal coordinate system on N centered at an
arbitrary fized point qo € N. Then we have the following differential inequality for
|ul.

(2.6) Alul(z) - L ((I'“I')){ (w)() - e(ul)(@)} > 0,

where |u] = /371, (u))?, e(u) = 350, 97 (u)Daw'Daw, e(|ul) = 301, Dalu|Dalul.

Moreover, if u satisfies (1.9) then we get
(2.7) Alul - | B —5 ' (lu]) > 0 on R™\Bg,(0)
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for some g9 > 0 and Ry > 0.
Proof. Taking ¢ = un, n € C(R™,R) in (2.5), we get
A | . L _
/ {2 Daluf Dan + 1915 (Dt Dat? + u*T, Dot Do’}
(2.8)
= 0.

In (2.3) take X = D,ut, and sum up with respect to «, then we get the following
inequality

Zgu(u )(Da u’D w + u*TY, Do Dyu?)

(2.9)
| >|<|2+Z||f'~"“" (WL,

where o jD ;
¢=(¢), ¢ = E"=1|;‘|2 ¥ 4 and € = (1) = (Do’ — &),

Moreover, we can see that
2 _ 2 2 2 ||D|”| ”2
=3 3 = T |2ZD aluf’ Daful* = =5

(2.10)  ,, . e=li=l
> 95 (w)ELEL = e(u)(z) = (D))l () = e(u)(z) — e(|ul)(=).
a=1

From (2.8), (2.9) and (2.10), we can deduce that |u| satisfies the differential in-
equality (2.6).

Now, assume that u satisfies (1.9). Then there exist o > 0 and Ry > 0 such
that

1) 1P (o) {eu)(@) - e(ful) (&)} > o for € R™\Bg,.
On the other hand, (2.4) implies that

(2.12) A raa(0,u(z)) > L 2|1(L|(U()|2)D'

Thus, combining (2.11) and (2.12), we get

(2.13) lezﬁ(_llil—) {e(w)(z) - e(Jul)(x)} > & for & € R™\Bk,.

Now, from (2.6) and (2.13), we get the differential inequality (2.7). O

Now, we can prove Theorem 1.1 by comparing |u| with a blow-up supersolution
of (2.7). The following theorem due to T.Nagasawa [25] gives us blow up solutions
of (2.7). .
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Theorem 2.3 (Nagasawa [25]). For m > 2 and p > 0, let us consider the initial
value problem '

2

(214) (6 + T () - B f ) =0

(2.15) | r(0) = 0.

Assume that

(2.16) (ff)'(r) >0 forr> ,0’

(2.17) f(r) =br + O(r®) as r | 0 for some b > 0,
* dr

Then the following facts hold.

(1) There ezists a solution r(t) to (2.14)-(2.15) which blows up in finite time.

(2) The set of all solutions is a one-parameter family {ri(t) = 7(At))}r>0.
Here r(t) is the solution in the first assertion. In particular there exists no
global solution except zero solution.

(3) For any T € (0,00) there exists a unique solution to (2.14)-(2.15) which
blows up att =1T.

Moreover it is known that the solutions of (2.14) - (2.15) are nondecreasing.

Proof of Theorem 1.7.

Let u(x) be the expression of a harmonic map U : R™ — N with respect to a
normal coordinate system y = (y',---,y") on N centered at arbitrary fixed point
go € N. Take Ry as in Proposition 2.1 and put & = SUPpy |u|. Assume that U is
not a constant map. Then |u| can not remain bounded because of a Liouville-type
theorem due to [17]. Thus, there exists a compact set Dy C R™\Bg, on which
lul > €+ 1. |

Under the assumption on N in Theorem 1.7, one can find a function f which
satisfies the assumptions in Lemma 2.1 and Theorem 2.3. Thus there exist a one-
parameter family of solutions 7(t) to (2.14), or equivalently to the equation

(2.19) Ara(la]) - %ff’(rguml)) —0,

which blow up at.|z| = T/ for some T > 0 as in Theorem 2.1. Since r(0) =0, we
can take Ag > O sufficiently small so that Dy C Br/y, and

(2.20) Txo(|z]) <1 on Dy.

Let
Pz) =7 (|2]) + &,
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then ¥(z) satisfies

(2.21) AY(z) - 3 f£/($(a)) < 0 in R™.
(2.22) - ¥(z) > € on Bg, and Izll—ig’l"/r\ Y(z) = +o0.

Now, using comparison theorem for elliptic equations, we can see that

(2.23) | |lu(z)| < ¥(z) on Br/x\Bg,.

On the other hand (2.20) implies that u(z) > ¥(z) on Dy. This is a contradic-
tion. [

10.

11.

12..

13.

14.

15.

16.

17.

18.

REFERENCES

Akutagawa, K. : Harmonic dzﬁeomorphzsms of the hyperbolic plane. Trans. Am. Math. Soc.
342, 325-342 (1994)

Akutagawa, K., S.Nishikawa and A. Ta.chlkawa : Harmonic maps between unbouded conver
polyhedra in hyperbolzc spaces. Invent. Math. 115, 391-404 (1994)

. Akutagawa, K. and A.Tachikawa : Nonezistence results for harmonic maps between noncom-

pact complete Riemannian manifolds. Tokyo J. Math. 16, 131-145 (1993)

. Cheng, S.-Y. : Liouwille theorem for harmonic maps. Proc. Symp. Pure Math. 36, 147-151

(1980)

Cheng, S.-Y. and S.-T.Yau : 'Differential equations on Riemannian manifolds and their geo-
metric applications. Commun. Pure Appl. Math. 28, 333-354 (1975)

Choi, H.I. and A.Treibergs : New ezamples of harmonic diffeomorphisms of the hyperbolic
plane onto itself. Manuscr. Math. 62, 249-256 (1988) ‘

Choi, H.I. and A.Treibergs : Gauss maps of spacelike constant mean curvature hypersurfaces
of Minkowski space. J. Differ. Geom. 32, 775-817 (1990)

. Eells, J. and L.Lemaire : Selected topics in harmonic maps. Reg. Conf. Ser. Math. 50, 85 p.

(1983)

Eells, J. and L.Lemaire : Another report on harmonic maps. Bull. Lond. Math. Soc. 20
385-524, (1988)

Eells, J. and Sampson,J.H. : Harmonic mappings of Riemannian manifolds.' Ann. J. Math.
86, 109-160 (1964)

Giaquinta, M. and S.Hildebrandt : A priori estimates for harmonic mappings. J. Reine
Angew. Math., 336, 124-164 (1982)

Gilbarg, D and N.S.Trudinger : Elliptic partial differential equa.twns of second order. (second
edition), Berlin-Heiderberg-New York: Springer 1983

Goldberg, S.I. and Z.Har’El : A general Schwarz lemma for Riemannian manifolds. Bull.
Greek Math. Soc. 18, 141-148 (1977)

Goldberg, S.I., T.Ishihara and N.C.Petridis : Mappings of bounded dilatation of Riemannian
manifolds. J. Differ. Geom. 10, 619-630 (1975)

Gromoll, D., W Klingenberg and W.Meyer : Rimannsche Geometrie im Grofen. Lect. Notes
Math., vol.55, Springer-Verlag, Berlin-Heidelberg-New York, 1968.

Hildebrandt, S.: Liouwville theorem for harmonic mappings, and an approach to Bernstein
theotems. Seminar on Differential Geometry (ed. by S.-T.Yau), Ann. Math. Stud. 102, 107-
131 (1982)

Hildebrandt, S., J.Jost and K.-O.Widman : Harmonic mappings and minimal submanifolds.
Invent. Math. 62, 269-298 (1980)

Hildebrandt, S. and H.Kaul : Two-Dimensional variational problems with obstructions and
Plateau’s problem for H-surfaces in a Riemannian manifold. Commun. Pure Appl. Math.,
25, 187-223 (1972)



19.

20.

21.

22.

23.

24.

25.
26.

27.
28.

29.

30.

31.

32.

89

Karp, L. : The growth of harmonic functions and mappings. Differential Geometry Pro-
ceedings, Special Year, Maryland 1981-1982 (Progress in Mathematics, vol. 32), Birkhauser,
153-161 (1983)

Kendall, W.S. : Brownian motion and a generalized little Picard’s theorem. Trans. Am. Math.
Soc. 275 (1983), 751-760. . :

Kendall, W.S. : Martingales on manifolds and harmonic maps. The Geometry of Random
Motion (ed. M.Pinsky and R.Durrett), A.M.S., Rhode Island, 121-157 (1988)

Li, P. and L.Tam : The heat equation and harmonic maps of complete manifolds. Invent.
Math. 105, 1-46 (1991)

Li, P. and L.Tam : Uniqueness and regularity of proper harmonic maps. Ann. Math. 137,
167-201 (1993)

Li, P. and L.Tam : Uniqueness and regularity of proper harmonic maps II Indiana Univ.
Math. J. 42, 591-635 (1993)

Nagasawa, N. : Blow-up problem for equivariant harmonic maps. (preprint)

Ratto, A. and M.Rigoli : Elliptic differential inequalities with applications to harmonic maps.
J. Math. Soc. Japan, 45, 321-337 (1993)

Sealey, H.C.J. : Some properties of harmonic mappings. thesis, University of Warwick, 1980
Tachikawa, A. : On interior regularity and Liouville’s theorem for harmonic mappings,
Manuscr. Math., 42, 11-40 (1983)

Tachikawa, A. : Rotationally symmetric harmonic maps from a ball into a warped product
manifold, Manuscr. Math., 53, 235-254 (1985) '

Tachikawa, A. : Harmonic mappings from R™ into an Hadamard manifold, J. Math. Soc.
Japan, 42, 147-153 (1990)

Tachikawa, A. : Harmonic maps from a Riemannian manifold with a pole into an Hadamard
manifold with negative sectional curvatures. Manuscr. Math., 74, 69-81 (1992)

Tachikawa, A. : Nonezistence results for harmonic maps from R™ to Hadamard manifolds
with slowly decaying sectional curvatures (preprint) :

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, SCIENCE UNIVERSITY

oF Tokyo, NopA, CHIBA, 278 JAPAN

E-mail address: tachikaw@ma.noda.sut.ac.jp



